尚海麗,畢銀麗,彭蘇萍,解文武
?
解鉀細(xì)菌C6X對(duì)不同富鉀礦物含量土壤鉀素遷移的影響
尚海麗1,2,畢銀麗1※,彭蘇萍1,解文武1
(1. 中國礦業(yè)大學(xué)(北京)煤炭資源與安全開采國家重點(diǎn)實(shí)驗(yàn)室,北京100083;2. 內(nèi)蒙古科技大學(xué)礦業(yè)研究院,包頭014010)
為了改善黃土高原地區(qū)煤炭開采引起土壤質(zhì)量急劇退化的現(xiàn)狀,該文以玉米為供試植物,通過日光溫室短期盆栽的方式,系統(tǒng)研究解鉀細(xì)菌C6X和玉米生長對(duì)土壤鉀素遷移的影響。結(jié)果表明:1)玉米生長條件下,解鉀細(xì)菌在富鉀礦物質(zhì)量分?jǐn)?shù)45%上層土壤(0~20 cm)中對(duì)速效鉀增量的促進(jìn)作用最佳。2)解鉀細(xì)菌和玉米生長協(xié)同提高上層土壤鉀素固定能力,緩效鉀增量在土壤富鉀礦物質(zhì)量分?jǐn)?shù)68%為最大值。3)解鉀細(xì)菌和玉米生長協(xié)同促進(jìn)土壤鉀素上移能力,在富鉀礦物質(zhì)量分?jǐn)?shù)45%水平,土壤上移速效鉀呈最大值;同時(shí),解鉀細(xì)菌促進(jìn)土壤上移速效鉀和玉米鉀素積累量二者趨于線性穩(wěn)定,利于土壤鉀肥長期管理。因此,解鉀細(xì)菌和玉米生長協(xié)同促進(jìn)土壤鉀素的釋放和固定,并促進(jìn)土壤鉀素上移。
土壤;細(xì)菌;鉀素;黏土礦物
解鉀細(xì)菌多是從煙草、棉花等耕層土壤中篩選培育而來,包括芽孢桿菌、腸桿菌、假單胞菌等[1]。作為一種低廉、綠色的微生物菌劑,解鉀細(xì)菌通過酸解作用、螯合作用、陽離子交換反應(yīng)和有機(jī)酸產(chǎn)物等作用,釋放黏土礦物中植物不能直接利用的K+、Mg2+和Si4+等元素,為植物生長所需營養(yǎng)元素提供重要補(bǔ)給[2-3]。中國西北黃土高原土壤富含伊利石、鉀長石等黏土礦物,土壤總鉀含量高達(dá)2000 mg/kg,但是非耕作土壤交換性鉀含量不超過80 mg/kg,非交換性鉀含量不超過500 mg/kg,加之土壤有機(jī)質(zhì)含量低,淋濾作用強(qiáng)烈,表層土壤鉀素嚴(yán)重流失,造成土壤鉀的實(shí)際利用率低[4-5]。近年來該地區(qū)大規(guī)模煤炭開采,嚴(yán)重破壞了本就脆弱的生態(tài)環(huán)境,土壤質(zhì)量急劇退化[6]。因此,合理利用解鉀細(xì)菌對(duì)土壤黏土礦物的釋鉀作用,是開發(fā)黃土高原礦區(qū)土壤鉀肥潛力的一種綠色無污染的方法,可以緩解土壤退化速率,進(jìn)一步改善礦區(qū)生態(tài)環(huán)境[3]。
土壤鉀含量及其利用率是重要的土壤肥力指標(biāo)之一[7]。2:1型黏土礦物伊利石層間域是土壤鉀的重要存儲(chǔ)空間,可以釋放層間K+和固定部分土壤速效鉀[8]。Barré Pierre等[9]研究表明,當(dāng)伊利石層間K+的釋放量和固定量變化強(qiáng)烈時(shí),在 X 射線衍射圖譜中伊利石1nm衍射峰強(qiáng)度產(chǎn)生顯著變化。相關(guān)研究還表明,土壤鉀的釋放和固定受多種因素影響,包括土壤母質(zhì)的黏土礦物組合、土壤鉀肥施用量、植物對(duì)鉀的吸收、土壤溶液中陽離子種類和含量比率、氮磷肥施用量、淋濾作用和氣候等因素[10-11]。Jalali[12]通過3種浸提液浸提的土壤鉀量與植物吸收鉀量高度相關(guān),間接說明植物不僅吸收土壤速效鉀,礦物層間K+在某種程度上也可以被植物吸收利用。土壤鉀在表層和深層的分布具有差異性,鉀素利用率也不同,這與不同土層的黏土礦物種類有關(guān),也與長期施用肥料對(duì)土壤鉀素平衡的影響作用有關(guān)[7]。
解鉀細(xì)菌作為復(fù)合微生物肥料中重要的功能菌株,具有提高土壤肥力,促進(jìn)作物生長,改善作物品質(zhì),以及保護(hù)生態(tài)環(huán)境的重要作用[13]。馬鈴薯田間試驗(yàn)表明,解鉀細(xì)菌在一定程度上可以提高土壤氮、磷、鉀等養(yǎng)分轉(zhuǎn)化強(qiáng)度,促進(jìn)馬鈴薯對(duì)土壤養(yǎng)分的吸收,最終提高了馬鈴薯產(chǎn)量和作物品質(zhì)[14]。閆華曉等[15]研究了硅酸鹽細(xì)菌DMS3對(duì)鉀長石的解鉀作用,結(jié)果表明DMS3菌株具有較高的解鉀能力,其一定濃度的發(fā)酵液促進(jìn)綠豆株高、根長及干重等作物生長指標(biāo)。史靜靜等[16]通過對(duì)棉花根際多種解鉀菌株進(jìn)行生理活性和盆栽試驗(yàn),發(fā)現(xiàn)解鉀細(xì)菌具有極高的產(chǎn)鐵載體、分泌吲哚乙酸和溶磷的能力,接種解鉀細(xì)菌的棉花根系活力、株高和干質(zhì)量顯著提高,具有代替鉀肥的巨大潛力。在煙草種植中,長期施用化肥易產(chǎn)生土壤酸度變化、板結(jié)、土壤微生物活性降低等一系列生態(tài)環(huán)境問題,而解鉀細(xì)菌能夠很好地維持土壤養(yǎng)分平衡,促進(jìn)其他土壤微生物生長,并促進(jìn)土壤團(tuán)粒結(jié)構(gòu)形成,增加土壤透氣性,生態(tài)效益前景廣闊[17]。另外,在根際促生細(xì)菌互作效應(yīng)研究中,通過對(duì)小麥根際固氮、溶磷和解鉀細(xì)菌以不同組合混合培養(yǎng),表明解鉀細(xì)菌和溶磷細(xì)菌具有良好協(xié)同效果,而與固氮細(xì)菌形成拮抗作用[18]。尚海麗等[19-20]通過一系列實(shí)驗(yàn)室培養(yǎng)和盆栽試驗(yàn)研究解鉀細(xì)菌C6X與富鉀礦物的協(xié)同生態(tài)效應(yīng),結(jié)果表明解鉀細(xì)菌C6X對(duì)伊利石的釋鉀效果優(yōu)于鉀長石,土壤含水量過高不利于解鉀細(xì)菌釋鉀,而且解鉀細(xì)菌C6X在適宜富鉀礦物配比的條件下具有促進(jìn)植物生長、提高土壤養(yǎng)分利用率的顯著作用。
前人對(duì)解鉀細(xì)菌的研究主要集中在解鉀細(xì)菌的生理活性以及對(duì)喜鉀作物生長的促進(jìn)作用等方面,而對(duì)解鉀細(xì)菌在礦區(qū)生態(tài)修復(fù)中的作用研究較少,特別是針對(duì)解鉀細(xì)菌在黃土高原鉀素淋濾流失的環(huán)境問題中的應(yīng)用鮮見報(bào)道。因此,本文于2015年5月底至同年8月通過日光溫室短期盆栽的方式,以玉米為供試植物,研究解鉀細(xì)菌C6X作用下上層(0~20 cm)及下層(20~40 cm)人工培土中速效鉀增量和緩效鉀增量的變化規(guī)律,并探討解鉀細(xì)菌C6X對(duì)土壤鉀素向上運(yùn)移能力的影響,以期為進(jìn)一步利用解鉀細(xì)菌開發(fā)礦區(qū)退化土壤鉀肥潛力提供科學(xué)依據(jù),實(shí)現(xiàn)解鉀細(xì)菌在礦區(qū)生態(tài)環(huán)境治理中的重要作用。
根據(jù)黃土高原礦區(qū)退化土壤類型和主要礦物組成,選用伊利石、鉀長石和水洗河砂3種礦物配比的人工培土作為供試土壤。3種礦物分別選用河北省靈壽縣天然伊利石黏土巖和鉀長石礦粉(粒徑<0.15 mm),以及北京郊區(qū)水洗河砂(粒徑<2 mm)。供試土壤的礦物配比和主要理化性質(zhì)見表1。
表1 人工培土的礦物配比和主要理化性質(zhì)
供試菌種為解鉀細(xì)菌C6X。該菌種經(jīng)廣東省微生物分析檢測中心鑒定為,屬革蘭氏陰性菌[21]。
選用中國農(nóng)業(yè)科學(xué)院品糯28號(hào)玉米為供試植物。
試驗(yàn)地點(diǎn)在中國礦業(yè)大學(xué)(北京)日光溫室。試驗(yàn)分別設(shè)種玉米接菌組、種玉米接滅活菌組、無玉米接菌組、無玉米接滅活菌組4個(gè)處理。每個(gè)處理采用6種不同配比的供試土壤進(jìn)行培養(yǎng),供試土壤配比見表1。試驗(yàn)設(shè)3個(gè)重復(fù),合計(jì)72個(gè)盆栽。盆栽使用規(guī)格為15 cm× 60 cm 的PVC管,每盆裝土5 kg,裝土實(shí)際深度50 cm。土壤表層向下20 cm處鋪設(shè)網(wǎng)孔直徑30的尼龍網(wǎng),用以阻擋玉米根系向下生長。在實(shí)驗(yàn)室理想條件下,為排除外來菌種對(duì)試驗(yàn)結(jié)果的影響,供試土壤采用全自動(dòng)立式電熱壓力蒸汽滅菌器滅菌。儀器型號(hào)YXQ-LS-50SII,滅菌條件為壓力120 kPa,溫度121 ℃,時(shí)長30 min。供試土壤滅菌后風(fēng)干裝柱,并澆水至最大飽和持水量,靜置1 d待水分平衡后播種。采用10% H2O2浸泡玉米種子10 min,去離子水清洗至干凈。試驗(yàn)培養(yǎng)期90 d,培養(yǎng)期間以稱量法維持土壤輕度干旱,澆水量保持土壤最大持水量的70%。菌液和滅活菌液于出苗后1周隨澆水均勻澆灌土柱。其中,供試菌液在440 nm波長下的光密度(OD)為0.12,菌液量按表1土壤編號(hào)依次添加17、19、20、21、22、24 mL菌液或滅活菌液。配制NH4NO3、NH4H2PO4營養(yǎng)液,使供試土壤N、P質(zhì)量分?jǐn)?shù)分別達(dá)到120、30 mg/kg。
1.3.1 玉米干質(zhì)量和鉀含量測定
培養(yǎng)90 d后,采集不同處理的玉米地上部分和地下部分,在烘箱105 ℃殺青30 min后,調(diào)至70 ℃直至烘干,稱質(zhì)量記錄不同處理的玉米干質(zhì)量。
玉米鉀含量采用H2SO4-H2O2消煮法[22],選用中科院地理所理化分析中心電感耦合等離子體發(fā)射光譜儀(ICP)測定消煮液中鉀含量。
玉米鉀素積累量=玉米干質(zhì)量×玉米鉀含量。
1.3.2 土壤速效鉀、緩效鉀含量測定
培養(yǎng)90 d后,分別采集0~20 cm上層土壤、20~40 cm下層土壤樣品,陰干過篩待測。酸溶性鉀含量通過1.0 mol/L熱HNO3浸提10 min獲得浸提液,土壤速效鉀含量采用1.0 mol/L NH4OAc浸提10 min獲得浸提液。浸提液采用中科院地理所理化分析中心電感耦合等離子體發(fā)射光譜儀(ICP)測試。
土壤緩效鉀含量=土壤酸溶性鉀含量?土壤速效鉀含量[22]。
1.3.3 數(shù)據(jù)處理
數(shù)據(jù)分析使用SPSS 2.0軟件,差異顯著性分析選用Duncan法,顯著水平設(shè)為0.05。土壤鉀素遷移各指標(biāo)(單位:mg·kg-1)計(jì)算公式如下:
上層土壤速效鉀增量=玉米鉀素積累量/上層土質(zhì)量+收獲后上層土壤速效鉀-初始速效鉀
下層土壤速效鉀增量=收獲后下層土壤速效鉀-初始速效鉀
上層土壤緩效鉀增量=收獲后上層土壤緩效鉀-初始緩效鉀
下層土壤緩效鉀增量=收獲后下層土壤緩效鉀-初始緩效鉀
上移速效鉀=上層土壤速效鉀增量-上層土壤緩效鉀減少量
解鉀細(xì)菌在富鉀礦物不同含量水平對(duì)土壤速效鉀增量的影響作用不同(表2)。隨富鉀礦物含量增加,種玉米土柱上層土壤速效鉀增量逐漸增大,在接菌處理富鉀礦物質(zhì)量分?jǐn)?shù)45%達(dá)到峰值,而接滅活菌處理的峰值在富鉀礦物質(zhì)量分?jǐn)?shù)38%水平。種玉米土柱下層土壤速效鉀增量均為負(fù)值,其中,接菌處理的峰值在富鉀礦物質(zhì)量分?jǐn)?shù)45%、68%水平,接滅活菌處理的峰值在富鉀礦物質(zhì)量分?jǐn)?shù)68%水平。種玉米土柱上層土壤速效鉀增量在富鉀礦物質(zhì)量分?jǐn)?shù)45%和75%時(shí)接菌處理大于接滅活菌處理,且差異顯著(<0.05);下層土壤速效鉀減少量在富鉀礦物質(zhì)量分?jǐn)?shù)45%時(shí)接菌處理顯著大于接滅活菌處理(<0.05)??梢娫谟衩咨L條件下,解鉀細(xì)菌在富鉀礦物質(zhì)量分?jǐn)?shù)45%的土壤中對(duì)速效鉀增量促進(jìn)作用最佳。
在無玉米土柱中,上層土壤速效鉀增量在富鉀礦物質(zhì)量分?jǐn)?shù)18%、25%水平,接菌處理為正值,且顯著大于接滅活菌處理(<0.05);其余水平均呈負(fù)值,隨富鉀礦物含量增加(≥38%)無顯著變化(>0.05)。無玉米土柱下層土壤速效鉀增量在富鉀礦物質(zhì)量分?jǐn)?shù)18%、25%和45%接菌處理呈正值,且顯著大于接滅活菌處理(<0.05);其余水平為負(fù),但其絕對(duì)值在富鉀礦物質(zhì)量分?jǐn)?shù)68%、75%時(shí),接菌處理顯著大于接滅活菌處理(<0.05)。因此,無玉米生長條件下,解鉀細(xì)菌對(duì)土壤速效鉀的作用受限,僅在貧鉀條件下促進(jìn)土壤速效鉀增長。
土壤緩效鉀含量的增減反映土壤鉀素的固定和釋放能力[23]。解鉀細(xì)菌對(duì)土壤緩效鉀增量具有顯著影響(表2)。種玉米土柱中,隨富鉀礦物含量增加,接菌處理上層土壤緩效鉀增量逐漸增大,在土壤富鉀礦物質(zhì)量分?jǐn)?shù)68%達(dá)到峰值,之后迅速下降為負(fù)值;接菌處理下層土壤呈波動(dòng)式增加趨勢,在土壤富鉀礦物質(zhì)量分?jǐn)?shù)68%亦達(dá)到峰值。而接滅活菌處理土壤緩效鉀增量為負(fù),即土壤鉀素釋放量大于固定量,且絕對(duì)值隨富鉀礦物含量增加呈“雙峰式”變化特征,分別在富鉀礦物質(zhì)量分?jǐn)?shù)38%、75%達(dá)到峰值。在土壤富鉀礦物質(zhì)量分?jǐn)?shù)≥38%時(shí),上層土壤緩效鉀增量接菌處理顯著大于接滅活菌處理(<0.05);在富鉀礦物質(zhì)量分?jǐn)?shù)45%和68%時(shí),下層土壤緩效鉀增量接菌處理顯著大于接滅活菌處理(<0.05)。結(jié)果表明,在玉米生長條件下,解鉀細(xì)菌在富鉀礦物質(zhì)量分?jǐn)?shù)68 %的土壤中對(duì)鉀素的固定作用最佳。
表2 不同處理土壤速效鉀增量
注:上層和下層土壤數(shù)據(jù)分別進(jìn)行差異顯著性分析,表中數(shù)值為3個(gè)數(shù)值的平均值,其后不同小寫字母表示5%水平上差異顯著,下同。
Notes: Difference significance analyses were carried out on the data of topsoil and subsoil respectively. Values were means of three replicates, and mean followed by different lowercase letters indicates significant difference at 5% level, the same below.
無玉米土柱上層土壤緩效鉀增量以接菌處理富鉀礦物質(zhì)量分?jǐn)?shù)18%、25%和45%水平呈正值;下層土壤緩效鉀增量在接菌處理富鉀礦物質(zhì)量分?jǐn)?shù)18%、25%時(shí)呈正值,其余水平均為負(fù)值,且隨富鉀礦物含量增加,呈“折線式”變化趨勢。無玉米條件下,上層土壤緩效鉀增量在富鉀礦物質(zhì)量分?jǐn)?shù)≥38%時(shí),接菌處理大于接滅活菌處理,且差異顯著(<0.05);下層土壤緩效鉀增量在富鉀礦物質(zhì)量分?jǐn)?shù)18%、45%和68%時(shí),接菌處理顯著大于接滅活菌處理(<0.05)。綜上所述,無玉米生長時(shí),解鉀細(xì)菌對(duì)富鉀礦物質(zhì)量分?jǐn)?shù)45%的土壤鉀素固定具有顯著促進(jìn)作用。
植物活動(dòng)使土壤耕作層富含更多無機(jī)元素(如Si、K、Ca、Mg),這種現(xiàn)象叫做“養(yǎng)分上移”或“元素遷移”,這有助于抵消表層土壤淋濾作用造成的元素流失,并影響耕作層土壤中富鉀礦物的穩(wěn)定性[24]。圖1種玉米土柱中,接菌處理上移速效鉀含量隨土壤富鉀礦物含量增加呈上升趨勢,在富鉀礦物質(zhì)量分?jǐn)?shù)45%時(shí)達(dá)到峰值,之后呈下降趨勢,但仍然保持較高值;接滅活菌處理上移速效鉀含量水平較低。當(dāng)富鉀礦物質(zhì)量分?jǐn)?shù)≥38%時(shí),種玉米土壤上移速效鉀含量接菌處理顯著高于接滅活菌處理(<0.05)。無玉米處理上移速效鉀含量總體較低,除富鉀礦物質(zhì)量分?jǐn)?shù)68%外,其余水平接菌處理顯著高于接滅活菌處理(<0.05)。因此,在玉米生長條件下,解鉀細(xì)菌對(duì)富鉀礦物質(zhì)量分?jǐn)?shù)45%的土壤上移速效鉀含量具有最佳促進(jìn)效果。
圖1 不同處理土壤上移速效鉀的變化
圖2中,不考慮解鉀細(xì)菌對(duì)土壤上移速效鉀的影響,種玉米處理中,土壤上移速效鉀隨富鉀礦物含量增加而逐漸增大,在富鉀礦物質(zhì)量分?jǐn)?shù)45%時(shí)達(dá)到最大值,之后隨富鉀礦物含量增加而逐漸減小。無玉米處理中,土壤上移速效鉀含量均為負(fù)值或接近零值,且隨富鉀礦物含量增加呈“波動(dòng)式”下降趨勢,在富鉀礦物質(zhì)量分?jǐn)?shù)75%時(shí)達(dá)到峰值。這說明無玉米生長的土壤鉀素不僅無明顯上移量,而且土壤淋濾作用強(qiáng)烈,表層土壤鉀素嚴(yán)重流失。土壤上移速效鉀含量在土壤富鉀礦物質(zhì)量分?jǐn)?shù)≥38%時(shí),種玉米處理大于無玉米處理,且差異顯著(<0.05)。
圖2 不同富鉀礦物含量土壤上移速效鉀的變化
因此,玉米生長對(duì)養(yǎng)分的需求,造成土壤養(yǎng)分上移,玉米生長是促進(jìn)土壤鉀素上移的重要?jiǎng)恿?。土壤富鉀礦物含量因素對(duì)土壤上移速效鉀含量無直接作用,但是通過不同程度地解鉀細(xì)菌的代謝活動(dòng),從而影響土壤鉀素上移。
綜上所述,玉米生長和解鉀細(xì)菌協(xié)同促進(jìn)土壤鉀素上移。表2中,接菌處理玉米鉀素積累量與土壤上移速效鉀含量二者相關(guān)系數(shù)0.928,高度相關(guān),而接滅活菌處理二者的相關(guān)性降低,相關(guān)系數(shù)僅0.627,為中度相關(guān)。這說明解鉀細(xì)菌作用下,玉米生長和上移速效鉀含量的相關(guān)性增強(qiáng),速效鉀的上移能力與植物鉀的吸收量密切相關(guān)。圖3線性回歸分析表明,對(duì)比接滅活菌處理,接菌處理的土壤上移速效鉀和玉米鉀素積累量呈極顯著(<0.01)線性正相關(guān)。因此,在解鉀細(xì)菌作用下,土壤鉀素上移量與植物鉀素積累量趨于線性穩(wěn)定,利于土壤鉀肥的長期管理。
表3 土壤上移速效鉀和玉米鉀素積累量的相關(guān)性分析
注:**表示差異顯著性水平<0.01。玉米鉀素積累量數(shù)據(jù)引自參考文獻(xiàn)[33]。
Notes: ** indicate significant difference at 0.01level.The data of total potassium in maize quoted from the reference[33].
圖3 玉米鉀素積累量和不同處理土壤上移速效鉀的線性回歸分析
土壤富鉀礦物是植物生長所需鉀素的重要來源,富鉀礦物對(duì)鉀的釋放和固定能力是維持土壤鉀素長期平衡的重要因素[25]。大量研究表明,鉀長石和伊利石均可以釋放K+,為土壤提供速效鉀;而伊利石還以層間K+的形式固定鉀素,是土壤鉀的重要存貯空間[8]。Adamo等[26]田間試驗(yàn)結(jié)果表明,土壤富鉀礦物中的伊利石層間K+在玉米播種后40 d顯著減少,而在玉米生長末期顯著增加。因此,伊利石層間K+既可以被玉米吸收,又可以將玉米釋放到土壤中的鉀素重新儲(chǔ)存。本試驗(yàn)結(jié)果表明,解鉀細(xì)菌和玉米生長協(xié)同作用下,上層土壤速效鉀增量在土壤富鉀礦物質(zhì)量分?jǐn)?shù)45%、75%達(dá)到最大值,即鉀長石質(zhì)量分?jǐn)?shù)較高,達(dá)到15%,伊利石質(zhì)量分?jǐn)?shù)≥30%,土壤以鉀長石和伊利石的釋鉀作用為主,導(dǎo)致土壤速效鉀含量顯著增大。而土壤富鉀礦物質(zhì)量分?jǐn)?shù)68%水平顯示較低的速效鉀增量和最大緩效鉀增量,是因?yàn)樵撍酵寥栏烩浀V物主要為伊利石,鉀長石質(zhì)量分?jǐn)?shù)低(8%),土壤以伊利石固鉀作用為主。但是,土壤富鉀礦物質(zhì)量分?jǐn)?shù)75%水平的土壤緩效鉀增量最小且為負(fù),可能因?yàn)橥寥浪傩р浛偭窟^大(200.70 mg/kg),過量的土壤鉀素對(duì)土壤微生物產(chǎn)生毒害作用,抑制解鉀細(xì)菌與富鉀礦物的相互作用,因此,解鉀細(xì)菌無顯著作用于土壤黏土礦物[3]。Geertjie等[27]研究還表明,土壤黏土礦物含量影響土壤密度,而土壤密度是微生物活動(dòng)與礦物作用過程中的重要因素,因?yàn)楹线m的土壤密度為微生物提供充足的富氧環(huán)境,保障微生物生命活動(dòng)的正常進(jìn)行。
解鉀細(xì)菌的溶鉀作用已得到很多學(xué)者的認(rèn)可[28]。李九美等[29]研究表明,解鉀細(xì)菌在小麥生長早期減緩速效鉀的固定,在旺長期可以釋放土壤難溶鉀,形成可供小麥利用的速效鉀,促進(jìn)小麥對(duì)鉀肥的吸收利用。本試驗(yàn)研究表明,在玉米生長條件下,當(dāng)富鉀礦物質(zhì)量分?jǐn)?shù)45%、75%時(shí),解鉀細(xì)菌顯著提高上層土壤速效鉀含量;在無玉米生長條件下,當(dāng)富鉀礦物質(zhì)量分?jǐn)?shù)18%、25%時(shí),解鉀細(xì)菌對(duì)土壤速效鉀增量也有顯著促進(jìn)作用。這是因?yàn)樵跓o植物生長的貧鉀土壤中,解鉀細(xì)菌有助于從土壤黏土礦物非交換性鉀中釋放鉀素,使土壤速效鉀含量增大[17]。解鉀細(xì)菌不但可以促進(jìn)黏土礦物鉀素的釋放,而且在富鉀土壤中提高土壤富鉀礦物對(duì)鉀的固定能力,利于土壤鉀素的儲(chǔ)存。有研究表明,伊利石層間K+的釋放與層間H3O+有關(guān),二者此消彼長[30]。這與尚海麗等[19]的研究結(jié)果具有一致性,解鉀細(xì)菌促進(jìn)伊利石層間K+和H3O+的交換作用,導(dǎo)致富鉀礦物釋放和固定層間K+。本文研究結(jié)果表明,在玉米生長條件下,土壤富鉀礦物質(zhì)量分?jǐn)?shù)≥38%時(shí),即在土壤富鉀時(shí),解鉀細(xì)菌促進(jìn)伊利石的固鉀能力,土壤緩效鉀增量顯著提高。因此,解鉀細(xì)菌影響?zhàn)ね恋V物釋鉀和固鉀能力,這在土壤鉀肥的長期有效利用、減少土壤鉀流失等方面意義重大[20,31]。
土壤鉀的遷移受多種因素影響,特別是植物生長過程中,根系對(duì)鉀的需求很大程度上決定了鉀的空間有效性[25],不同植物類型對(duì)鉀的吸收也不同,極大地影響土壤鉀的遷移和分布[32]。對(duì)比本試驗(yàn)結(jié)果,在解鉀細(xì)菌和玉米生長協(xié)同作用下,土壤上移速效鉀含量顯著提高,并與玉米鉀素積累量呈顯著線性相關(guān);而無玉米生長的土壤由于無作物脅迫,富鉀土壤中現(xiàn)有的速效鉀含量可以滿足解鉀細(xì)菌生命代謝的需求,即無生物脅迫,因此,僅在伊利石低含量(18%和25%)的土壤中上移速效鉀呈正值。由此可見,土壤鉀素上移能力主要取決于玉米生長對(duì)鉀素的需求。解鉀細(xì)菌促進(jìn)玉米生長,也促進(jìn)玉米對(duì)深層土壤速效鉀的利用。當(dāng)上層土壤速效鉀不能滿足玉米生長所需,下層土壤速效鉀的上移能力就顯得尤為重要,這在長期輪作土壤中維持土壤鉀素平衡具有重要意義[24]。也有學(xué)者利用秸稈還田結(jié)合施用鉀肥的方式提高土壤速效鉀含量,同時(shí)促進(jìn)玉米產(chǎn)量,增加鉀收獲指數(shù)、化肥鉀和秸稈鉀的利用率,有利于土壤鉀素收支平衡[33]。而解鉀細(xì)菌作為重要的土壤耕層微生物,與植物相互作用,可以充分提高土壤鉀素上移能力,是維持耕層土壤鉀素肥力穩(wěn)定的重要手段,積極影響土壤生態(tài)系統(tǒng)[34]。
解鉀細(xì)菌和玉米生長協(xié)同作用促進(jìn)土壤鉀素的釋放和固定,并促進(jìn)土壤鉀素上移。其中,黏土礦物質(zhì)量分?jǐn)?shù)68%的上層土壤緩效鉀素增量最大,富鉀礦物質(zhì)量分?jǐn)?shù)45%的上層土壤速效鉀增量最大,土壤鉀素上移量在富鉀礦物質(zhì)量分?jǐn)?shù)45%達(dá)到最大值。同時(shí),解鉀細(xì)菌作用促進(jìn)土壤上移速效鉀與玉米鉀素積累量的線性穩(wěn)定,利于土壤鉀肥長期管理。而下層土壤速效鉀的減少量一部分為上層土壤提供鉀素,另一部分被原地固定為緩效鉀。綜上所述,解鉀細(xì)菌和植物生長對(duì)土壤鉀素遷移過程具有積極影響,這對(duì)貧瘠土壤鉀肥的長期有效利用和鉀素平衡具有重要意義,為中國西北礦區(qū)生態(tài)環(huán)境治理提供了新的思路。
[1] Liu Xiaolu, Liu Yongzhi, Yang Liuqing, et al. Classification of potassium-releasing bacteria isolated from four agricultural soil samples[J]. Journal of Pure and Applied Microbiology, 2013, 7: 3001-3008.
[2] Meena V S, Maurya B R, VermaJay Prakash. Does a rhizospheric microorganism enhance K+availability in agricultural soils?[J]. Microbiological Research, 2014, 169: 337-347.
[3] Subhashini D V. Growth Promotion and increased potassium uptake of tobacco by potassium-mobilizing bacterium frateuria aurantia grown at different potassium levels in vertisols[J]. Communications in Soil Science and Plant Analysis, 2015, 46: 210-220.
[4] Qi Yangbing, Yang Fengqun, Shukla M K, et al. Desert soil properties after thirty years of vegetation restoration in northern Shan’xi province of China[J]. Arid Land Research and Management, 2015, 29: 454-472.
[5] 白樺,曾思育,董欣,等. 基于物質(zhì)流分析的鉀素流動(dòng)與循環(huán)研究[J]. 環(huán)境科學(xué),2013,34(6):2493-2496.
Bai Hua, Zeng Siyu, Dong Xin, et al. Research of potassium flow and circulation based on substance flow analysis[J]. Environmental Science, 2013, 34(6): 2493-2496. (in Chinese with English abstract)
[6] Zhen Qing, Ma Wenmei, Li Mingming, et al. Effects of vegetation and physicochemical properties on solute transport in reclaimed soil at an opencast coal mine site on the Loess Plateau, China[J]. Catena, 2015, 133: 403-411.
[7] Blanchet Guilaume, Libohova Zamir, Joost Stephan, et al. Spatial variability of potassium in agricultural soils of the canton of Fribourg, Switerland[J]. Geoderma, 2017, 290: 107-121.
[8] Darunsontaya T, Suddhiprakarn A, Kheoruenromne I, et al. The kinetics of potassium release to sodium tetraphenylboron solution from the clay fraction of highly weathered soils[J]. Applied Clay Science, 2010, 50: 376-385.
[9] Barré Pierre, Bruce Velde , Colin Fontaine, et al. Which 2:1 clay minerals are involved in the soil potassium reservoir? Insights from potassium addition or removal experiments on three temperate grassland soil clay assemblages[J]. Geoderma, 2008, 146: 216-223.
[10] Moir Jim, Seidel Meike, Kayser Manfred. Potassium dynamics of four grassland soils contrasting in soil K management history[J]. Grassland Science, 2013, 59(1): 1-10.
[11] Magnus Simonsson, Stefan Andersson, Ylva Andrist-rangel, et al. Potassium release and fixation as a function of fertilizer application rate and soil parent material[J]. Geoderma, 2007, 140: 188-198.
[12] Jalali M. Kinetics of non-available potassium release and availability in some calcareous soils of western Iran[J]. Geoderma, 2006, 135: 63-71.
[13] 黨雯,郜春花,張強(qiáng),等. 解鉀菌的研究進(jìn)展及其在農(nóng)業(yè)生產(chǎn)中的應(yīng)用[J]. 山西農(nóng)業(yè)科學(xué),2014,42(8):921-924.
Dang Wen, Gao Chunhua, Zhang Qiang, et al. Research progress of silicate bacteria and its application in agricultural production[J]. Journal of Shanxi Agricultural Sciences, 2014, 42(8): 921-924. (in Chinese with English abstract)
[14] 馬娜,李嵩,孫濤,等. 鉀細(xì)菌對(duì)土壤養(yǎng)分轉(zhuǎn)化強(qiáng)度及馬鈴薯品質(zhì)的影響[J]. 中國馬鈴薯,2016,30(4):218-225.
Ma Na, Li Song, Sun Tao, et al. Effects of potassium bacteria on soil nutrient transformation and potato quality[J]. China Potato, 2016, 30(4): 218-225. (in Chinese with English abstract)
[15] 閆華曉,趙輝,朱碩斐,等. 硅酸鹽細(xì)菌DMS3促進(jìn)鉀長石釋鉀及綠豆生長作用研究[J]. 安徽農(nóng)業(yè)科學(xué),2009,37(35):17503-17504.
Yan Huaxiao, Zhao Hui, Zhu Shuofei, et al. Study on k-release effect of silicate bacterium DMS3 on the promotion of k-feldspar and the growth of the mung bea[J]. Journal of Anhui Agricultural Sciences, 2009, 37(35): 17503-17504. (in Chinese with English abstract)
[16] 史靜靜,劉靜洋,韓國民,等. 棉花根際解鉀細(xì)菌的生理活性和促生效果[J]. 中國土壤與肥料,2012(4):87-90.
Shi Jingjing, Liu Jingyang, Han Guomin, et al. The physiological activities and growth-promoting effects of K-releasing bacteria of cotton[J]. Soil and Fertilizer Sciences in China, 2012(4): 87-90. (in Chinese with English abstract)
[17] 張振榮,布云紅,賴泳紅,等. 不同功能菌劑對(duì)連作煙葉農(nóng)藝性狀和根際土壤細(xì)菌的影響[J]. 云南大學(xué)學(xué)報(bào),2012,34(1):116-121.
Zhang Zhenrong, Bu Yunhong, Lai Yonghong, et al. The effects of different function bacteria on the agronomic trait of continuous cropping tobacco and rhizospheric soil bacteria[J]. Journal of Yunnan University, 2012, 34(1): 116-121. (in Chinese with English abstract)
[18] 常慧萍,邢文會(huì),夏鐵騎,等. 根際促生細(xì)菌的篩選及其對(duì)小麥幼苗的促生作用[J]. 河南農(nóng)業(yè)科學(xué),2016,45(12):52-57.
Chang Huiping, Xing Wenhui, Xia Tieji, et al. Screening of plant growth-promoting rhizobacteria and their growth- promoting effect on wheat seedling[J]. Journal of Henan Agricultural Sciences, 2016, 45(12): 52-57. (in Chinese with English abstract)
[19] 尚海麗,畢銀麗,彭蘇萍,等. 解鉀細(xì)菌對(duì)西北干旱地區(qū)不同硅酸鹽礦物的解鉀效應(yīng)研究[J]. 礦物學(xué)報(bào),2015,35(3):337-343.
Shang Haili, Bi Yinli, PengSuping, et al. Mechanism of potassium release from different silicate minerals by releasing K bacteria in northwest arid land, China[J]. Acta Mineralogica sinica, 2015, 35(3): 337-343. (in Chinese with English abstract)
[20] 尚海麗,畢銀麗,彭蘇萍,等. 解鉀細(xì)菌與黏土礦物協(xié)同促進(jìn)玉米生長提高土壤養(yǎng)分有效性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(12):129-135.
Shang Haili, Bi Yinli, PengSuping, et al. Synergistic effect of releasing potassium bacteria and clay minerals improving maize growth and soil nutrients availability[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(12): 129-135. (in Chinese with English abstract)
[21] 畢銀麗,胡俊波,王震,等. 釋鉀菌的篩選及其對(duì)粉煤灰的釋鉀效應(yīng)[J]. 遼寧工程技術(shù)大學(xué)學(xué)報(bào):自然科學(xué)版,2010,29(6):1141-1144.
Bi Yinli, Hu Junbo, Wang Zhen, et al. Potassium-dissolving bacteria isolated and their effects on release available K in coal fly ash[J]. Journal of Liaoning Technical University: Natural Science, 2010, 29(6): 1141-1144. (in Chinese with English abstract)
[22] 鮑士旦. 土壤農(nóng)化分析[M]. 北京:中國農(nóng)業(yè)出版社,2005.
[23] Sharma A, Jalali V K, Arora S. Non-available potassium release and its removal in foot-hill soils of North-west Himalayas[J]. Catena, 2010, 82: 112-117.
[24] Barré P, Berger G, Velde B. How element translocation by plants may stabilize illitic clays in the surface of temperate soils[J]. Geoderma, 2009, 151: 22-30.
[25] Semhi K, Clauer N, Chaudhuri S. Variable element transfers from an illite-rich substrate to growing plants during a three-month experiment[J]. Applied Clay Science, 2012, 57: 17-24.
[26] Adamo P, Barré P, Cozzolino V, et al. Short term clay mineral release and re-capture of potassium in a Zea mays field experiment[J]. Geoderma, 2016, 264: 54-60.
[27] Geertjie J P, Katja H, Ding G C, et al. Development of biogeochemical interfaces in an artificial soil incubation experiment: Aggregation and formation of organo-smineral associations[J]. Geoderma, 2012, 10: 585-594.
[28] Rahimzadeh N, Khormali F, Olamaee M, et al. Effect of canola rhizosphere and silicate dissolving bacteria on the weathering and K release from indigenous glauconite shale[J]. Biol Fertil Soils, 2015, 51: 973-981.
[29] 李九美,曹媛媛,白莉敏,等. 小麥根際溶鉀細(xì)菌對(duì)小麥生長和吸收鉀素的影響[J]. 安徽農(nóng)業(yè)大學(xué)學(xué)報(bào),2016,43(6):1010-1016.
Li Jiumei, Cao Yuanyuan, Bai Limin, et al. Wheat potassium-releasing bacteria influence the growth and potassium absorption of wheat seedlings[J]. ournal of Anhui Agricultural University, 2016, 43(6): 1010-1016. (in Chinese with English abstract)
[30] Fernando N, Marcello M, Isabel A. The role of H3O+in the crystal structure of illite[J]. Clay and Clay Minerals, 2010, 58: 238-246.
[31] 李少朋,畢銀麗,孔維平,等. 叢枝菌根真菌在礦區(qū)生態(tài)環(huán)境修復(fù)中應(yīng)用及其作用效果[J]. 環(huán)境科學(xué),2013,34(11):4455-4459.
Li Shaopeng, Bi Yinli, Kong Weiping, et al. Effects of the arbuscular mycorrhizal fungi on environmental phytoremediation in coal mine areas[J]. Environmental Science, 2013, 34(11): 4455-4459.
[32] Szewczuk A, Komosa A, Gudarowska E.Effect of different potassium soil levels and forms of potassium fertilizers on micro-elemental nutrion status of apple trees in early fruition period[J]. Journal of Elementology, 2009, 14: 553-562.
[33] 謝佳貴,侯云鵬,尹彩俠,等. 施鉀和秸稈還田對(duì)春玉米產(chǎn)量、養(yǎng)分吸收及土壤鉀素平衡的影響[J]. 植物營養(yǎng)與肥料學(xué)報(bào),2014,20(5):1110-1118.
Xie Jiagui, Hou Yunpeng, Yin Caixia, et al. Effect of potassium application and straw returning on spring maize yield, nutrient absorption and soil potassium balance[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(5): 1110-1118.
[34] Grigulis K, Sandra L, Krainer U, et al. Relative contributions of plant traits and soil microbial properties to mountain grassland ecosystem services[J]. Journal of Ecology, 2013, 101: 47-57.
Effects of potassium-solubilizing bacteria C6X on potassium migration in soils with different content of potassium-rich minerals
Shang Haili1,2, Bi Yinli1※, Peng Suping1, Xie Wenwu1
(1.(),100083;2.014010)
There is the severe agricultural environmental problem of cultivated soil potassium leaching caused by soil erosion in Loess Plateau, where the soil quality is rapidly degenerating caused by coal mining for a long time. It is necessary to rationally develop and utilize soil potassium in Loess Plateau for ecological restoration in the mining area of northwest China. In order to understand the effect of potassium-solubilizing bacteria C6X on soil potassium migration under the conditions of maize () planted in the mining area of northwest China, this study was performed by short-term pot cultures in helio-greenhouse with or without maize planting in artificial soils with different contents of potassium-rich minerals which simulated the soils in the studied area. The artificial soil was composed of quartz and two kinds of potassium-rich minerals, including feldspar and hydrous mica which are common minerals in the soil of northwest mining area in China. The artificial soils used in the experiment were treated with six levels of potassium-rich minerals, which were 18%, 25%, 38%, 45%, 68% and 75% by mass fractions of total potassium-rich minerals in soils. Each level of potassium-rich minerals treated with inoculation with active C6X or sterilized C6X. The C6X is the tested strains of potassium-solubilizing bacteriawhich was isolated from the garden soil in Beijing suburbs by microbial reclamation laboratory in China University of Mining and Technology. Also, nylon mesh (30m, dia.) was laid at 20 cm depth below the soil surface to block the downward growth of the root system of maize. We investigated to the relationship among the potassium-solubilizing bacteria, potassium-rich minerals ratios in soils and the growth of maize, and the synergistic effect of them on the soil potassium migration,which included the increment of available potassium in topsoil and subsoil, the increment of slowly available potassium in topsoil and subsoil, and the upward migratory available potassium. Also, linear regression analysis was used for data analysis which involving potassium accumulation in maize and upward migratory available potassium in soils with active C6X or sterilized C6X. The results showed that: 1) With maize planting, potassium-solubilizing bacteria increased available potassium in the soil with 45 % potassium-rich mineral mass fraction. Without maize planting, potassium-solubilizing bacteria significantly (<0.05) increased soil available potassium in the soil with 18 % or 25 % of the mass fraction of potassium-rich minerals. 2) Potassium-solubilizing bacteria and maize growth synergistically increased potassium fixation capacity in topsoil due to more potassium released from minerals and used by maize. Soil slowly available potassium increment was the maximum value in the soil with 68 % mass fraction of potassium-rich minerals. Without maize planting, potassium- solubilizing bacteria significantly (<0.05) improved soil slowly available potassium in the soil with 45% mass fraction of potassium-rich minerals. 3) Potassium-solubilizing bacteria and maize growth synergistically promoted ability of potassium translocation in soil. The upward migratory available potassium was to the maximum value in the soil with potassium-rich mineral mass fraction of 45%. Also, potassium-solubilizing bacteria promoted a linear relation between upward migratory available potassium in soil and potassium accumulation in maize, which has implication for the long-term management of soil potassium. In addition, the factor of potassium-rich mineral content in soils had no directly effect on soil potassium migration, but it could affect the metabolism of potassium bacteria at various degree, through which it finally could affect the soil potassium migration. To generalize, potassium-solubilizing bacteria and maize growth synergistically promoted soil potassium migration, and this is of great significance for the rational use of potassium-solubilizing bacteria to repair the ecological environment of the coal mining subsidence area in the Loess Plateau of Northwest China.
soil; bacteria; potassium; clay minerals
10.11975/j.issn.1002-6819.2017.18.013
X171.4; Q89
A
1002-6819(2017)-18-0095-07
2017-04-10
2017-09-03
國家自然基金項(xiàng)目(51574253);國家863計(jì)劃項(xiàng)目(2013AA102904);內(nèi)蒙古科技大學(xué)創(chuàng)新基金項(xiàng)目(2015XYPYL04)
尚海麗,博士生,講師,主要研究方向?yàn)榈V區(qū)環(huán)境治理與生態(tài)重建。Email:150678516@qq.com
畢銀麗,教授,博士生導(dǎo)師,主要從事微生物復(fù)墾研究。Email:ylbi88@126.com