夏夢(mèng)潔 陳竹君 劉占軍 周建斌
(西北農(nóng)林科技大學(xué)資源環(huán)境學(xué)院,農(nóng)業(yè)部西北植物營(yíng)養(yǎng)與農(nóng)業(yè)環(huán)境重點(diǎn)實(shí)驗(yàn)室,陜西楊凌 712100)
黃土高原旱地夏季休閑期15N標(biāo)記硝態(tài)氮的去向*
夏夢(mèng)潔 陳竹君 劉占軍 周建斌?
(西北農(nóng)林科技大學(xué)資源環(huán)境學(xué)院,農(nóng)業(yè)部西北植物營(yíng)養(yǎng)與農(nóng)業(yè)環(huán)境重點(diǎn)實(shí)驗(yàn)室,陜西楊凌 712100)
夏季休閑是黃土高原旱地小麥常見(jiàn)的蓄納雨水、恢復(fù)地力的措施。隨著氮肥用量的增加,一季小麥?zhǔn)斋@后,旱地土壤剖面累積的硝態(tài)氮量不斷增加,休閑期間降雨量高,殘留硝態(tài)氮的去向是值得研究的問(wèn)題。利用15N標(biāo)記法研究小麥?zhǔn)斋@后殘留肥料氮在黃土高原旱地(陜西長(zhǎng)武)夏季休閑期間的去向,即小麥?zhǔn)斋@后在微區(qū)土壤表層(0~15 cm)施入15N標(biāo)記的硝態(tài)氮肥(30 kg hm-2(以純氮計(jì)),約相當(dāng)于當(dāng)?shù)匦←溡患咀魑锸斋@后土壤殘留肥料氮量),休閑結(jié)束后,采集0~200 cm土壤樣品,測(cè)定了土壤全氮、硝態(tài)氮含量及其15N豐度。結(jié)果表明,小麥?zhǔn)斋@(即休閑開始)時(shí)0~200 cm土壤剖面硝態(tài)氮累積量在205~268 kg hm-2之間(平均244 kg hm-2),累積量較高。夏季休閑期間降水量為157 mm,屬欠水年,但休閑結(jié)束后,15N標(biāo)記肥料氮向下遷移已達(dá)80 cm土層,下移深度在45~65 cm之間,說(shuō)明,旱地休閑期間硝態(tài)氮的淋溶作用不可忽視。夏季休閑結(jié)束后,加入的15N標(biāo)記肥料氮平均損失率為28%,損失機(jī)理值得進(jìn)一步研究。
旱地;夏季休閑;15N標(biāo)記法;殘留肥料氮;硝態(tài)氮淋溶
中國(guó)干旱、半干旱地區(qū)面積占國(guó)土面積的52.5%[1],旱地小麥在我國(guó)小麥生產(chǎn)中占有重要地位。黃土高原是我國(guó)旱地集中分布的區(qū)域,該區(qū)域的旱地小麥面積占全國(guó)的27%~29%[2-4]。水分是制約旱地小麥生產(chǎn)的關(guān)鍵因素之一。為了蓄水保墑,旱地小麥?zhǔn)斋@后多采取夏季休閑的措施[5],即小麥?zhǔn)斋@后翻耕土壤,一方面蓄納雨水,另一方面,夏季高溫多濕可促進(jìn)土壤有機(jī)質(zhì)礦化,增加土壤有效養(yǎng)分含量,這在傳統(tǒng)的旱地農(nóng)業(yè)生產(chǎn)中對(duì)提高作物產(chǎn)量具有重要意義。自20世紀(jì)80年代以來(lái),我國(guó)旱地農(nóng)田中氮肥用量不斷增加[6],一季小麥?zhǔn)斋@后,土壤殘留的肥料氮量不斷增加,有研究發(fā)現(xiàn),小麥?zhǔn)斋@時(shí),當(dāng)季施入氮肥的83.7%殘留在0~200 cm土壤剖面中,且多以硝態(tài)氮形態(tài)存在[7-8];Dai等[9]研究發(fā)現(xiàn),黃土高原長(zhǎng)期施氮量為240 kg hm-2時(shí),小麥?zhǔn)斋@后,0~300 cm土壤剖面硝態(tài)氮累積高達(dá)326 kg hm-2。Zhou等[10]指出小麥地0~400 cm土壤剖面硝態(tài)氮累積量高達(dá)453 kg hm-2。夏季休閑期地表裸露,降雨量高,短短的2~3個(gè)月期間的降雨量占年降水量的60%左右,因此,休閑期旱地殘留肥料氮的損失是值得研究的問(wèn)題[11-15]。
20世紀(jì)60年代,彭琳等[16]最早關(guān)注了夏季休閑對(duì)陜西關(guān)中塿土硝態(tài)氮淋溶的影響,發(fā)現(xiàn)該地區(qū)集中降雨的6—9月份土壤剖面硝態(tài)氮累積和下滲現(xiàn)象非常明顯,平均10 mm降水可使硝態(tài)氮下滲3~5 cm。近年來(lái),隨著該地區(qū)旱地氮肥用量的增加,夏季休閑期間硝態(tài)氮的淋溶損失問(wèn)題開始引起學(xué)者的廣泛關(guān)注。如有研究指出,夏季降水為364 mm的黃土高原南部,可使休閑后0~100 cm土層的硝態(tài)氮淋溶至220 cm土層[17]。戴健等[18]的研究也指出,每10 mm降水使塿土剖面硝態(tài)氮下移2~4 cm,說(shuō)明,旱地夏季休閑期間硝態(tài)氮淋溶風(fēng)險(xiǎn)大。而已有的研究均采用比較休閑前后土壤剖面硝態(tài)氮含量變化的方法評(píng)價(jià)硝態(tài)氮在土壤剖面遷移及淋溶情況,由于土壤剖面遷移及淋溶的硝態(tài)氮既可能來(lái)自殘留的肥料氮,也可能來(lái)自夏季休閑期間土壤有機(jī)態(tài)氮礦化,因此,該方法難以定量一季小麥?zhǔn)斋@后以硝態(tài)氮形態(tài)殘留在土壤中的肥料氮在土壤剖面的淋溶及損失特性。
15N穩(wěn)定同位素標(biāo)記法是定量氮素去向的有效方法[19]。因此,本文采用在夏季休閑小麥田塊中加入15N標(biāo)記硝態(tài)氮的方法,研究黃土高原旱地夏季休閑期間殘留肥料氮的去向,旨在定量評(píng)價(jià)該地區(qū)夏季休閑期殘留肥料氮的去向,為旱地氮素有效管理提供理論依據(jù)。
試驗(yàn)地位于黃土高原的陜西省長(zhǎng)武縣洪家鎮(zhèn)王東村,該地處于黃土高原中南部,海拔1 227 m,屬暖溫帶半濕潤(rùn)大陸性季風(fēng)氣候,年均降水量580 mm,主要集中在7—9月,年均溫度9.1℃,屬典型的旱作雨養(yǎng)農(nóng)業(yè)區(qū)。供試土壤為黑壚土(堆墊干潤(rùn)均腐土)。2014年長(zhǎng)武夏季休閑期間降水量和蒸發(fā)量以及常年(1957—2014年)同期降水量見(jiàn)圖1。
圖1 2014年長(zhǎng)武夏季休閑期間降水量和蒸發(fā)量以及常年(1957—2014)同期降水量Fig. 1 Rainfalls and evaporations during the summer fallow season in Changwu in 2014 and in the year of 1957—2014
本文采取土壤中外加15N標(biāo)記硝態(tài)氮的田間微區(qū)法研究旱地小麥?zhǔn)斋@后殘留在土壤中硝態(tài)氮在夏季休閑期間的去向。試驗(yàn)設(shè)施氮和不施氮兩個(gè)處理(分別以N及CK表示),所有氮肥形態(tài)為15N標(biāo)記的硝酸鉀(15N豐度為10.28%),用量為30 kg hm-2(以純氮計(jì)),約相當(dāng)于當(dāng)?shù)睾档匦←溡患咀魑锸斋@后土壤殘留的肥料氮量。微區(qū)采用聚氯乙烯(Polyvinylchloride,以下簡(jiǎn)稱PVC)管,將直徑25 cm,長(zhǎng)25 cm的PVC管插入表層土壤,插入深度22 cm。然后,將PVC管中表層(0~15 cm)土壤取出,與1.0623 g K15NO3充分混勻后再重新回填、壓實(shí),各處理重復(fù)3次。試驗(yàn)分布在研究區(qū)域的5個(gè)農(nóng)戶田塊(分別用a、b、c、d、e代表)進(jìn)行,以代表不同的肥力狀況;不同田塊0~20 cm土層土壤基本理化性質(zhì)見(jiàn)表1。試驗(yàn)于2014年7月15日開始,同年9月5日結(jié)束。
試驗(yàn)開始前,在每個(gè)田塊中采集3個(gè)0~200 cm土壤樣品組成混合樣(每20 cm為一層),剔除作物根系后帶回實(shí)驗(yàn)室,測(cè)定土壤基礎(chǔ)理化性質(zhì)。試驗(yàn)結(jié)束時(shí)從每個(gè)微區(qū)中采集1個(gè)0~200 cm土壤樣品(每20 cm為一層),剔除作物根系后密封,帶回實(shí)驗(yàn)室,一部分4℃保存,另一部分風(fēng)干磨細(xì)過(guò)0.25 mm篩備用。
土壤含水量采用烘干法(105℃下烘干8 h)測(cè)定。硝態(tài)氮測(cè)定:1 mol L-1KCl溶液浸提(水土比10∶1),振蕩1 h,過(guò)濾,自動(dòng)化連續(xù)流動(dòng)分析儀(AA3,Bran+Luebbe,德國(guó))測(cè)定。土壤全氮及15N豐度:半微量凱氏法測(cè)定土壤全氮,15N豐度采用同位素比值質(zhì)譜儀(EA-IRMS,Sercon Ltd,Cheshire,英國(guó))測(cè)定。硝態(tài)氮15N豐度:氨擴(kuò)散法[20-21]收集,具體方法為,取適量浸提液(含氮100 μg左右),放入擴(kuò)散容器中,將加有30 μl 2.5 mol L-1KHSO4的玻璃纖維濾紙,掛在擴(kuò)散容器中(始終不接觸浸提液),向浸提液中加入0.4 g戴氏合金,再加入2 ml 5 mol L-1NaOH,迅速密封擴(kuò)散容器,在培養(yǎng)箱25℃下放置1周,以充分反應(yīng)。7d后取出玻璃纖維濾紙,干燥后用錫囊包裹,用同位素比值質(zhì)譜儀測(cè)定15N豐度。所有15N豐度測(cè)定均在美國(guó)加州大學(xué)戴維斯分校同位素分析中心完成。
表1 供試土壤基本理化性質(zhì)(0~20 cm)Table 1 Physico-chemical properties of the tested soil(0~20 cm)
土壤硝態(tài)氮含量(kg hm-2)=硝態(tài)氮含量(mg kg-1)×土壤容重(kg m-3)×面積(m2)×0.2(m)/1 000 000
土壤硝態(tài)氮累積量(kg hm-2)=每20 cm土層土壤硝態(tài)氮含量之和
15N標(biāo)記硝態(tài)氮含量(kg hm-2)=土壤硝態(tài)氮含量×15N原子百分超/15N標(biāo)記硝酸鉀原子百分超
15N標(biāo)記肥料氮?dú)埩袅浚╧g hm-2)=全氮(g kg-1)×土壤容重(kg m-3)×面積(m2)×0.2(m)/1 000 000×15N原子百分超/15N標(biāo)記硝酸鉀原子百分超
15N標(biāo)記肥料氮損失率(%)=(標(biāo)記肥料氮施用量-0~100 cm土壤剖面標(biāo)記肥料氮?dú)埩袅浚?標(biāo)記肥料氮施用量×100
數(shù)據(jù)計(jì)算采用Excel 2007,數(shù)據(jù)統(tǒng)計(jì)分析采用SPSS 20.0,多重比較采用鄧肯(Duncan)法。圖表繪制采用Excel 2007和SigmaPlot 12.0。
小麥?zhǔn)斋@后5個(gè)試驗(yàn)田塊0~200 cm土壤剖面硝態(tài)氮累積量在205~268 kg hm-2之間,平均244 kg hm-2(圖2)。試驗(yàn)期間降水量為157 mm,蒸發(fā)量為100 mm。2014年降水量明顯低于1957—2014年同期降水量的平均值(188mm),屬欠水年[22]。同時(shí),這期間的降水集中在8月5日—15日之間,達(dá)105 mm,其他時(shí)期降水量相對(duì)較少(圖1)。
圖2 五個(gè)田塊收獲后0~200 cm土壤剖面硝態(tài)氮累積量Fig. 2 NO3--N accumulation in the 0~200 cm soil layer in all the five tracts of cropland in the experiment after winter wheat was harvested
與休閑前相比,休閑后土壤剖面硝態(tài)氮累積峰并未發(fā)生明顯下移(圖3f),這與試驗(yàn)期間降水量(僅157 mm)低于多年同期(1957—2014年7月15日—9月5日期間降水量均值為188 mm)有關(guān)。休閑后5個(gè)田塊施氮處理相比不施氮處理在0~100 cm土壤剖面中存在明顯的硝態(tài)氮累積峰。但5個(gè)田塊間存在一定差異,田塊a~d休閑后施氮處理硝態(tài)氮累積峰位于40~60 cm土層,而田塊e則達(dá)到了80~100 cm。同時(shí),剖面中硝態(tài)氮含量存在差異,b和e田塊較高,其余3個(gè)田塊較低。
圖3 休閑后0~200 cm土壤剖面硝態(tài)氮含量分布Fig. 3 NO3--N distribution in the 0~200 cm soil layer after summer fallow
15N的自然豐度為0.366%[23]。由圖4可以看出,休閑后施氮處理0~100 cm土壤剖面15N豐度明顯增加。5個(gè)田塊0~100 cm土壤剖面中15N豐度分布趨勢(shì)相同,均在60 cm處為最高,但豐度值存在差異,田塊a和e中15N豐度較低,田塊d則較高(圖4),這與不同田塊土壤剖面性質(zhì)不同有關(guān)。各田塊微區(qū)60 cm處15N豐度為0.408%~0.482%,平均為0.429%,80 cm處平均為0.372%,均高于土壤本底值,而100 cm深度其值為0.369%,與土壤本底值無(wú)異(表2)。可見(jiàn),休閑初期加入的硝態(tài)氮深度為0~15 cm,經(jīng)過(guò)一個(gè)夏季休閑已經(jīng)下移至80 cm深處,下移深度為45~65 cm。
經(jīng)過(guò)一個(gè)休閑季后5個(gè)田塊施氮處理在0~100 cm土壤剖面殘留肥料氮的量為20.80~22.86 kg hm-2,平均21.58 kg hm-2,占施入肥料氮的71.9%。在0~20 cm殘留有4.50 kg hm-2的標(biāo)記肥料氮,其中2.9%仍是以硝態(tài)氮的形式存在。殘留的肥料氮主要集中在40~60 cm土層,總含量為17.7 kg hm-2,占施入肥料氮的52.8%,其中標(biāo)記硝態(tài)氮含量為6.85 kg hm-2,占施入肥料氮的22.8%(表2)??梢?jiàn),休閑前以硝態(tài)氮形式存在于土壤的氮素經(jīng)過(guò)休閑季節(jié)后會(huì)有較大一部分轉(zhuǎn)化為其他形態(tài)氮素被土壤固持。在5個(gè)試驗(yàn)田塊中,田塊b微區(qū)殘留肥料氮中以硝態(tài)氮形態(tài)存在的量最大,尤其是在60 cm處,殘留的肥料氮主要是硝態(tài)氮,其次為c、d微區(qū),a和e微區(qū)最少(圖5)。
圖4 夏季休閑后0~100cm土壤剖面15N豐度Fig. 4 15N abundance in the 0~100cm soil layer after summer fallow
表2 土壤剖面15N豐度和硝態(tài)氮15N豐度、15N標(biāo)記肥料氮和硝態(tài)氮含量Table 2 15N abundance,nitrateabundance and contents of 15N labeledN fertilizerN and nitrate-N in thesoil profile
經(jīng)過(guò)一個(gè)休閑季,5個(gè)田塊施入肥料氮的損失率分別為30.4%、23.8%、29.4%、26.1%和30.8%,平均為28.1%(圖6)。
圖5 施氮處理0~100 cm剖面15N標(biāo)記硝態(tài)氮和全氮含量Fig. 5 Contents of NO3--15N and total N in the 0~100 cm soil layer in Treatment N30
圖6 施氮處理夏季休閑后肥料氮損失率Fig. 6 Loss rate of applied N fertilizer after summer fallow
夏季休閑期間的降水量是影響氮素在土壤剖面移動(dòng)的主要驅(qū)動(dòng)因素[24]。本試驗(yàn)夏閑期間總降水量為157 mm,顯著低于多年同期降水量(1957—2014年期間平均降水量為188mm),屬欠水年。即使如此,休閑結(jié)束后肥料氮在土壤剖面向下遷移仍然較為明顯,遷移的距離平均超過(guò)45 cm(圖4)。黃土高原旱地一般出現(xiàn)欠水年的概率為27%,而平水、豐水年的概率則為73%。由此可知,肥料氮在旱地夏季休閑期間實(shí)際淋溶深度會(huì)更大,所以,夏季休閑期間殘留肥料氮通過(guò)淋溶損失值得關(guān)注。
硝態(tài)氮在土壤剖面的移動(dòng)與土壤水分狀況及土壤質(zhì)地[25]有密切關(guān)系。從機(jī)理上看,硝態(tài)氮以離子形態(tài)由土壤高濕度(低吸力)區(qū)域會(huì)向低濕度(高吸力)區(qū)域運(yùn)移[26-27]。試驗(yàn)的2014年屬欠水年,夏季休閑期間肥料氮在土壤剖面的向下移動(dòng)很明顯。這一方面與休閑期間總的降水量(157 mm)大于總蒸發(fā)量(100 mm)有關(guān);同時(shí),也與降水量的分布有關(guān)。休閑后至8月5日之前、8月15日—8月25日之間降水量小于蒸發(fā)量;而8月5日—8月15日期間出現(xiàn)集中降雨,僅8月5日—8月6日兩天的降水量就達(dá)69 mm,遠(yuǎn)遠(yuǎn)大于蒸發(fā)量(5 mm),這可能是欠水年發(fā)生硝態(tài)氮在土壤剖面隨降水向下層遷移的主要因素。黑壚土黏粒相對(duì)含量較少,質(zhì)地較輕,也是發(fā)生肥料氮向下淋溶的因素之一。夏季休閑結(jié)束后5個(gè)田塊中肥料氮的回收率平均為71.9%,損失率平均為28.1%。反硝化損失可能是夏季休閑期間氮素?fù)p失的途徑之一。Nosalewicz等[28]指出,在0~30 cm土壤深度,隨著溫度或土壤含水量上升,N2O的釋放量增加。Laville等[29]指出,溫度一定,當(dāng)土壤孔隙含水量達(dá)到68%時(shí),土壤N2O釋放量為最大。本研究施入的氮肥形態(tài)為硝態(tài)氮肥,夏季休閑期間高溫多雨,可能會(huì)造成部分肥料氮發(fā)生反硝化作用,進(jìn)而導(dǎo)致肥料氮的氣態(tài)損失。此外,本研究采用微區(qū)為PVC管,其插入土壤的深度為22 cm,肥料氮下移深度大于60 cm,所以存在肥料氮橫向遷移的可能。如Follett[30]曾指出,15N標(biāo)記微區(qū)試驗(yàn)存在邊界效應(yīng),會(huì)導(dǎo)致部分肥料氮進(jìn)入微區(qū)以外的土體。因此,本研究存在高估肥料氮損失的可能。
本研究中加入的肥料氮形態(tài)為15N標(biāo)記的硝態(tài)氮,但休閑結(jié)束后,0~100 cm土壤剖面以硝態(tài)氮存在的肥料氮僅占肥料氮的2.9%~46.6%,其中,0~20 cm土壤殘留的肥料氮占0~100 cm土壤剖面殘留肥料氮的14.3%,但以硝態(tài)氮形式存在的僅占這一土層肥料氮的2.9%(表2),說(shuō)明加入的硝態(tài)氮在休閑期間有相當(dāng)一部分轉(zhuǎn)化成其他形態(tài)的氮素。其中的一個(gè)機(jī)理可能是,小麥?zhǔn)斋@后,殘茬(包括地上部分及根茬)進(jìn)入或保留在土壤中的有機(jī)物促進(jìn)了土壤微生物對(duì)施入肥料氮的固持。有研究[31]指出,土壤微生物對(duì)氮肥的利用很迅速,施肥后5d土壤微生物對(duì)氮肥的固持達(dá)到最高,其固持量是施用肥料氮(150 kg hm-2)的5.4%。本研究中殘留在0~100 cm土壤剖面的肥料氮主要累積在20~60 cm土層,該層次殘留的肥料氮以硝態(tài)氮?dú)埩舻谋壤?0.0%~46.5%之間,顯著高于0~20 cm土層;但殘留的肥料氮更多仍以其他形態(tài)氮存在。由于在該土層深度,通過(guò)根茬補(bǔ)充的有機(jī)物相對(duì)較少,再加上微生物活動(dòng)相對(duì)較弱,因此,微生物的固持作用應(yīng)該有限。
近來(lái),關(guān)于硝態(tài)氮歧化還原為銨態(tài)氮的現(xiàn)象受到關(guān)注。Minick等[32]和Rütting等[33]均指出,氧化還原狀況是影響硝態(tài)氮歧化還原為銨態(tài)氮的關(guān)鍵;在還原條件下培養(yǎng),硝態(tài)氮歧化還原量占礦化產(chǎn)生的硝態(tài)氮的比例能超過(guò)60%[32]。本試驗(yàn)在8月5日—8月15日之間出現(xiàn)大量降水,且有幾次單次降水量相對(duì)較高(圖1),會(huì)使施入的肥料氮迅速下移;同時(shí),短期大量降水的出現(xiàn)使40~60 cm土層處于還原狀態(tài),這兩個(gè)條件可能滿足了硝態(tài)氮歧化還原為銨態(tài)氮的要求,生成的銨態(tài)氮被土壤晶格固定,這可能是該層次硝態(tài)氮固持的另一個(gè)機(jī)理。
本研究采用施入15N標(biāo)記硝態(tài)氮肥的方法模擬了夏季休閑期間土壤殘留硝態(tài)氮的去向,與常規(guī)的測(cè)定土壤剖面硝態(tài)氮含量方法相比,15N方法可以區(qū)分肥料氮及土壤有機(jī)質(zhì)礦化的氮素,進(jìn)而可定量評(píng)價(jià)施入硝態(tài)氮的去向。但研究中15N標(biāo)記氮肥的加入深度為0~15 cm土層,與作物收獲后殘留在土壤剖面的肥料氮累積的深度存在差異。Ju等[34]15N標(biāo)記試驗(yàn)指出,氮素存在深度會(huì)影響硝態(tài)氮的垂直運(yùn)移程度,硝態(tài)氮?dú)埩舻纳疃仍缴?,隨水下移的程度越小。當(dāng)然,為更加準(zhǔn)確地研究旱地夏季休閑期間殘留硝態(tài)氮的去向,下一步研究有必要將15N標(biāo)記氮肥在小麥季直接施入,然后觀測(cè)。
黃土高原旱地小麥?zhǔn)斋@后0~200 cm土壤剖面硝態(tài)氮累積量較高,在205~268 kg hm-2之間(平均244 kg hm-2)。2014年屬欠水年,但休閑結(jié)束后,標(biāo)記肥料氮向下遷移的深度達(dá)80 cm土層,主要集中在40~60 cm土層,說(shuō)明,旱地休閑期間硝態(tài)氮的淋溶作用不可忽視。夏季休閑結(jié)束后,加入的15N標(biāo)記肥料氮平均損失率為28%,損失機(jī)理值得進(jìn)一步研究。
[1] 高煥文,李問(wèn)盈,李洪文. 中國(guó)特色保護(hù)性耕作技術(shù).農(nóng)業(yè)工程學(xué)報(bào),2003,19(3):1—4 Gao H W,Li W Y,Li H W. Conservation tillage technology with Chinese characteristics(In Chinese).Transactions of the Chinese Society of Agricultural Engineering,2003,19(3):1—4
[2] Gao Y J,Li Y,Zhang J C,et al. Effects of mulch,N fertilizer,and plant density on wheat yield,wheat nitrogen uptake,and residual soilnitrate in a dryland area of China. Nutrient Cycling in Agroecosystems,2009,85(2):109—121
[3] TurnerN C,Li F M,Xiong Y C,et al. Agricultural ecosystem management in dry areas:Challenges and solutions. Plant and soil,2011,347(1):1—6
[4] He G,Wang Z H,Li F C,et al. Soil nitrate-N residue,loss and accumulation affected by soil surface management and precipitation in a winter wheatsummer fallow system on dryland. Nutrient Cycling in Agroecosystems,2016,106(1):31—46
[5] 山侖. 旱地農(nóng)業(yè)技術(shù)發(fā)展趨向. 中國(guó)農(nóng)業(yè)科學(xué),2002,35(7):848—855 Shan L. Development trend of dryland farming technologies(In Chinese). Scientia Agricultura Sinica,2002,35(7):848—855
[6] 閆湘,金繼運(yùn),何萍,等. 提高肥料利用率技術(shù)研究進(jìn)展. 中國(guó)農(nóng)業(yè)科學(xué),2008,41(2):450—459 Yan X,Jin J Y,He P,et al. Recent advances in technology of increasing fertilizer use efficiency(In Chinese). Scientia Agricultura Sinica,2008,41(2):450—459
[7] 王西娜,王朝輝,李華,等. 旱地土壤中殘留肥料氮的動(dòng)向及作物有效性. 土壤學(xué)報(bào),2016,53(5):1202—1212 Wang X N,Wang Z H,Li H,et al. Dynamics and availability to crops of residual fertilizer nitrogen in upland soil(In Chinese). Acta Pedologica Sinica,2016,53(5):1202—1212
[8] 趙偉,梁斌,周建斌. 施入15N標(biāo)記氮肥在長(zhǎng)期不同培肥土壤的殘留及其利用. 土壤學(xué)報(bào),2015,52(3):587—596 Zhao W,Liang B,Zhou J B.Residual of applied15N fertilizer in soilsunder long-term different patterns of fertilization and its utilization(In Chinese). Acta Pedologica Sinica,2015,52(3):587—596
[9] Dai J,Wang Z H. Li F C,et al. Optimizing nitrogen input by balancing winter wheat yield and residual nitrate-N in soil in a long-term dryland field experiment in the Loess Plateau of China. Field Crops Research,2015,181:32—41
[10] Zhou J Y,Gu B J,Schlesinger W H,et al. Significant accumulation of nitrate in Chinese semi-humid croplands. Scientific Reports,2016,6:Article number:25088
[11] Conway G R,Pretty J N. Unwelcome harvest:Agriculture and pollution. London:Earthscan Publications,1991
[12] 巨曉棠,谷保靜. 我國(guó)農(nóng)田氮肥施用現(xiàn)狀、問(wèn)題及趨勢(shì). 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2014,20(4):783—795 Ju X T,Gu B J. Status-quo,problem and trend of nitrogen fertilization in China(In Chinese). Plant Nutrition and Fertilizer Science,2014,20(4):783—795
[13] Galloway J N,Aber J D,Erisman J W,et al. The nitrogen cascade. Bioscience,2003,53(4):341—356
[14] Wang G L,Chen X P,Cui Z L,et al. Estimated reactive nitrogen losses for intensive maize production in China. Agriculture,Ecosystems & Environment,2014,197:293—300
[15] Kanter D R,Zhang X,Mauzerall D L. Reducing nitrogen pollution while decreasing farmers’costs and increasing fertilizer industry profits. Journal of Environmental Quality,2015,44(2):325—335
[16] 彭琳,彭祥林,盧宗藩. 塿土旱地土壤硝態(tài)氮季節(jié)性變化與夏季休閑的培肥增產(chǎn)作用. 土壤學(xué)報(bào),1981,18(3):211—222 Peng L,Peng X L,Lu Z F.NO3--N seasonal change in dryland and fertilization production role during summer fallow of Lou soil(In Chinese). Acta Pedologica Sinica,1981,18(3):211—222
[17] Darwiche-Criado N,Comín F A,Sorando R,et al.Seasonal variability of NO3-mobilization during flood events in a Mediterranean catchment:The influence of intensive agricultural irrigation. Agriculture,Ecosystems & Environment,2015,200:208—218
[18] 戴健,王朝輝,李強(qiáng),等. 氮肥用量對(duì)旱地冬小麥產(chǎn)量及夏閑期土壤硝態(tài)氮變化的影響. 土壤學(xué)報(bào),2013,50(5):956—965 Dai J,Wang Z H,Li Q,et al. Effects of nitrogen application rate on winter wheat yield andsoil nitrate nitrogen during summer fallow season on dryland(In Chinese). Acta Pedologica Sinica,2013,50(5):956—965
[19] Hauck R D,Bremner J M. Use of tracers for soil and fertilizer nitrogen research. Advances in Agronomy,1976,28:219—266
[20] Sebilo M,MayerB,Grably M,et al. The use of the ammonium diffusion method for δ15N-NH4+and δ15N-NO3-measurements:Comparison with other techniques. Environmental Chemistry,2004,1(2):99—103
[21] Brooks P D,Stark J M,McInteer B B,et al. Diffusion method to prepare soil extracts for automated nitrogen-15 analysis. Soil Science Society of America Journal,1989,53(6):1707—1711
[22] 吳義城,袁業(yè)暢,任耀武,等. 農(nóng)業(yè)氣候影響評(píng)價(jià):農(nóng)作物氣候年型劃分方法(GB/T 21986-2008). 北京:中國(guó)標(biāo)準(zhǔn)出版社,2008 Wu Y C,Yuan Y C,Ren Y W,et al. Assessment of agroclimate impact:Classification method of annual crop climate type(GB/T 21986-2008)(In Chinese).Beijing:Standards Press of China,2008
[23] H?gberg P. Tansleyreview No. 95∶15N natural abundance in soil-plant systems. The New Phytologist,1997,137(2):179—203
[24] 郭勝利,吳金水,郝明德,等. 長(zhǎng)期施肥對(duì) NO3--N 深層積累和土壤剖面中水分分布的影響. 應(yīng)用生態(tài)學(xué)報(bào),2003,14(1):75—78 Guo S L,Wu J S,Hao M D,et al. Effect of longterm fertilization on NO3--N accumulation and moisture distribution in soil profiles(In Chinese). Chinese Journal of Applied Ecology,2003,14(1):75—78
[25] 劉愫倩,徐紹輝,李曉鵬,等. 土體構(gòu)型對(duì)土壤水氮儲(chǔ)運(yùn)的影響研究進(jìn)展. 土壤,2016,48(2):219—224 Liu S Q,Xu S H,Li X P,et al. Effects of soil profile configuration on soil water and nitrogen storage and transportation:A review(In Chinese). Soils,2016,48(2):219—224
[26] 郭大應(yīng),熊清瑞,謝成春,等. 灌溉土壤硝態(tài)氮運(yùn)移與土壤濕度的關(guān)系. 灌溉排水,2001,20(2):66—68 Guo D Y,Xiong Q R,Xie C C,et al. Feasibility analysis on irrigation return flow reuse system in Hetao irrigation district in Inner Mongolia(In Chinese).Irrigation and Drainage,2001,20(2):66—68
[27] 陳效民,鄧建才,柯用春,等. 硝態(tài)氮垂直運(yùn)移過(guò)程中的影響因素研究. 水土保持學(xué)報(bào),2003,17(2):12—15 Chen X M,Deng J C,Ke Y C,et al. Study on influence factors in process of nitrate vertical transport(In Chinese). Journal of Soil and Water Conservation,2003,17(2):12—15
[28] Nosalewicz M,Stepniewska Z,Nosalewicz A. Effect of soil moisture and temperature on N2O and CO2concentrations in soil irrigated with purified wastewater.International Agrophysics,2013,27(3):299—304
[29] Laville P,Lehuger S,Loubet B,et al. Effect of management,climate and soil conditions on N2O and NO emissions from an arable crop rotation using high temporal resolution measurements. Agricultural and Forest Meteorology,2011,151(2):228—240
[30] Follett RF. Innovative15N microplot research techniques to study nitrogen use sufficiency under different ecosystems. Communications in Soil Science and Plant Analysis,2001,32(7/8):951—979
[31] 韓曉日,郭鵬程,陳恩芬,等. 土壤微生物對(duì)施入肥料氮的固持及其動(dòng)態(tài)研究. 土壤學(xué)報(bào),1998,35(3):412—418 Han X R,Guo P C,Chen E F,et al. Immobilization of fertilizer nitrogen by soil microbes and its changes(In Chinese). Acta Pedologica Sinica,1998,35(3):412—418
[32] Minick K J,PandeyC B,F(xiàn)ox T R,et al. Dissimilatory nitrate reduction to ammonium and N2O flux:Effect of soil redox potential and N fertilization in loblolly pine forests. Biology and Fertility of Soils,2016,52(5):601—614
[33] Rütting T,Boeckx P,Müller C,et al. Assessment of the importance of dissimilatory nitrate reduction to ammonium for the terrestrial nitrogen cycle.Biogeosciences,2011,8(7):1779—1791
[34] Ju X T,Gao Q,Christie P,et al. Interception of residual nitrate from a calcareous alluvial soil profile on the North China Plain by deep-rooted crops:A15N tracer study. Environmental Pollution,2007,146(2):534—542
Fate of15N Labeled Nitrate in Dryland under Summer Fallow on the Loess Plateau
XIA Mengjie CHEN Zhujun LIU Zhanjun ZHOU Jianbin?
(College of Natural Resources and Environmental,Northwest A&F University,Key Laboratory of Plant Nutrition and the Agrienvironment in Northwest China,Ministry of Agriculture,Yangling,Shaanxi712100,China)
【Objective】Summer fallow after winter wheat is harvested in dryland on the Loess Plateau is a very common practice to save rain water,and restore soil fertility for the next crop. Nowadays,the content of nitrogen(N)(mainly in nitrate form)in the soil of the dryland as residue of the fertilizer applied to winter wheat is increasing steadily. As summer is the rainy season in this region,whether or not the high rainfall would increase NO3--N leaching loss is an important issue deserving further study. The method of adding15N labeled nitrate after winter wheat is harvested in dryland is one to quantitativelyexplore fate of the residual fertilizer N in the dryland under summer fallow in the Loess Plateau,and hence to provide a scientific basis for managing Nin dryland.【Method】The15N labeled fertilization micro-plot(Polyvinylchloridecolumn,25 cm diameter and 25 cm long)method was used to study fate of the residual fertilizer N in the dryland under summer fallow in a field experiment,which hadfive tracts of cropland and two N treatments set up with and without N application(0 and 30 kg N hm-2).15N labeled nitrate was mixed with the surface soil(0~15 cm)in the micro-plot at a rate equal to the content of the residual fertilizer N in the field after winter wheat was harvested. At the end of the summer fallow,soil samples throughout the soil profile(0~200 cm)were taken fromthe micro-plots,for analysis the contents of soil total nitrogen,NO3--N,and their15N abundance.【Result】Results show that at the beginning of the summer fallow,the content of NO3--N accumulated in the 0~200 cm soil was quite high,ranging between 205 and 268 kg hm-2and averaging 244 kg hm-2;At the end of the summer fallow,apparent NO3--N accumulation peaks were found in the soil,40~80 cm in depth,and15N abundance ranged between 0.408% and 0.482% and averaged 0.429%,being the highest in the soil 60 cm in depth,averaged 0.372% in the soil 80 cm in depth,being higher than the background value of15N abundance in the soil(0.36715N atom%),and was 0.369 % in the soil 100 cm in depth,more or less the same as the background value,in Treatments N30 in all the five tracts of cropland. In the five tracts of cropland,15N labeled nitrate abundance was the highest in the 40~60 cm soil layer in the soil profiles(0~100 cm),averaging 2.151%;and the lowest abundance was in the 80~100 cm soil layer,averaging 0.407%,both significantly higher than the background value. Although the rainfall during the summer fallow season was only 157 mm,making it a dry year,it still leached15N labeled nitrate down to 80 cm in depth,through a 45~65 cm thick soil layer,and even15N labeled nitrate was found in 100 cm depth. At the end of the fallow,the content of residual N averaged 21.6 kg hm-2or ranged between 20.8 and 22.9 kg hm-2in the 0~100 cm soil profile,accounting for 71.9% of the applied N fertilizer in all the five tracts of cropland.The content of residual labeled N was 4.5 kg hm-2,2.9% of which was in the form of NO3-- N in the 0~20 cm soil layer;Residual fertilizer N was mainly distributed in the 40~60 cm soil layer,and averaged 17.7 kg hm-2in content,accounting for 52.8% of the total N fertilizer applied,in which15N labeled nitrate content was 6.8 kg hm-2. After the summer fallow,the applied15N labeled N fertilizer was found lost at a rate of 23.8%~30.8%(averaging 28.1%).【Conclusion】Residual fertilizer N accumulated significantly in the 0~200cm soil layer of the dryland after wheat was harvested,posing a potential risk of leaching. In 2014,though it was a dry year,the effect of rain water leaching NO3--N was still quite significant,indicating that the NO3--N leaching in the dryland during the summer fallow season should not be ignored and further studies should be done on mechanisms of its leaching loss.
Dryland;Summer fallow;15N labeled fertilization method;Residual fertilizer N;Nitrate leaching
S158.5
A
10.11766/trxb201704120060
* 國(guó)家自然科學(xué)基金項(xiàng)目(31372137)資助 Supported by the National Natural Science Foundation of China(No. 31372137)
? 通訊作者 Corresponding author,E-mail:jbzhou@nwsuaf.edu.cn
夏夢(mèng)潔(1990—),女,浙江嘉興人,博士研究生,主要研究植物營(yíng)養(yǎng)與調(diào)控。E-mail:xmj629@126.com
2017-04-12;
2017-05-12;優(yōu)先數(shù)字出版日期(www.cnki.net):2017-05-24
(責(zé)任編輯:陳榮府)