• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis of MIL-53(Fe)/MWCNTs Hybrid Material with Enhanced Efficiency for Photocatalytic Degradation of Rhodamine B

    2017-11-01 09:26:41ZhangDanLiRongXuQianZhangJingWangLili
    中國煉油與石油化工 2017年3期

    Zhang Dan; Li Rong; Xu Qian; Zhang Jing; Wang Lili

    (1. School of Metallurgy, Northeastern University, Shenyang 110004;2. School of Chemistry and Materials Science, Liaoning Shihua University, Fushun 113001;3. Xinjiang Institute of Light Industry Technology, Urumqi 830021;4. State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200072)

    Synthesis of MIL-53(Fe)/MWCNTs Hybrid Material with Enhanced Efficiency for Photocatalytic Degradation of Rhodamine B

    Zhang Dan1,2; Li Rong3; Xu Qian4; Zhang Jing2; Wang Lili1

    (1. School of Metallurgy, Northeastern University, Shenyang 110004;2. School of Chemistry and Materials Science, Liaoning Shihua University, Fushun 113001;3. Xinjiang Institute of Light Industry Technology, Urumqi 830021;4. State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200072)

    BMIL-53(Fe)/MWCNTs hybrid material was prepared via the solvethermal synthesis method. The resulting samples were characterized by X-ray diffraction, FT-IR spectroscopy, scanning electron microscopy, UV-Vis absorption spectroscopy,the Brunauer-Emmet-Teller method, and photoluminescence spectroscopy. The result showed that the introduction of multiwalled carbon nanotubes to the MIL-53(Fe) can increase the surface area of the composites, suppress the recombination of photogenerated electron-hole pairs and promote the electron transfer process. The hybrid material showed optimal photocatalytic performance in the degradation of Rhodamine B under the irradiation of ultraviolet and natural light.

    MIL-53(Fe); multi-walled carbon nanotubes; photocatalysis; Rhodamine B

    1 Introduction

    Dyes pose considerable threat to the environment and human body when they are directly released to the environment without further processing[1-3]. Photocatalysis can effectively solve environmental issues by degrading toxic pollutants[4-6]. The metal-organic frameworks(MOFs) materials, which exhibit the designed and controlled structure and function, have been attracting an increasing attention in recent years[7-8]. MOFs materials with semiconductor properties can function photocatalytically under light irradiation[9-12]. MIL-53(Fe), an MOFs material, displays good photocatalytic activity to degrade the organic dyes[13-14]. However, the photocatalytic degradation efficiency of MIL-53(Fe) is low, owing to its fast rate of electron-hole pair recombination.Zhang, et al. prepared MIL-53(Fe)-graphene hybrid materials that showed high photocatalytic performance in the degradation of dye[15]. Graphene can improve the photocatalytic activity, since it can reduce the electronhole pair recombination.

    Carbon nanotubes possess outstanding mechanical,electronic and optical properties because of their unique tubular structure. Moreover, the carbon nanotubes exhibit better electrical conductivity and are more stable than graphene. Carbon nanotubes have been added to the photocatalytic systems, as they can increase the surface area of the material, while acting as an electron-transfer channel. It can enhance the absorbance of the visible light and improve the photocatalytic activity of the system[16-19].In the present work, the MIL-53(Fe)/MWCNT (multiwalled carbon nanotubes) hybrid material was prepared through in-situ introduction of multi-walled carbon nanotubes and applied in the field of photocatalytic degradation of Rhodamine B (RhB). It is interesting to note that the hybrid material showed higher photocatalytic efficiency than the neat MIL-53(Fe).

    2 Experimental

    2.1 Materials

    Multi-walled carbon nanotubes (10—20 nm inoutside diameter and 10—30 μm in length) were purchased from the Beijing Dk Nano Technology Co., Ltd. Iron (III) chloride hexahydrate, ethanol and N,N-dimethylformamide (DMF) were supplied by the Sinopharm Chemical Reagent Co., Ltd.1,4-Benzenedicarboxylic acid (H2BDC) was purchased from the Aladdin Industrial Corporation..

    2.2 Synthesis of MIL-53(Fe) and MIL-53(Fe)/MWCNT hybrid material

    MIL-53(Fe) was prepared according to the literature report[20]. Typically, FeCl3·6H2O (1.35 g),1,4-benzenedicarboxylic acid (H2BDC) (0.83 g), and N,N-dimethylformamide (DMF) (112 mL) were mixed and stirred at room temperature until it became clear, then the reaction mixture was transferred into a 200-mL Teflon lined vessel and heated at 150 °C for 15 h. The resultant suspension was filtered and the filter residue was washed under ultrasonic condition with C2H5OH for 1 h. The orange powder was collected under vacuum after being heated at 150 °C for 24 h.

    50 mg of MWCNTs were dispersed into 50 mL of DMF prior to being subjected to sonication for 30 min, and then the MWCNTs suspension was added to the solution of MIL-53(Fe) precursor. The rest methods of preparation and post-treatment were the same as those for preparation of MIL-53(Fe).

    2.2 Characterization

    The powder X-ray diffraction (XRD) was carried on a Rigaku D/Max-2500 diffractometer with Cu Kα radiation.The morphology of the samples was characterized by a JSM-7500ffield emission scanning electron microscope. The Fourier transform-infrared spectra (FTIR) were recorded on a Nicolet NEXUS 6700 infrared spectrometer. The UV-vis diffuse reflectance spectra were obtained by a Lamda 650 spectrophotometer. The photoluminescence spectra (PL) were conducted on a Cary Eclipse fluorescence spectrophotometer. The nitrogen adsorption-desorption isotherms of the samples were measured using an ASAP 2020 surface area analyzer(Micromeritics, USA) operating at 77 K.

    2.3 Photocatalytic activity test

    The photocatalytic activity of MIL-53 (Fe) and MIL-53(Fe)/MWCNTs was evaluated by the photodegradation of RhB under irradiation with a highpressure Hg lamp (ML250W, Philips) and natural light at room temperature. 20 mg of MIL-53(Fe) and MIL-53(Fe)/MWCNT photocatalyst were put in a 250-mL beaker containing 100 mL of RhB aqueous solution (20 mg/L), respectively. The distance between the outer edge of beaker and the light source was 20 cm. The suspension was stirred in the dark for 60 min to reach the adsorption/desorption equilibrium. The mixture was kept under stirring during the photodegradation reaction.5 mL of suspension were withdrawn at given time intervals and were immediately centrifuged to remove the catalyst. The RhB concentration was monitored by measuring the absorption intensity at its maximum absorbance wavelength of 553 nm with a UV-Vis spectrophotometer (721 type spectrometer, made by the Shanghai Jinghua Instruments Co., Ltd.).

    3 Results and Discussion

    3.1 Characterization

    Figure 1 XRD patterns of MIL-53(Fe) and MIL-53(Fe)/MWCNTs

    Figure 2 FT-IR spectra of MIL-53(Fe) and MIL-53(Fe)/MWCNTs

    Figure 1 shows the XRD patterns of MIL-53(Fe) and MIL-53(Fe)/MWCNTs hybrid material. Intense peaks at 2θ = 9.1°, 12.3°, 18.6° were observed, which were consistent with the literature report[21]. The XRD patterns of MIL-53(Fe) and MIL-53(Fe)/MWCNTs hybrid material were similar. This result denoted that the introduction of MWCNTs had no effect on the crystal structure of MIL-53(Fe). The results of fT-IR spectroscopic analysis of MIL-53(Fe) and MIL-53(Fe)/MWCNTs hybrid material are shown in Figure 2. The absorption bands of carboxyl groups are visible at 1 596 cm-1(asymmetric) and 1 390 cm-1(symmetric), respectively. The peak at 750 cm-1corresponds to the C-H bonding vibrations of the benzene rings. The peak of fe-O at 555 cm-1indicates the formation of a metal-oxo bond between the carboxylic group of terephthalic acid and the Fe (III)[22].The hybrid material shows the infrared spectra that are similar to the neat MIL-53(Fe), which means that the MWCNTs do not influence the formation of the MIL-53(Fe)/MWCNTs.Figure 3 shows the SEM images of the MIL-53(Fe) and MIL-53(Fe)/MWCNTs. It can be seen from Figure 3a that the MIL-53(Fe) had spindle and irregular polyhedral shapes. As for the hybrid materials, MWCNTs showed tubular shape and the MIL-53(Fe) still had the spindle and irregular polyhedral shapes. It can be seen that the MWCNTs and MIL-53(Fe) were bonded together.Moreover, the MWCNTs did not change the shape and size of the MIL-53(Fe), indicating that the addition of MWCNTs via the solvethermal treatment did not influence the formation of MIL-53(Fe)/MWCNTs. The pore structures of MIL-53(Fe) and MIL-53(Fe)/MWCNTs were investigated using the nitrogen adsorption-desorption analysis at 77K, with the results shown in Figure 4. The surface area and pore volume data are listed in Table 1.As for the MIL-53(Fe) sample, the N2adsorption is a type I isotherm, indicating to the microporous solids. The N2adsorption isotherm of MIL-53(Fe)/MWCNT showed a type IV isotherm, indicating to the mesoporous solids.The surface area of MIL-53(Fe) was very low (16.7 m2),whereas the surface area of MIL-53(Fe)/MWCNT was found to be increased (164.9 m2). The increase in surface area could be caused by the increase of the pore volume after the introduction of MWCNTs. With an enhanced surface area and pore volume of the material, the MIL-53(Fe)/MWCNTs material could adsorb more organic dye molecules, which would accelerate the reaction rate, thus improving the photocatalytic efficiency.

    Figure 3 SEM images of (a): MIL-53(Fe) and (b): MIL-53(Fe)/MWCNTs

    Figure 4 N2 adsorption -desorption isotherms of MIL-53(Fe) and MIL-53(Fe)/MWCNTs

    Table 1 Pore characteristics of MIL-53(Fe) and MIL-53(Fe)-MWCNTs

    The light-absorption characteristics of the samples were determined using the UV-Vis diffuse reflectance spectroscopy. As shown in Figure 5, the absorbance intensity of the sample was enhanced significantly with the addition of MWCNTs, especially in the visible light region. The major absorption edges of the MIL-53(Fe) and MIL-53(Fe)/MWCNTs were around 490 nm and 540 nm, respectively, which corresponded to a band gap energy (Eg) of 2.53eV and 2.30eV(Eg= 1 240/wavelength), respectively. Figure 6 illustrates the fluorescence spectra of MIL-53(Fe) and MIL-53(Fe)/MWCNTs. MIL-53(Fe) had a strong broad emission peak at around 300 nm—500 nm and three peaks at 390 nm,430 nm, and 470 nm. It can be seen that the PL spectrum of MIL-53(Fe)/MWCNTs was similar to that of MIL-53(Fe). However, the intensity of the hybrid material was much lower than that of MIL-53(Fe) because MWCNTs were introduced into the MIL-53(Fe), which could prolong the lifetime of the electron-hole pairs.

    Figure 5 UV-Vis diffuse re flectance spectra of MIL-53(Fe)and MIL-53(Fe)/MWCNTs

    Figure 6 Photoluminescence spectra of MIL-53(Fe) and MIL-53(Fe)/MWCNTs

    3.2 Photocatalytic activity

    The photocatalytic degradation of RhB was performed to investigate the photocatalytic activity of the samples.As presented in Figure 7, the neat MIL-53(Fe) could degrade 42.4% of RhB after 60 min of high-pressure Hg light irradiation, whereas the MIL-53(Fe)/MWCNTs could degrade 95.1% of RhB. This fact illustrates that the photocatalytic degradation rate of RhB can be increased significantly with the addition of MWCNTs to MIL-53(Fe). However, pure MIL-53(Fe) degraded 43.2% of RhB, whereas MIL-53(Fe)/MWCNTs degraded 13.2%of RhB under natural light. This means the degradation rate of dyes under UV light was higher than that under natural light. The degradation rate of RhB in the presence of MIL-53(Fe)/MWCNTs and MIL-53(Fe) in the dark reached 52.1% and 26.3%, respectively, after 60 min.These results showed that the MOF samples had certain adsorption affinity to the RhB molecules. This result is related to the pore structure of the materials (16.7 m2for MIL-53(Fe), and 164.9 m2for MIL-53(Fe)/MWCNTs).

    Figure 7 Efficiency of MOF and MOF/MWCNTs for degradation of RhB under irradiation with different light source in 60 min

    3.3. Mechanism for the degradation of RhB using MIL-53(Fe)/MWCNTs

    The possible mechanism for the degradation of RhB using MIL-53(Fe)/MWCNTs was deduced (Figure 8).Under light irradiation, the electrons in the valence band(VB) of MIL-53(Fe) were excited to the conduction band (CB). The photogenerated electrons moved to the surface of the MIL-53(Fe), with some of them being transferred to the MWCNTs, which were in close contact with the MIL-53(Fe). The MWCNTs, as electron acceptors, quickly exported the photogenerated electrons to the surface of MWCNTs. Therefore, the introduction of MWCNTs effectively improved the electron-hole pair separation, which led to higher photocatalytic decomposition efficiency. The electrons on the surface of MIL-53(Fe) and MWCNT reacted with the O2in the solution to produce superoxide radical anions [·O2-][23-24].Meanwhile, the holes in the valence band migrated to the surface of the MIL-53(Fe) and trapped water molecules or hydroxyl ions (OH-) to form hydroxyl radicals (·OH).The ·OH and ·O2- produced thereby can degrade the RhB molecules to CO2, H2O, or other products. The related reactions are as follows:

    Moreover, the surface area and pore volume of the composites were increased because of the doping of the MWCNTs. The hybrid materials MIL-53(Fe)/MWCNTs with much greater surface area and pore volume could provide more space and more unsaturated metal sites for the adsorption of organic dye molecules. Furthermore,the porous structure of the MIL-53(Fe)/MWCNTs could facilitate the migration of the photogenerated electrons[6],which could also suppress the recombination of the electron-hole pairs, thus enhancing the photocatalytic degradation efficiency of RhB.

    Figure 8 The proposed mechanism for photodegradation of RhB by MIL-53(Fe)/MWCNTs

    4 Conclusions

    In this study, the MIL-53(Fe)/MWCNTs hybrid material was prepared via a solvothermal method. The addition of MWCNTs did not affect the crystallization phase structure of MIL-53(Fe), which was verified through XRD, SEM,and IR characterizations. The existence of MWCNTs increased the surface area of the material and suppressed the electron-hole pairs recombination. Consequently, the composites showed higher photocatalytic activity than pure MIL-53(Fe). This study showed that MWCNTs could be combined with MOFs materials for application in the field of photocatalysis.

    Acknowledgement: This work was financially supported by the National Natural Science Foundation of China (21573101,20903054), the Liaoning Provincial Natural Science Foundation (2014020107), the Program for Liaoning Excellent Talents in University (LJQ2014041), the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry ([2013]1792), the Support Plan for Distinguished Professor of Liaoning Province ([2015]153),and the Open Project of Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences(N-15-10).

    [1] Datskevich E V, Prikhod’ko R V, Stolyarova I V, et al. Water treatment to remove acid and basic dyes by biosorption on polysaccharide composites[J]. Russian Journal of Applied Chemistry, 2010, 83(10): 1785-1793

    [2] Almeidaa C A P, Debacherb N A, Downsc A J, et al.Removal of methylene blue from colored effluents by adsorption on montmorillonite clay[J]. Journal of Colloid and Interface Science, 2009, 332: 46-53

    [3] Paulino A T, Guilherme M R, Reis A V, et al. Removal of methylene blue dye from an aqueous media using superabsorbent hydrogel supported on modified polysaccharide[J]. Journal of Colloid and Interface Science, 2006, 301: 55-62

    [4] Chen Z, Fu J, Wang M, et al. Adsorption of cationic dye (methylene blue) from aqueous solution using poly(cyclotriphosphazene-co-4,4′-sulfonyldiphenol)nanospheres[J]. Applied Surface Science, 2014, 289: 495-501

    [5] Li Y, Du Q, Liu T, et al. Methylene blue adsorption on graphene oxide/calcium alginate composites[J].Carbohydrate Polymers, 2013, 95: 501-507

    [6] Liang R, Jing F, Shen L, et al. M@MIL-100 (Fe) (M= Au, Pd, and Pt) nanocomposites fabricated by a facile photodeposition process: Efficient visible light photocatalysts for redox reactions in water[J]. Nano Research, 2015, 10: 3237-3249

    [7] O'Keeffe M. Design of MOFs and intellectual content in reticular chemistry: A personal view[J]. Chem Soc Rev,2009, 38(5): 1215-1217

    [8] Chae H K, Siberio-Perez D Y, Kim J, et al. A route to high surface area, porosity and inclusion of large molecules in crystals[J]. Nature, 2004, 427(6974): 523-527

    [9] Xu B, Yang H, Cai Y, et al. Preparation and photocatalytic property of spindle-like MIL-88B(Fe) nanoparticles[J].Inorganic Chemistry Communications, 2016, 67: 29-31

    [10] Mercedes A, Esther C, Belen F, et al. Semiconductor behavior of a metal-organic framework (MOF)[J]. Chem Eur, 2007, 13(18): 5106-5112

    [11] Shen L, Liang S, Wu W, et al. Multifunctional NH2-mediated zirconium metal-organic framework as an efficient visible-light-driven photocatalyst for selective oxidation of alcohols and reduction of aqueous Cr(VI)[J].Dalton Trans, 2013, 42(37): 13649-13657

    [12] Shen L, Liang S, Wu W, et al. CdS-decorated UiO-66(NH2)nanocomposites fabricated by a facile photodeposition process: an efficient and stable visible-light-driven photocatalyst for selective oxidation of alcohols[J]. Journal of Materials Chemistry A, 2013, 1(37): 11473-11482

    [13] Du J J, Yuan Y P, Sun J X, et al. New photocatalysts based on MIL-53 metal-organic frameworks for the decolorization of methylene blue dye[J]. Journal of Hazardous Materials, 2011, 190(1/3): 945-951

    [14] Ai L, Zhang C, Li L, et al. Iron terephthalate metal-organic framework: Revealing the effective activation of hydrogen peroxide for the degradation of organic dye under visible light irradiation[J]. Applied Catalysis B: Environmental,2014, 148-149(1): 191-200

    [15] Zhang Y, Li G, Lu H, et al. Synthesis, characterization and photocatalytic properties of MIL-53(Fe)-graphene hybrid materials[J]. RSC Advances, 2014, 4(15): 7594-7600

    [16] Zhang W D, Xu B, Jiang L C. Functional hybrid materials based on carbon nanotubes and metal oxides[J]. Journal of Materials Chemistry, 2010, 20(31): 6383-6391.

    [17] Woan K, Pyrgiotakis G, Sigmund W. Photocatalytic Carbon-Nanotube-TiO2Composites[J]. Advanced Materials, 2009, 21(21): 2233-2239

    [18] Yu J, Ma T, Liu S. Enhanced photocatalytic activity of mesoporous TiO2aggregates by embedding carbon nanotubes as electron-transfer channel[J]. Physical Chemistry Chemical Physics, 2011, 13(8): 3491-3501

    [19] Wang S, Shi X, Shao G, et al. Preparation, characterization and photocatalytic activity of multi-walled carbon nanotube-supported tungsten trioxide composites[J].Journal of Physics and Chemistry of Solids, 2008, 69(10):2396-2400

    [20] Horcajada P, Serre C, Maurin G, et al. Flexible porous metal-organic frameworks for a controlled drug delivery[J]. Journal of the American Chemical Society,2008, 130(21): 6774-6780

    [21] Gordon J, Kazemian H, Rohani S. MIL-53(Fe), MIL-101,and SBA-15 porous materials: Potential platforms for drug delivery[J]. Materials Science and Engineering C, 2015,47: 172-179

    [22] Gong C, Chen D, Jiao X, et al. Continuous hollow α-Fe2O3and α-Fe fibers prepared by the sol-gel method[J]. Journal of Materials Chemistry, 2002, 12(6): 1844-1847

    [23] Vijayan B K, Dimitrijevic N M, Finkelsteinshapiro D, et al.Coupling titania nanotubes and carbon nanotubes to create photocatalytic nanocomposites[J]. ACS Catalysis, 2012,2(2): 223-229

    [24] Gui M M, Chai S P, Xu B Q, et al. Visible-light-driven MWCNT@TiO2core-shell nanocomposites and the roles of MWCNTs on the surface chemistry, optical properties and reactivity in CO2photoreduction[J]. RSC Advances,2014, 4(46): 24007-24013

    date: 2017-03-01; Accepted date: 2017-04-10.

    Dr. Zhang Dan, E-mail: 495553468@qq.com.

    九九在线视频观看精品| 欧美老熟妇乱子伦牲交| 校园人妻丝袜中文字幕| 欧美日韩一区二区视频在线观看视频在线| 欧美日韩亚洲高清精品| 在线观看三级黄色| 精品熟女少妇av免费看| 国产日韩欧美在线精品| 男人和女人高潮做爰伦理| 国产精品人妻久久久影院| 日韩熟女老妇一区二区性免费视频| 91精品国产九色| 91久久精品国产一区二区成人| 69精品国产乱码久久久| 看十八女毛片水多多多| 中文字幕亚洲精品专区| 久久久久久久精品精品| 成人黄色视频免费在线看| 亚洲中文av在线| 亚洲国产毛片av蜜桃av| 日韩 亚洲 欧美在线| 黑人高潮一二区| 久久久亚洲精品成人影院| 麻豆成人av视频| 女的被弄到高潮叫床怎么办| 王馨瑶露胸无遮挡在线观看| 2018国产大陆天天弄谢| 日产精品乱码卡一卡2卡三| 日韩电影二区| 亚洲成人一二三区av| 最近手机中文字幕大全| 又粗又硬又长又爽又黄的视频| 亚洲欧美一区二区三区黑人 | 免费av中文字幕在线| 久久99精品国语久久久| www.av在线官网国产| 男人狂女人下面高潮的视频| 日日摸夜夜添夜夜爱| 草草在线视频免费看| 日韩av不卡免费在线播放| 欧美人与善性xxx| 亚洲av在线观看美女高潮| 下体分泌物呈黄色| 国产高清国产精品国产三级| 深夜a级毛片| 久久久国产精品麻豆| 久久精品熟女亚洲av麻豆精品| 啦啦啦啦在线视频资源| 日韩免费高清中文字幕av| 狂野欧美激情性xxxx在线观看| 亚洲国产精品专区欧美| 午夜日本视频在线| 九九在线视频观看精品| 国产伦理片在线播放av一区| 亚洲三级黄色毛片| 三级国产精品片| 99久久综合免费| 国产精品一区二区在线不卡| 亚洲欧美精品专区久久| 全区人妻精品视频| 国产成人午夜福利电影在线观看| 久久99热6这里只有精品| 一本大道久久a久久精品| 免费人妻精品一区二区三区视频| 久久毛片免费看一区二区三区| 日韩一区二区三区影片| av在线播放精品| 中文精品一卡2卡3卡4更新| 国内少妇人妻偷人精品xxx网站| 不卡视频在线观看欧美| av在线老鸭窝| 久久久久国产精品人妻一区二区| 亚洲国产精品一区三区| 中文欧美无线码| 久久久国产精品麻豆| 免费人成在线观看视频色| 秋霞在线观看毛片| 青青草视频在线视频观看| 亚洲成人一二三区av| 国国产精品蜜臀av免费| av免费观看日本| 欧美区成人在线视频| 91精品一卡2卡3卡4卡| 久久久久久久久久久丰满| 精品人妻熟女av久视频| 精品少妇内射三级| 国产男女内射视频| 九九久久精品国产亚洲av麻豆| 亚洲欧美精品自产自拍| 亚州av有码| 美女大奶头黄色视频| 成人免费观看视频高清| 美女中出高潮动态图| 欧美日韩亚洲高清精品| a 毛片基地| 国产高清有码在线观看视频| 久久久国产一区二区| 亚洲怡红院男人天堂| 男女啪啪激烈高潮av片| 成人免费观看视频高清| 赤兔流量卡办理| 国产亚洲av片在线观看秒播厂| 秋霞在线观看毛片| 春色校园在线视频观看| 观看美女的网站| 亚洲av福利一区| 如日韩欧美国产精品一区二区三区 | 另类亚洲欧美激情| 久久久久久久大尺度免费视频| 2021少妇久久久久久久久久久| 亚洲精品第二区| 中文在线观看免费www的网站| 精品人妻熟女毛片av久久网站| 中文字幕人妻丝袜制服| 午夜福利网站1000一区二区三区| 日韩欧美 国产精品| 亚洲精品自拍成人| 这个男人来自地球电影免费观看 | 99久久精品国产国产毛片| 国产在视频线精品| 天美传媒精品一区二区| 久久久久人妻精品一区果冻| 日韩三级伦理在线观看| 各种免费的搞黄视频| 亚洲av.av天堂| 欧美日韩在线观看h| 看免费成人av毛片| 97超碰精品成人国产| 国产深夜福利视频在线观看| 国产爽快片一区二区三区| 日韩 亚洲 欧美在线| 亚洲欧美中文字幕日韩二区| 人人澡人人妻人| 国产男人的电影天堂91| 午夜av观看不卡| 日韩av在线免费看完整版不卡| 色94色欧美一区二区| 国产成人一区二区在线| 两个人免费观看高清视频 | 久久久欧美国产精品| 久久婷婷青草| 两个人免费观看高清视频 | 亚洲av欧美aⅴ国产| 亚洲久久久国产精品| 精品一品国产午夜福利视频| 精品视频人人做人人爽| 久久久久久久久久久丰满| 香蕉精品网在线| 丝袜脚勾引网站| av国产精品久久久久影院| 91在线精品国自产拍蜜月| 毛片一级片免费看久久久久| 午夜激情久久久久久久| 国产免费一级a男人的天堂| 蜜桃在线观看..| 国产淫语在线视频| 国产一区有黄有色的免费视频| 久久精品久久精品一区二区三区| 久久精品国产自在天天线| 亚洲国产精品999| 丝袜喷水一区| 欧美精品高潮呻吟av久久| 国产淫语在线视频| 狂野欧美激情性xxxx在线观看| 国产精品无大码| 日本黄大片高清| 久久久久久久久久久免费av| 看十八女毛片水多多多| 久久久久久久大尺度免费视频| 久久国内精品自在自线图片| 卡戴珊不雅视频在线播放| 色视频在线一区二区三区| 国产黄片视频在线免费观看| 我的女老师完整版在线观看| 丰满人妻一区二区三区视频av| 亚洲一级一片aⅴ在线观看| 九色成人免费人妻av| 一边亲一边摸免费视频| 国产成人精品婷婷| 免费久久久久久久精品成人欧美视频 | 日韩在线高清观看一区二区三区| kizo精华| 国产伦理片在线播放av一区| 久久毛片免费看一区二区三区| 亚洲精品一区蜜桃| 久热久热在线精品观看| 久久久久久久大尺度免费视频| 日韩一区二区三区影片| 久久国产亚洲av麻豆专区| 黑人猛操日本美女一级片| 日韩大片免费观看网站| 中文欧美无线码| 精品人妻偷拍中文字幕| 大香蕉久久网| 国产又色又爽无遮挡免| 精品久久久噜噜| 国产日韩欧美在线精品| 亚洲国产欧美日韩在线播放 | 精品亚洲成a人片在线观看| 简卡轻食公司| av国产久精品久网站免费入址| 黄色毛片三级朝国网站 | 秋霞在线观看毛片| 国产精品久久久久成人av| 青青草视频在线视频观看| 久久ye,这里只有精品| 欧美少妇被猛烈插入视频| 视频区图区小说| 亚洲精品日韩av片在线观看| 国产黄频视频在线观看| 永久免费av网站大全| 天天操日日干夜夜撸| 汤姆久久久久久久影院中文字幕| 久久精品国产自在天天线| 国产精品偷伦视频观看了| 国产精品偷伦视频观看了| 日本黄大片高清| 久久99一区二区三区| 大陆偷拍与自拍| 国产欧美亚洲国产| 亚洲久久久国产精品| kizo精华| 欧美一级a爱片免费观看看| 国产色爽女视频免费观看| 亚洲av在线观看美女高潮| 成人二区视频| 亚洲国产欧美日韩在线播放 | 内地一区二区视频在线| 在线观看www视频免费| 啦啦啦啦在线视频资源| 99热这里只有是精品在线观看| 麻豆精品久久久久久蜜桃| 日韩 亚洲 欧美在线| 久久97久久精品| av在线播放精品| 观看美女的网站| 日本爱情动作片www.在线观看| 黄色怎么调成土黄色| 免费观看性生交大片5| 人人妻人人添人人爽欧美一区卜| 国产免费视频播放在线视频| 国产精品久久久久久av不卡| 高清欧美精品videossex| 亚洲av免费高清在线观看| 99久久精品国产国产毛片| 国产老妇伦熟女老妇高清| 男人爽女人下面视频在线观看| 国产精品99久久99久久久不卡 | 精品卡一卡二卡四卡免费| 丰满迷人的少妇在线观看| 岛国毛片在线播放| 欧美老熟妇乱子伦牲交| a级一级毛片免费在线观看| 国产精品国产av在线观看| 人妻 亚洲 视频| a级一级毛片免费在线观看| 免费黄网站久久成人精品| 九九爱精品视频在线观看| 99热网站在线观看| 国产成人精品福利久久| 伦精品一区二区三区| 国产欧美亚洲国产| 亚洲国产精品999| 亚洲国产精品999| 午夜福利,免费看| 黄色一级大片看看| 在线精品无人区一区二区三| 国产在线免费精品| 熟女电影av网| 日韩一本色道免费dvd| 亚洲成色77777| 久久久午夜欧美精品| 久久精品国产自在天天线| 亚洲av成人精品一二三区| 日韩av免费高清视频| av一本久久久久| 在线观看三级黄色| 日韩强制内射视频| 久久人人爽av亚洲精品天堂| 国模一区二区三区四区视频| 三级国产精品片| 亚洲av不卡在线观看| 亚洲精品中文字幕在线视频 | av不卡在线播放| 国产精品久久久久久精品电影小说| 丝袜脚勾引网站| 亚洲av不卡在线观看| 久久精品国产鲁丝片午夜精品| 91成人精品电影| 欧美一级a爱片免费观看看| 国产免费又黄又爽又色| 丝袜喷水一区| 美女中出高潮动态图| 国产成人午夜福利电影在线观看| 精品亚洲成a人片在线观看| 国产乱来视频区| 亚洲精品456在线播放app| 在线观看免费视频网站a站| 在线精品无人区一区二区三| 国产av精品麻豆| 日韩av在线免费看完整版不卡| 一区二区三区精品91| 美女主播在线视频| 日韩制服骚丝袜av| 欧美少妇被猛烈插入视频| 日本av手机在线免费观看| 高清不卡的av网站| 毛片一级片免费看久久久久| 精品卡一卡二卡四卡免费| 一本一本综合久久| 下体分泌物呈黄色| 最近的中文字幕免费完整| 欧美精品亚洲一区二区| 中文字幕免费在线视频6| 老熟女久久久| 精品人妻熟女毛片av久久网站| 国产男女超爽视频在线观看| 这个男人来自地球电影免费观看 | 日本免费在线观看一区| 三级国产精品欧美在线观看| 汤姆久久久久久久影院中文字幕| 国产一区二区三区av在线| 欧美日韩在线观看h| av免费在线看不卡| 91久久精品电影网| 国产熟女午夜一区二区三区 | 亚洲av日韩在线播放| 男的添女的下面高潮视频| 国产亚洲5aaaaa淫片| 亚洲av男天堂| 又粗又硬又长又爽又黄的视频| 免费观看无遮挡的男女| 在线 av 中文字幕| 99热这里只有是精品在线观看| 国产日韩欧美亚洲二区| 美女中出高潮动态图| 欧美+日韩+精品| 国产深夜福利视频在线观看| 国产成人午夜福利电影在线观看| 欧美三级亚洲精品| 精品国产一区二区久久| 日本爱情动作片www.在线观看| 热re99久久精品国产66热6| 欧美变态另类bdsm刘玥| 你懂的网址亚洲精品在线观看| 亚洲欧美精品专区久久| 国产视频首页在线观看| 国产精品久久久久成人av| 亚洲精品乱码久久久v下载方式| 久久亚洲国产成人精品v| 中文字幕人妻丝袜制服| 草草在线视频免费看| 免费大片18禁| 黄色视频在线播放观看不卡| 欧美成人精品欧美一级黄| 极品少妇高潮喷水抽搐| 夜夜爽夜夜爽视频| 不卡视频在线观看欧美| 哪个播放器可以免费观看大片| 精品午夜福利在线看| 国产一区亚洲一区在线观看| 成人18禁高潮啪啪吃奶动态图 | 亚洲国产色片| 亚洲成人一二三区av| 久久久国产欧美日韩av| 色网站视频免费| 国产亚洲5aaaaa淫片| 亚洲国产欧美在线一区| 国产日韩一区二区三区精品不卡 | 精品国产一区二区三区久久久樱花| 亚洲精品aⅴ在线观看| 美女主播在线视频| 国产精品欧美亚洲77777| 久久国产亚洲av麻豆专区| 春色校园在线视频观看| 亚洲欧美一区二区三区国产| 久久久久久久国产电影| 国产精品不卡视频一区二区| 一级毛片黄色毛片免费观看视频| 欧美日韩精品成人综合77777| 丰满乱子伦码专区| 免费黄色在线免费观看| 极品少妇高潮喷水抽搐| 日韩,欧美,国产一区二区三区| 久久久亚洲精品成人影院| 国产精品国产三级国产av玫瑰| 男男h啪啪无遮挡| 午夜激情福利司机影院| 如何舔出高潮| 亚洲av成人精品一区久久| 少妇高潮的动态图| 一区二区三区精品91| 国内揄拍国产精品人妻在线| 亚洲精品乱久久久久久| 成人特级av手机在线观看| 天美传媒精品一区二区| 老司机亚洲免费影院| 国产91av在线免费观看| 尾随美女入室| 制服丝袜香蕉在线| 成人国产麻豆网| 日韩强制内射视频| 国内精品宾馆在线| 午夜精品国产一区二区电影| 亚洲在久久综合| 男女边摸边吃奶| 在线观看三级黄色| 久久6这里有精品| 人妻系列 视频| 在线播放无遮挡| 人妻夜夜爽99麻豆av| 一区二区av电影网| 国产日韩一区二区三区精品不卡 | 日日摸夜夜添夜夜添av毛片| 国产高清不卡午夜福利| 亚洲精品乱码久久久久久按摩| www.色视频.com| 成人影院久久| 一本大道久久a久久精品| 亚洲精品国产av蜜桃| kizo精华| 亚洲欧美一区二区三区黑人 | 久久狼人影院| 欧美区成人在线视频| 国产精品无大码| 人人妻人人澡人人看| 夫妻午夜视频| 国产淫片久久久久久久久| 亚洲国产成人一精品久久久| 国产av一区二区精品久久| 国产熟女欧美一区二区| 中文欧美无线码| 国产精品一区二区在线不卡| 亚洲情色 制服丝袜| 99久久综合免费| 中文字幕制服av| 日韩成人伦理影院| 国产熟女欧美一区二区| 国产欧美另类精品又又久久亚洲欧美| 好男人视频免费观看在线| 中文字幕亚洲精品专区| 欧美日本中文国产一区发布| 高清黄色对白视频在线免费看 | 少妇裸体淫交视频免费看高清| 国产中年淑女户外野战色| 人妻 亚洲 视频| 国产精品一区二区在线观看99| 99热国产这里只有精品6| av不卡在线播放| 伦精品一区二区三区| 亚洲美女视频黄频| 18禁在线无遮挡免费观看视频| 亚洲av成人精品一区久久| 久久国产精品大桥未久av | 老司机影院成人| 国产精品久久久久成人av| 亚洲国产欧美日韩在线播放 | 在线看a的网站| 丰满乱子伦码专区| 热99国产精品久久久久久7| 妹子高潮喷水视频| 一级毛片黄色毛片免费观看视频| 亚洲欧洲国产日韩| 一级毛片久久久久久久久女| 久久精品国产亚洲网站| 欧美高清成人免费视频www| 这个男人来自地球电影免费观看 | 亚洲欧美成人综合另类久久久| 亚洲内射少妇av| 曰老女人黄片| 岛国毛片在线播放| 国产成人91sexporn| 青春草国产在线视频| 国产男女超爽视频在线观看| a级毛片免费高清观看在线播放| 久久久久久久国产电影| 日韩欧美 国产精品| 91在线精品国自产拍蜜月| 久久久久久久国产电影| 国产成人freesex在线| 97精品久久久久久久久久精品| 日本-黄色视频高清免费观看| av福利片在线| 在现免费观看毛片| h视频一区二区三区| 中文欧美无线码| 一区二区三区免费毛片| 亚洲国产毛片av蜜桃av| 国产极品天堂在线| 欧美性感艳星| 国产色婷婷99| 亚洲欧洲国产日韩| 青春草国产在线视频| 精品熟女少妇av免费看| 午夜福利视频精品| 国产伦理片在线播放av一区| 日韩中文字幕视频在线看片| 亚洲av不卡在线观看| 男人舔奶头视频| 国产 精品1| 国产女主播在线喷水免费视频网站| 久久韩国三级中文字幕| 日日摸夜夜添夜夜添av毛片| 日韩三级伦理在线观看| 如何舔出高潮| 午夜日本视频在线| 99久国产av精品国产电影| 伦理电影大哥的女人| 丰满乱子伦码专区| 亚洲国产毛片av蜜桃av| 国产一区二区在线观看日韩| 日韩 亚洲 欧美在线| 亚洲av日韩在线播放| 一级毛片我不卡| 大香蕉久久网| 一级二级三级毛片免费看| 中文字幕久久专区| 亚洲国产精品专区欧美| 丝袜脚勾引网站| 亚洲av二区三区四区| 最近中文字幕高清免费大全6| 午夜视频国产福利| 久久久久视频综合| 99久久人妻综合| 日本与韩国留学比较| 欧美精品亚洲一区二区| 大话2 男鬼变身卡| 国语对白做爰xxxⅹ性视频网站| 国产在线免费精品| 一级二级三级毛片免费看| 国产精品国产av在线观看| 在线观看三级黄色| 乱人伦中国视频| 成人黄色视频免费在线看| 国产日韩欧美视频二区| 伊人亚洲综合成人网| 国内精品宾馆在线| 全区人妻精品视频| 99久久综合免费| 国产黄片美女视频| 国产免费视频播放在线视频| 高清视频免费观看一区二区| 久久影院123| 99久久精品一区二区三区| 一本色道久久久久久精品综合| 99久久人妻综合| 亚洲怡红院男人天堂| 久久久久久久国产电影| 精品久久久久久久久亚洲| 如何舔出高潮| 久久久久精品久久久久真实原创| 三上悠亚av全集在线观看 | 热re99久久国产66热| 九草在线视频观看| 国产成人免费无遮挡视频| 精品酒店卫生间| 91精品伊人久久大香线蕉| 日韩熟女老妇一区二区性免费视频| 天美传媒精品一区二区| 麻豆成人av视频| 青春草亚洲视频在线观看| 久热这里只有精品99| 午夜激情久久久久久久| 在线观看一区二区三区激情| 十分钟在线观看高清视频www | 国产精品蜜桃在线观看| 男人舔奶头视频| 日韩 亚洲 欧美在线| 亚洲精品日韩在线中文字幕| 国产淫片久久久久久久久| 欧美xxⅹ黑人| 五月天丁香电影| 日韩欧美 国产精品| 日韩亚洲欧美综合| 免费观看av网站的网址| 欧美日韩国产mv在线观看视频| 国产男女超爽视频在线观看| 免费观看无遮挡的男女| 十八禁网站网址无遮挡 | 在线观看一区二区三区激情| 十分钟在线观看高清视频www | 亚洲不卡免费看| 人人妻人人澡人人看| 美女视频免费永久观看网站| 日本av免费视频播放| 国产无遮挡羞羞视频在线观看| 国产午夜精品久久久久久一区二区三区| 国产黄色视频一区二区在线观看| 永久免费av网站大全| av女优亚洲男人天堂| av网站免费在线观看视频| 乱系列少妇在线播放| 日韩欧美 国产精品| 狂野欧美白嫩少妇大欣赏| 亚洲精品久久久久久婷婷小说| 久久精品国产亚洲网站| a级毛片在线看网站| 三级国产精品片| 国产真实伦视频高清在线观看| 91精品国产九色| av福利片在线| av线在线观看网站| 人人妻人人澡人人看| 国产在线一区二区三区精| 99热网站在线观看| 黄色欧美视频在线观看| 国产亚洲午夜精品一区二区久久| 国产欧美日韩精品一区二区| 精品久久久久久久久av| 久久婷婷青草| 国产精品一区二区在线不卡| 日本-黄色视频高清免费观看| 我要看黄色一级片免费的| 国产成人精品无人区| 少妇 在线观看|