施衛(wèi)東,楊 陽(yáng),周 嶺,陸偉剛,潘 波
?
潛水泵縮比模型的相似性驗(yàn)證與內(nèi)部流場(chǎng)分析
施衛(wèi)東1,楊 陽(yáng)1,周 嶺1,陸偉剛1,潘 波2
(1. 江蘇大學(xué)國(guó)家水泵及系統(tǒng)工程技術(shù)研究中心,鎮(zhèn)江212013;2. 山東星源礦山設(shè)備集團(tuán)有限公司,濟(jì)寧272300)
相似換算設(shè)計(jì)法是離心泵設(shè)計(jì)中最常用的方法之一。為了驗(yàn)證縮比模型的相似性,該文選取一典型井用潛水泵作為模型泵,基于縮比模型換算法獲得設(shè)計(jì)泵,借助數(shù)值模擬與性能試驗(yàn)的方法,研究設(shè)計(jì)泵與模型泵的相似性,并分析兩者內(nèi)部流場(chǎng)的差異與規(guī)律。采用Ansys CFX軟件分別對(duì)設(shè)計(jì)泵和模型泵進(jìn)行數(shù)值模擬,以兩級(jí)泵模型建立計(jì)算域,劃分結(jié)構(gòu)化網(wǎng)格,基于標(biāo)準(zhǔn)-湍流模型和標(biāo)準(zhǔn)壁面函數(shù)進(jìn)行多工況數(shù)值模擬,分別對(duì)設(shè)計(jì)泵和模型泵進(jìn)行了性能預(yù)測(cè),并對(duì)預(yù)測(cè)結(jié)果進(jìn)行了對(duì)比分析。結(jié)果表明:較于模型泵,設(shè)計(jì)泵的最大功率點(diǎn)向大流量工況偏移,且最大功率與額定功率的比值有所上升,但其仍具有較好的無(wú)過載特性。模型泵數(shù)值預(yù)測(cè)與試驗(yàn)結(jié)果的對(duì)比表明,在額定流量下,數(shù)值模擬預(yù)測(cè)的揚(yáng)程低于試驗(yàn)結(jié)果0.79%,功率低于試驗(yàn)值5.2%,效率高于試驗(yàn)值2.78%,且兩者隨流量變化的趨勢(shì)基本一致,說明該文的數(shù)值計(jì)算結(jié)果具有一定的準(zhǔn)確性??s比模型在0.4~1.6倍額定流量工況范圍內(nèi),揚(yáng)程、效率和功率隨流量變化趨勢(shì)基本一致,設(shè)計(jì)泵與模型泵滿足相似換算準(zhǔn)則,模型等比例縮放法能夠滿足深井離心泵的水力設(shè)計(jì)要求。
井用泵;數(shù)值模擬;縮比規(guī)則;相似換算;試驗(yàn);水力損失
井用潛水泵是抽取深井地下水的主要設(shè)備,廣泛應(yīng)用于水利、石油輸送,農(nóng)業(yè)灌溉,工廠給水,工業(yè)生產(chǎn)等領(lǐng)域[1-2]。隨著地下水水位逐漸降低,廣大用戶對(duì)井用潛水泵的需求也越來越大,其運(yùn)行工況也越來越寬泛。離心泵的傳統(tǒng)設(shè)計(jì)方法主要有速度系數(shù)法和相似換算法[3-4]。其中,相似換算法能利用已有的、設(shè)計(jì)成功的優(yōu)秀水力模型進(jìn)行直接換算,大大縮短了新產(chǎn)品的開發(fā)周期,提高了水力設(shè)計(jì)的可靠性和有效性,因此相似理論在泵的設(shè)計(jì)和試驗(yàn)中被廣泛應(yīng)用[5]。
相似換算法實(shí)質(zhì)上是類比對(duì)應(yīng)設(shè)計(jì)計(jì)算方法中的一種,利用同類事物間靜止與動(dòng)態(tài)的對(duì)應(yīng)性,根據(jù)樣機(jī)或模型的特征參數(shù),運(yùn)用相似理論與量綱齊次原理求得設(shè)計(jì)對(duì)象的有關(guān)參數(shù)[6]。在傳統(tǒng)的相似換算過程中,用到的經(jīng)驗(yàn)公式和經(jīng)驗(yàn)系數(shù)比較多,不同的設(shè)計(jì)人員對(duì)不同的產(chǎn)品有不同的理解,往往會(huì)得到不同的設(shè)計(jì)結(jié)果。不僅如此,在水力參數(shù)的換算過程中,由于水力裝置摩擦損失等因素不相等造成的效率差異,常常導(dǎo)致原型泵與模型泵的水力參數(shù)不相似[7]。為了修正相似換算過程中的效率差異,國(guó)內(nèi)外的學(xué)者做了大量的研究[8-12]。
近年來,三維造型和流體仿真軟件被廣泛應(yīng)用于泵的設(shè)計(jì)領(lǐng)域[13-18]。通過建模仿真對(duì)泵內(nèi)部流場(chǎng)進(jìn)行分析,不斷改進(jìn)泵設(shè)計(jì)過程中的缺陷,這是傳統(tǒng)的設(shè)計(jì)方法所無(wú)法企及的[19-24]。本文通過三維建模和數(shù)值仿真預(yù)測(cè),對(duì)比例縮放模型與原型的相似性加以驗(yàn)證,并對(duì)比其內(nèi)部流動(dòng)規(guī)律,以期為井用潛水泵的相似換算設(shè)計(jì)提供參考。
1.1 幾何模型換算
比轉(zhuǎn)速是泵的相似判據(jù),在泵的相似設(shè)計(jì)方法中,模型泵的比轉(zhuǎn)速應(yīng)該與設(shè)計(jì)泵的比轉(zhuǎn)速相等或相近。設(shè)計(jì)泵的水力性能要求為:額定流量des=20 m3/h;單級(jí)揚(yáng)程H= 20 m;轉(zhuǎn)速=6 000 r/min。首先根據(jù)給定的參數(shù)按照式(1)計(jì)算設(shè)計(jì)泵的比轉(zhuǎn)速n(根據(jù)單級(jí)揚(yáng)程計(jì)算),并據(jù)此選擇性能良好的模型泵。將數(shù)值代入式(1),設(shè)計(jì)泵的n為172.73。
因比轉(zhuǎn)速相近,故選取150QJ36型井用潛水泵作為模型泵,其水力設(shè)計(jì)參數(shù)為:額定流量M=36m3/h;總揚(yáng)程M=75 m;級(jí)數(shù)7級(jí);轉(zhuǎn)速M(fèi)=2 850 r/min;比轉(zhuǎn)速nM=175.8(根據(jù)單級(jí)揚(yáng)程計(jì)算);泵壁內(nèi)徑為126 mm;泵效率M=72%;最大配套功率M=11 kW。模型泵葉輪的設(shè)計(jì)采用極大揚(yáng)程設(shè)計(jì)法(也稱極大直徑設(shè)計(jì)法)[25],圖1所示為模型泵主要過流部件的三維模型。
a. 葉輪俯視圖 b. 葉輪正視圖
a. Impeller top view b. Impeller front view
c. 導(dǎo)葉俯視圖 d. 導(dǎo)葉正視圖
在深井潛水泵的設(shè)計(jì)過程中,其泵體外徑受到井徑的限制,所以在對(duì)模型泵比例縮小時(shí),應(yīng)根據(jù)泵體外徑確定兩者之間的縮比系數(shù)為0.66。普通的相似換算法是根據(jù)2個(gè)模型額定工況點(diǎn)的性能參數(shù)來確定設(shè)計(jì)泵的尺寸,在這種換算過程中,僅考慮額定工況點(diǎn)的參數(shù),并且需要進(jìn)行多個(gè)尺寸系數(shù)的選擇[26],這會(huì)導(dǎo)致設(shè)計(jì)泵工況點(diǎn)的偏移。本文所用的相似法為模型直接等比例縮放法,對(duì)模型泵的三維模型直接進(jìn)行比例縮小,設(shè)計(jì)泵的葉輪出口安放角、葉片出口角、葉片數(shù)均與模型泵相同,不會(huì)出現(xiàn)換算過程中的工況點(diǎn)偏移現(xiàn)象。假定模型泵和設(shè)計(jì)泵滿足幾何相似和動(dòng)力相似,即兩者的比轉(zhuǎn)速和效率相等,可認(rèn)為在相似工況下運(yùn)行時(shí),兩者之間滿足相似換算準(zhǔn)則,則下列各式成立
式(2)~(4)為兩模型的相似換算關(guān)系,其中下標(biāo)M表示模型泵,下標(biāo)D表示設(shè)計(jì)泵。式(2)~式(4)中:為泵的流量,m3/h;為泵的轉(zhuǎn)速,r/min;2為泵的葉輪出口直徑,m;為泵的揚(yáng)程,m;為泵的軸功率,kW;為輸送介質(zhì)的密度;kg/m3。
1.2 效率修正模型
由于設(shè)計(jì)泵與模型泵的尺寸、轉(zhuǎn)速相差較大,尺寸效應(yīng)對(duì)泵水力性能的影響不能忽略。即在模型換算時(shí)應(yīng)考慮水力效率對(duì)水力模型的影響。式(5)是設(shè)計(jì)泵與模型泵水力效率換算關(guān)系式。在相似換算過程中,可將模型泵的水力效率換算到設(shè)計(jì)泵。
本文將對(duì)設(shè)計(jì)泵和模型泵分別進(jìn)行建模和數(shù)值計(jì)算,通過設(shè)計(jì)泵外特性的數(shù)值計(jì)算預(yù)估值和相似換算值的比對(duì),來驗(yàn)證縮放模型是否滿足相似換算準(zhǔn)則。通過設(shè)計(jì)泵與模型泵主要過流部件的內(nèi)流場(chǎng)分析對(duì)比,得到兩個(gè)模型內(nèi)流場(chǎng)的差異及其對(duì)泵性能的影響。最后,本文將通過樣機(jī)性能試驗(yàn)和數(shù)值計(jì)算結(jié)果的對(duì)比,驗(yàn)證數(shù)值計(jì)算結(jié)果的準(zhǔn)確性。
2.1 三維建模
本文采用UG8.5分別對(duì)模型泵及設(shè)計(jì)泵進(jìn)行三維建模(包括進(jìn)口段、葉輪、空間導(dǎo)葉、側(cè)腔和出口段)及裝配。在建模過程中,由于模型中重要過流部件葉輪和導(dǎo)葉的葉片部分均為扭曲結(jié)構(gòu),需通過“點(diǎn)→線→面→體”的順序逐步構(gòu)建實(shí)體模型,而對(duì)于進(jìn)口段,則將其簡(jiǎn)化為圓柱管進(jìn)口。研究表明[27-28],當(dāng)級(jí)數(shù)≥2后,各級(jí)葉輪進(jìn)口液體均為有旋流動(dòng),隨著級(jí)數(shù)的增加,單級(jí)揚(yáng)程和模型的效率波動(dòng)較小,即其后各級(jí)的揚(yáng)程和效率與第二級(jí)基本相同。綜合考慮模擬的準(zhǔn)確性和周期性,本文采用兩級(jí)模型進(jìn)行數(shù)值仿真。
2.2 網(wǎng)格劃分
網(wǎng)格是數(shù)值計(jì)算過程中區(qū)域離散化的基礎(chǔ),網(wǎng)格的型式和密度,對(duì)數(shù)值模擬的準(zhǔn)確性有著重要的影響。相比較于非結(jié)構(gòu)化網(wǎng)格,結(jié)構(gòu)化網(wǎng)格的生成速度快,質(zhì)量好,數(shù)據(jù)結(jié)構(gòu)簡(jiǎn)單。本文選用結(jié)構(gòu)化網(wǎng)格對(duì)兩組計(jì)算模型進(jìn)行數(shù)值模擬,在ANSYS-ICEM中,通過塊結(jié)構(gòu)化網(wǎng)格生成方法,采用結(jié)構(gòu)化網(wǎng)格來離散每一個(gè)子區(qū)域。在進(jìn)行葉輪和導(dǎo)葉部分的網(wǎng)格劃分時(shí),先完成單個(gè)流道的網(wǎng)格劃分,然后根據(jù)葉片數(shù)進(jìn)行陣列,完成全部流道的網(wǎng)格劃分,圖2所示為葉輪和導(dǎo)葉的結(jié)構(gòu)化網(wǎng)格。
a. 葉輪網(wǎng)格 b. 導(dǎo)葉網(wǎng)格
2.3 網(wǎng)格無(wú)關(guān)性分析
為了確定計(jì)算所用網(wǎng)格的網(wǎng)格數(shù)量與計(jì)算結(jié)果之間的無(wú)關(guān)性,本文對(duì)模型泵與設(shè)計(jì)泵分別劃分4個(gè)方案的網(wǎng)格,通過控制網(wǎng)格的尺寸來改變各方案中網(wǎng)格的數(shù)量,表1給出了各方案中主要過流部件的網(wǎng)格數(shù)量以及通過數(shù)值計(jì)算預(yù)測(cè)的泵外特性能??梢钥闯?,隨著網(wǎng)格數(shù)目的增加,泵揚(yáng)程、效率趨于穩(wěn)定。對(duì)比兩組方案中的方案3及方案4,網(wǎng)格數(shù)目對(duì)數(shù)值計(jì)算的預(yù)測(cè)結(jié)果已基本沒有影響??紤]到計(jì)算機(jī)的配置,本文選用4組方案中的方案4的網(wǎng)格劃分來進(jìn)行后續(xù)的數(shù)值模擬工作。
表1 網(wǎng)格無(wú)關(guān)性分析
2.4 數(shù)值模擬
本文中的數(shù)值模擬在ANSYS-CFX 14.5中完成,選用標(biāo)準(zhǔn)-湍流模型,選擇收斂精度為10-4來保證三維定常模擬的計(jì)算精度。壁面采用無(wú)滑移邊界條件,標(biāo)準(zhǔn)壁面函數(shù),不同的子域之間通過交界面連接,采用質(zhì)量出流配合開放式進(jìn)口(壓力進(jìn)口),初始?jí)毫υO(shè)定為標(biāo)準(zhǔn)大氣壓。計(jì)算域模型及邊界條件的位置和類型如圖3所示。
1. 壓力進(jìn)口 2. 交界面 3. 無(wú)滑移界面 4. 質(zhì)量出流 5. 進(jìn)口段 6. 側(cè)腔7. 葉輪 8. 導(dǎo)葉 9. 出口段
3.1 泵性能的預(yù)測(cè)結(jié)果
通過定常數(shù)值計(jì)算,分別得到0.4、0.6、0.8、1.0、1.2、1.4和1.6倍額定流量下的泵性能預(yù)測(cè)值。圖4所示為設(shè)計(jì)泵和模型泵在7個(gè)流量工況下的揚(yáng)程預(yù)估值。根據(jù)設(shè)計(jì)泵與模型泵的相似換算準(zhǔn)則(式(2)~(5))將模型泵在各個(gè)工況點(diǎn)的流量和揚(yáng)程參數(shù)換算到設(shè)計(jì)泵,如圖4所示,在設(shè)計(jì)泵的0.4des~1.6des(設(shè)計(jì)泵的額定流量des=20 m3/h)工況范圍內(nèi),其值與設(shè)計(jì)泵在性能預(yù)估值吻合良好,表明在0.4des~1.6des工況范圍內(nèi)設(shè)計(jì)泵與模型泵滿足泵的相似換算準(zhǔn)則,但2組數(shù)據(jù)在小流量工況和大流量工況下存在一定的差異。
為了更直觀地對(duì)比設(shè)計(jì)泵與模型泵的外特性能,把通常的流量、揚(yáng)程和功率進(jìn)行無(wú)量綱化處理,通過定義一個(gè)揚(yáng)程系數(shù)K將揚(yáng)程量綱為一化。其中揚(yáng)程系數(shù)的定義為
式中K為揚(yáng)程系數(shù);為非設(shè)計(jì)工況點(diǎn)揚(yáng)程,m。
而流量與軸功率的處理方法則相對(duì)簡(jiǎn)單,以設(shè)計(jì)點(diǎn)工況的參數(shù)des和des處為系數(shù)1,非設(shè)計(jì)工況點(diǎn)與設(shè)計(jì)工況點(diǎn)參數(shù)之比/des與/des即為所求系數(shù)。
圖5為這7個(gè)不同工況下泵的揚(yáng)程系數(shù)、功率和效率的數(shù)值模擬預(yù)測(cè)結(jié)果。圖5中可以看出,設(shè)計(jì)泵與模型泵揚(yáng)程隨流量的變化趨勢(shì)基本一致。在小流量工況下(0.4des~0.6des),相較于模型泵,設(shè)計(jì)泵的無(wú)因次特性曲線略有上揚(yáng),這意味著在小流量工況下,由于轉(zhuǎn)速較高,設(shè)計(jì)泵能夠更好地滿足揚(yáng)程要求。而在大流量工況下(1.2des~1.6des),設(shè)計(jì)泵的無(wú)因次曲線下降速率明顯低于模型泵,這意味著在大流量工況下,相較于自身的設(shè)計(jì)參數(shù),設(shè)計(jì)泵仍可以滿足較高的揚(yáng)程需求。這也導(dǎo)致了在大流量工況下,其功率與設(shè)計(jì)點(diǎn)功率的比值更高。
注:Q為泵的不同流量工況,m3/h; Qdes為設(shè)計(jì)額定流量工況,m3/h,下同。
相較于模型泵,設(shè)計(jì)泵在各個(gè)工況點(diǎn)的軸功率更大,這是由于泵的軸功率隨轉(zhuǎn)速3次方變化[29],而設(shè)計(jì)泵的轉(zhuǎn)速較于模型泵有較大提高;設(shè)計(jì)泵的最大功率點(diǎn)向大流量偏移,最大功率與設(shè)計(jì)點(diǎn)功率的比值也略有上升,但/des的值始終低于1.05,這說明設(shè)計(jì)泵仍具有較好的無(wú)過載性能。對(duì)比兩泵的流量-效率曲線,可以發(fā)現(xiàn),效率最大處都在1.2倍額定流量工況,在小流量工況下(0.4des~0.6des),設(shè)計(jì)泵的效率略低于模型泵,這也導(dǎo)致了設(shè)計(jì)泵的功率曲線在小流量工況下明顯高于模型泵。而在大流量工況下(1.2des~1.6des),設(shè)計(jì)泵效率較于模型泵有較大提升,這也是設(shè)計(jì)泵在大流量工況點(diǎn)可以滿足較高揚(yáng)程要求的原因。
對(duì)于井用潛水泵,只有首級(jí)葉輪的進(jìn)口為無(wú)旋轉(zhuǎn)流動(dòng),而其后各級(jí)葉輪進(jìn)口均為有旋轉(zhuǎn)流動(dòng)。所以第二級(jí)的模擬結(jié)果更加貼近于真實(shí)泵的運(yùn)行工況。為了分析2個(gè)水力模型主要水力部件在不同工況下的性能表現(xiàn),圖6給出了2個(gè)模型在不同工況下第二級(jí)葉輪的效率和第二級(jí)導(dǎo)葉的損失比。導(dǎo)葉能量損失比為
式中為導(dǎo)葉損失比;1為導(dǎo)葉進(jìn)口總壓,Pa;2為導(dǎo)葉出口總壓,Pa。
圖6 葉輪效率和導(dǎo)葉能量損失比
Fig.6 Efficiency of impeller and energy loss ratio of diffuser
可以看出在小流量工況下(0.4des~0.8des),模型泵葉輪的水力效率高于設(shè)計(jì)泵,但在大流量工況下,設(shè)計(jì)泵葉輪的水力效率明顯高于模型泵,模型泵的導(dǎo)葉損失比也高于設(shè)計(jì)泵,這與圖5中的流量-效率曲線吻合。
3.2 內(nèi)流場(chǎng)分析
相似理論指出,2個(gè)流體力學(xué)相似必須同時(shí)滿足幾何相似、運(yùn)動(dòng)相似和動(dòng)力相似。設(shè)計(jì)泵與模型泵的幾何相似已經(jīng)得到保證,而流體在泵內(nèi)的流動(dòng)規(guī)律則需要通過主要過流部件的內(nèi)流場(chǎng)分析來獲得。對(duì)2個(gè)模型的主要水力部件(葉輪和導(dǎo)葉)在小流量工況(0.4des)、額定流量工況(des)以及大流量工況(1.6des)下分別進(jìn)行流動(dòng)分析。圖7所示分別為2個(gè)模型在不同流量工況下0.5倍葉片高度展開面的速度流線圖??梢钥闯?,在小流量工況下,兩個(gè)模型葉片的背面均出現(xiàn)了明顯的流動(dòng)分離,有較強(qiáng)的漩渦,水力效率明顯下降;在大流量工況下,2個(gè)模型葉片的進(jìn)口背面均出現(xiàn)了較弱的流動(dòng)分離現(xiàn)象,但模型泵的低流速區(qū)域更加明顯;在額定流量附近,2個(gè)模型葉片的工作面均觀察到了較為明顯的低流速區(qū)域這會(huì)導(dǎo)致一定程度的流動(dòng)分離,但流道內(nèi)均未觀測(cè)到漩渦。
圖8所示對(duì)比了2個(gè)模型葉輪流道中截面的湍動(dòng)能分布云圖,湍動(dòng)能越大,湍流耗散就越大。由圖可以觀測(cè)到,在小流量工況下,2個(gè)模型靠近葉片背面三分之一處的流道區(qū)域,存在較大的湍動(dòng)能,這是由于葉片背面出現(xiàn)了流動(dòng)分離而產(chǎn)生的漩渦。而在葉片工作面出口處也存在較大的湍動(dòng)能,這是由于流體回流沖擊葉片,引起了較大的能量損失;在額定工況點(diǎn),設(shè)計(jì)泵的葉片流道內(nèi)未觀測(cè)到明顯的高湍動(dòng)能區(qū)域,但模型泵的葉片流道二分之一處出現(xiàn)了較高湍動(dòng)能區(qū)域,這是由于工作面出現(xiàn)了液體的流動(dòng)分離,導(dǎo)致一定的能量損失;在大流量工況下,2個(gè)模型流道內(nèi)均無(wú)明顯的高湍動(dòng)能區(qū)域,但2個(gè)模型的葉片進(jìn)口處均存在一定的較高湍動(dòng)能區(qū)域,這表明液體能量在進(jìn)口處有一定的沖擊損失。
圖9所示分別為2個(gè)模型在不同流量工況下的次級(jí)空間導(dǎo)葉的靜壓分布。在小流量工況下,2個(gè)模型的導(dǎo)葉進(jìn)口處均存在低壓區(qū),且在葉片的工作面進(jìn)口處存在較大的壓力梯度。這是由于在偏離設(shè)計(jì)工況時(shí),導(dǎo)葉葉片進(jìn)口安放角與液流角不吻合,也就是不再滿足無(wú)沖擊的進(jìn)口幾何條件,流體沖擊葉片進(jìn)口產(chǎn)生脫流,形成了低壓區(qū)。結(jié)合設(shè)計(jì)泵與模型泵的導(dǎo)葉內(nèi)部渦核心區(qū)域圖(見圖10),可觀測(cè)到脫流產(chǎn)生了明顯的漩渦(圖中白色區(qū)域表示渦核),本文采用criterion準(zhǔn)則判別法[30-31]判斷流場(chǎng)內(nèi)部旋渦的產(chǎn)生位置和發(fā)展、演變規(guī)律,選取閾值Q=0.3;在額定工況下,進(jìn)口流體對(duì)葉片的沖擊減弱,導(dǎo)葉流道內(nèi)的靜壓分布較為均勻,流道內(nèi)沒有明顯的漩渦產(chǎn)生,但在導(dǎo)葉出口處,存在著明顯的高壓區(qū)域,流體壓力先增大再減小。結(jié)合渦核心區(qū)域圖,可觀測(cè)到流體在出口處由于脫流產(chǎn)生明顯的漩渦;在大流量工況下,導(dǎo)葉內(nèi)靜壓大幅增大,流道內(nèi)靜壓出現(xiàn)了先減小再增大的趨勢(shì),在工作面進(jìn)口處以及背面二分之一處,均存在明顯的低壓區(qū)域,這是由于液流角與進(jìn)口安放角存在較大差異,沖擊產(chǎn)生了漩渦,導(dǎo)致液體在進(jìn)口處出現(xiàn)了較大的沖擊損失。同時(shí),導(dǎo)葉流道內(nèi)從工作面到背面存在著明顯的壓力梯度,進(jìn)口沖擊產(chǎn)生的漩渦在壓力梯度的作用下,在流道內(nèi)形成了明顯的旋擰渦,如圖10c和圖10f所示。
圖9 不同流量工況下設(shè)計(jì)泵和模型泵的次級(jí)導(dǎo)葉靜壓分布
注:白色區(qū)域表示渦核。
為了驗(yàn)證數(shù)值計(jì)算結(jié)果的準(zhǔn)確性,本文對(duì)模型泵150QJ36型井用潛水泵進(jìn)行了性能試驗(yàn)。圖11所示為葉輪和導(dǎo)葉的實(shí)體模型。本次性能試驗(yàn)在浙江省機(jī)電產(chǎn)品質(zhì)量檢測(cè)所完成。
試驗(yàn)采用精度0.5級(jí)的管道式渦輪流量計(jì)進(jìn)行流量的測(cè)量,其公稱壓力為1.6 MPa。功率的測(cè)量由三相功率表基于電測(cè)功法完成,三相功率表的有效功率測(cè)量范圍為1~24 kW,測(cè)量精度為1.5級(jí)。進(jìn)出口處則分別選用精度等級(jí)為0.5級(jí)的真空表和精度等級(jí)為0.4級(jí)的精密壓力表來保證壓力測(cè)量的準(zhǔn)確性。
a. 葉輪 b. 導(dǎo)葉
通過泵性能試驗(yàn),得到了模型泵在不同流量下的揚(yáng)程、功率和泵效率, 如表2所示。并將數(shù)值模擬預(yù)測(cè)的泵性能與試驗(yàn)結(jié)果進(jìn)行了對(duì)比,如圖12所示。需要注意的是,試驗(yàn)中模型泵的級(jí)數(shù)為七級(jí),因此在對(duì)比過程中,先將模擬獲得的預(yù)測(cè)揚(yáng)程、預(yù)測(cè)功率分別換算為總揚(yáng)程和總功率,再根據(jù)總揚(yáng)程和總功率計(jì)算出總的預(yù)測(cè)效率,而后與試驗(yàn)結(jié)果進(jìn)行對(duì)比。
表2 模型泵性能試驗(yàn)結(jié)果
在模型泵的試驗(yàn)過程中,葉輪采用單級(jí)浮動(dòng)的安裝方式,口環(huán)處為端面密封,在軸向力的作用下,密封性能良好,所以文中未考慮級(jí)數(shù)不同時(shí)壓力變化對(duì)泵泄露的影響??梢钥闯觯陬~定流量M=36 m3/h下,數(shù)值模擬預(yù)測(cè)的揚(yáng)程低于試驗(yàn)結(jié)果0.79%,功率低于試驗(yàn)值5.2%,效率高于試驗(yàn)值2.78%,整體上兩者隨流量的變化趨勢(shì)基本一致,證實(shí)本文數(shù)值模擬具有較高的精度。分析兩者間誤差產(chǎn)生的原因,其中重要的一個(gè)原因是在三維建模階段僅對(duì)主要過流部件進(jìn)行了精確的建模,而對(duì)進(jìn)口段和出口段進(jìn)行了簡(jiǎn)化,這在大流量工況下造成了一定的誤差。加上大流量工況下泄漏量對(duì)泵性能的影響,使得試驗(yàn)數(shù)據(jù)與數(shù)值預(yù)測(cè)的差值達(dá)到了10.9%。因此,在井用潛水泵數(shù)值計(jì)算中,應(yīng)根據(jù)實(shí)際情況對(duì)各個(gè)部件進(jìn)行全流場(chǎng)精確建模,并設(shè)置為側(cè)方進(jìn)口。
圖12 模型泵性能試驗(yàn)結(jié)果與數(shù)值模擬結(jié)果的對(duì)比
1)設(shè)計(jì)泵與模型泵都擁有較寬的高效區(qū),最高效率點(diǎn)均處在1.2倍額定流量工況下;模型泵的最大功率點(diǎn)處在額定流量工況下,而設(shè)計(jì)泵的最大功率點(diǎn)則處在1.2倍額定流量工況下,但兩者的最大功率與額定流量點(diǎn)功率的比值皆小于1.2,都呈現(xiàn)出了明顯的無(wú)過載特性。
2)在0.4~1.6倍額定流量工況下,設(shè)計(jì)泵與模型泵的性能預(yù)測(cè)值滿足相似換算準(zhǔn)則,根據(jù)比例縮放的模型具有較好的水力性能,模型直接縮放法可以滿足深井離心泵的設(shè)計(jì)要求。
3)數(shù)值模擬預(yù)測(cè)的外特性參數(shù)在小流量工況和額定流量工況下與試驗(yàn)結(jié)果吻合良好,但在大流量工況下出現(xiàn)了些許偏差,試驗(yàn)數(shù)據(jù)與數(shù)值預(yù)測(cè)的差值達(dá)到了10.9%。這是由于在大流量工況下泄漏量對(duì)泵性能影響增大造成的。今后的數(shù)值模擬中盡可能地考慮密封間隙泄漏,能夠進(jìn)一步提高數(shù)值模擬精度。
[1] 施衛(wèi)東,王洪亮,余學(xué)軍. 深井泵的研究現(xiàn)狀與發(fā)展趨勢(shì)[J].排灌機(jī)械,2009,27(1):64-68. Shi Weidong, Wang Hongliang, Yu Xuejun. Development and prospect of deep well pump in China[J]. Drainage and Irrigation Machinery, 2009, 27(1): 64-68. (in Chinese with English abstract)
[2] 陸偉剛,裴冰. 新型井用潛水泵技術(shù)介紹[J]. 江蘇農(nóng)機(jī)化,2011(4):26-27.
[3] 劉華志,王春波. 泵的設(shè)計(jì)方法及其發(fā)展趨勢(shì)[J]. 焦作工學(xué)院學(xué)報(bào):自然科學(xué)版,2003,22(3):214-216. Liu Huazhi, Wang Chunbo. The design- methods of pump and the trend in design-method[J]. Journal of Jiaozuo Institute of Technology: Natural Science, 2003, 22(3): 214-216. (in Chinese with English abstract)
[4] 崔寶玲,孟嘉嘉,賈曉奇.基于CFD技術(shù)的多級(jí)潛水泵優(yōu)化設(shè)計(jì)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2012,43(11):142-146. Cui Baoling, Meng Jiajia, Jia Xiaoqi. Optimization design of multi-stage submersible pump based on CFD[J]. Transactions of the Chinese Society of Agricultural Machinery, 2012, 43(11): 142-146. (in Chinese with English abstract)
[5] 胡慶喜,陳中豪. 相似理論在中濃紙漿泵設(shè)計(jì)中的應(yīng)用[J]. 造紙科學(xué)與技術(shù),2004,23(6):85-88. Hu Qingxi, Chen Zhonghao. Application of resemble theory in design of medium consistency pulp pump[J]. Paper Science &Technology, 2004, 23(6): 85-88. (in Chinese with English abstract)
[6] 李國(guó)志. 水環(huán)式真空泵/壓縮機(jī)相似理論設(shè)計(jì)方法[J]. 通用機(jī)械,2005(3):76-78.
[7] 陳松山,馬曉忠,陳加琦,等. 泵及泵裝置原型與模型特性參數(shù)換算方法[J]. 揚(yáng)州大學(xué)學(xué)報(bào):自然科學(xué)版,2015(2):45-48.Chen Songshan, Ma Xiaozhong, Chen Jiaqi, et al. The conversion method of characteristic parameters of pump and pump set between prototype and model[J]. Journal of Yangzhou University: Natural Science Edition, 2015(2): 45-48. (in Chinese with English abstract)
[8] 周君亮. 原型及模型泵水力裝置參數(shù)換算[J]. 排灌機(jī)械工程學(xué)報(bào),2009,27(5):273-280. Zhou Junliang. Study of conversion for performance of model pump to actual pump[J]. Journal of Drainage and Irrigation Machinery Engineering, 2009, 27(5): 273-280. (in Chinese with English abstract)
[9] 朱紅耕,袁壽其,劉厚林,等. 泵及裝置原型與模型水力特性換算方法[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2006,37(12):91-95. Zhu Honggeng, Yuan Shouqi, Liu Houlin, et al. Research on conversion methods of hydraulic characteristics between prototype and model pumps and pumping stations[J]. Transactions of the Chinese Society for Agricultural Machinery, 2006, 37(12): 91-95. (in Chinese with English abstract)
[10] Zhang Zheming, Zhou Ling, Ramesh A. Transient simulations of spouted fluidized bed for coal-direct chemical looping combustion[J]. Energy & Fuels, 2014, 28(2): 1548-1560.
[11] 施衛(wèi)東,袁壽其,李世英,等. 泵行業(yè)存在的主要問題及急需解決的關(guān)鍵技術(shù)[J]. 排灌機(jī)械工程學(xué)報(bào),2001,19(6):7-9. Shi Weidong, Yuan Shouqi, Li Shiying, et al. Main existing problem and key technology to be solved of pump industry in China[J]. Drainage and Irrigation Machinery, 2001, 19(6): 7-9. (in Chinese with English abstract)
[12] 吳仁榮,王智磊. 離心泵設(shè)計(jì)的相似換算和面積比法[J]. 船舶工程,2009,31(4):41-44. Wu Rengrong, Wang Zhilei. Resemble conversion and area ration method of the design of centrifugal pump[J]. Ship Engineering, 2009, 31(4): 41-44. (in Chinese with English abstract)
[13] Shi Weidong, Zhou Ling, Lu Weigang, et al. Numerical prediction and performance experiment in a deep-well centrifugal pump with different impeller outlet width[J]. Chinese Journal of Mechanical Engineering, 2013, 26(1): 46-52.
[14] Zhou Ling, Shi Weidong, Li Wei. Optimization of impeller rear shroud radius in deep-well centrifugal pump based on golden section method[J]. Energy Education Science and Technology Part A: Energy Science and Research, 2012, 30(Supp.2): 377-382.
[15] 周嶺,白玲,楊陽(yáng),等. 導(dǎo)葉葉片數(shù)對(duì)井用潛水泵性能的影響[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(10):78-84.Zhou Ling, Bai Ling, Yang Yang, et al. Influence of diffuser vane number on submersible well pump performance[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(10): 78-84 (in Chinese with English abstract)
[16] 馬新華,馮琦,蔣小平,等. 導(dǎo)葉葉片數(shù)對(duì)多級(jí)離心泵壓力脈動(dòng)的影響[J]. 排灌機(jī)械工程學(xué)報(bào),2016,34(8):665-671. Ma Xinhua, Feng Qi, Jiang Xiaoping, et al. Influence of guide vane blade number on pressure fluctuation in multistage centrifugal pump[J]. Journal of Drainage and Irrigation Machinery Engineering, 2016, 34(8): 665-671. (in Chinese with English abstract)
[17] 馬新華,何勇冠,陸偉剛,等. 超低比轉(zhuǎn)數(shù)多級(jí)離心泵水力優(yōu)化與性能試驗(yàn)[J]. 排灌機(jī)械工程學(xué)報(bào),2016,34(9):755-760. Ma Xinhua, He Yongguan, Lu Weigang, et al. Hydraulic optimization and performance test of super low-specific- speed multistage centrifugal pump[J]. Journal of Drainage and Irrigation Machinery Engineering, 2016, 34(9): 755-760. (in Chinese with English abstract)
[18] 鄧育軒,李仁年,韓偉,等. 螺旋離心泵內(nèi)回流渦空化特性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(1):86-90. Deng Yuxuan, Li Rennian, HanWei, et al. Characteristics of backflow vortex cavitation in screw centrifugal pump[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(1): 86-90. (in Chinese with English abstract)
[19] Zhou Ling, Shi Weidong, Lu Weigang, et al. Numerical investigations and performance experiments of a deep-well centrifugal pump with different diffusers[J]. ASME Journal of Fluids Engineering, 2012, 134(7):071102-1-071102-8.
[20] 畢禎,李仁年,黎義斌,等. 多級(jí)旋渦泵內(nèi)部流動(dòng)特性與壓力脈動(dòng)的數(shù)值分析[J]. 排灌機(jī)械工程學(xué)報(bào),2016,34(10):871-877. Bi Zhen, Li Rennian, Li Yibin, et al. Numerical analysis of internal flow characteristic and pressure fluctuation of multistage vortex pump[J]. Journal of Drainage and Irrigation Machinery Engineering, 2016, 34(10): 871-877. (in Chinese with English abstract)
[21] Zhou Ling, Zhang Zheming, Chris C, et al. Process simulation and validation of chemical-looping with oxygen uncoupling (CLOU) process using Cu-based oxygen carrier[J]. Energy & Fuels, 2013, 27(11): 6906-6912.
[22] 王勇,劉厚林,劉東喜,等. 葉片包角對(duì)離心泵流動(dòng)誘導(dǎo)振動(dòng)噪聲的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(1):72-77. Wang Yong, Liu Houlin, Liu Dongxi, et al. Effects of vane wrap angle on flow induced vibration and noise of centrifugal pumps[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(1): 72-77. (in Chinese with English abstract)
[23] 沈陳棟,袁建平,付燕霞,等. 離心泵進(jìn)口回流誘導(dǎo)的空化特性[J]. 排灌機(jī)械工程學(xué)報(bào),2016,34(10):841-846. Shen Chendong, Yuan JianPing, Fu Yanxia, et al. Cavitation characteristic induced by inlet backflow in a centrifugal pump[J]. Journal of Drainage and Irrigation Machinery Engineering, 2016, 34(10): 841-846. (in Chinese with English abstract)
[24] 黃茜,袁壽其,張金鳳,等. 葉片包角對(duì)高比轉(zhuǎn)數(shù)離心泵性能的影響[J]. 排灌機(jī)械工程學(xué)報(bào),2016,34(9):742-747.Huang Xi, Yuan Shouqi, Zhang Jinfeng, et al. Effects of blade wrap angle on performance of high specific speed centrifugal pump[J]. Journal of Drainage and Irrigation Machinery Engineering, 2016, 34(9): 742-747. (in Chinese with English abstract)
[25] 陸偉剛,張啟華,施衛(wèi)東. 深井離心泵葉輪極大直徑設(shè)計(jì)法[J]. 排灌機(jī)械工程學(xué)報(bào),2006,24(5):1-7. Lu Weigang, Zhang Qihua, Shi Weidong. Impeller diameter maximum approach for deep well pumps[J]. Journal of Drainage and Irrigation Machinery Engineering, 2006, 24(5): 1-7. (in Chinese with English abstract)
[26] 高紅斌,張汝琦,孫楠,等. 相似定律在離心泵設(shè)計(jì)中的簡(jiǎn)易應(yīng)用[J]. 機(jī)械工程與自動(dòng)化,2010(5):74-75.Gao Hongbin, Zhang Ruqi, Sun Nan, et al. Simple application of similar laws in the centrifugal pump design[J]. Mechanical Engineering & Automation. 2010(5): 74-75. (in Chinese with English abstract)
[27] Shi Weidong, Zhou Ling, Lu Weigang, et al. Numerical simulation and experimental study of different stages deep-well centrifugal pump[J]. Journal of Computational and Theoretical Nanoscience, 2013, 10(12): 2897-2901.
[28] 周嶺,施衛(wèi)東,陸偉剛,等. 深井離心泵數(shù)值模擬與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2011,42(3):69-73.Zhou Ling, Shi Weidong, Lu Weigang, et al. Numerical simulation and experiment on deep-well centrifugal pump[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(3): 69-73. (in Chinese with English abstract)
[29] 關(guān)醒凡. 現(xiàn)代泵技術(shù)手冊(cè)[M]. 北京:宇航出版社,1995,63-64.
[30] 秦文瑾,解茂昭,賈明. 基于大渦模擬的發(fā)動(dòng)機(jī)缸內(nèi)湍流流動(dòng)及擬序結(jié)構(gòu)[J]. 內(nèi)燃機(jī)學(xué)報(bào),2012,30(2):133-140. Qin Wenjin, Xie Maozhao, Jia Ming. Investigation on engine in-cylinder turbulent flow and coherent structure based on large eddy simulation[J]. Transactions of Csice, 2012, 30(2): 133-140. (in Chinese with English abstract)
[31] Bellani G, Byron M L, Collignon A G, et al. Shape effects on turbulent modulation by large nearly neutrally buoyant particles[J]. Journal of Fluid Mechanics, 2012, 712(35): 41-60.
Verification of comparability and analysis of inner flow fields on scaling models of submersible well pump
Shi Weidong1, Yang Yang1, Zhou Ling1, Lu Weigang1, Pan Bo2
(1.212013,;2.272300,)
Similar transformation design method is one of the most frequently-used ways of centrifugal pump design. In order to verify the similarity of the scaling model, a typical submersible well pump was chosen as the model pump in this paper, and based on the scaling model conversion algorithm, the designed pump was obtained. And the designed pump model was directly scaled without any factor correction by the model pump with a scaling factor of 0.66. By the numerical simulation and the experiments, both the comparability between the model pump and the designed pump and the difference between their inner flow fields were analyzed. Ansys CFX software was adopted to simulate the flow fields of the designed pump and the model pump. The calculation domains were created based on two-stage pump models, which were meshed with the structured grids. The numerical simulations under multi-conditions were performed based on standard-turbulence and standard wall function. Also, different number of grids were divided both for the model pump and the designed pump in this paper to determine the unrelated relationship between the number of meshes used in the calculation and the calculated results. The flow filed of liquid in the main flow passage were analyzed emphatically. The streamline on blade to blade surface and the turbulent kinetic energy distributions on middle section of the impeller were analyzed to get the flow state and the hydraulic loss inside the impellers for both the model pump and the designed pump. In the meantime, the static pressure distributions and the vortex core region inside the diffusers were investigated. By the comparative analysis between performance predicted, it was found that the designed pump and the model pump had basically consistent variation tendency of their head, efficiency and shaft power under 0.4-1.6 times rated flow conditions, Which meant the performance predicted meet the similar conversion rules. The designed pump and the model pump both have wide high efficiency area, and the highest efficiency points are both at 1.2 times rated flow rate condition. Compared to the model pump, the maximum shaft power point of designed pump shifted to the heavy flow rate conditions, and the ratio of maximum power and the rated power increased. But the designed pump still has better performance of non-overload. The streamline on blade to blade surface and the turbulent kinetic energy distributions on middle section of the impellers showed that the fluid flow field and the vortex area inside the impeller were consistent. Also, the static pressure distributions and the vortex core region inside the diffusers showed that the pressure distributions inside the diffusers were similar, but the vortex core area inside the designed pump was smaller than the model pump. So, the liquid inside the designed pump had a good internal flow state, which would make the designed pump having a hydraulic efficiency. By the comparison between results of numerical calculation and experiment of model pump, the head and power of numerical simulation predicted were slightly lower than the test results, the predicted efficiency was slightly higher than the test results, but the changing trend were almost the same. The results of this study could provide a basis and reference for the improvement of submersible well pump performance. As we can see, the designed pump narrowed by the model pump had good hydraulic performance, which meant that the model direct scaling method can meet the design requirements of deep well centrifugal pumps.
well pumps; numerical calculation; scaling laws; similar transformation; experiment; hydraulic losses
10.11975/j.issn.1002-6819.2017.03.007
TH313
A
1002-6819(2017)-03-0050-08
2016-05-27
2016-12-10
國(guó)家自然科學(xué)基金項(xiàng)目(51609106);江蘇省自然科學(xué)基金青年基金項(xiàng)目(BK20150508);江蘇省博士后科研資助計(jì)劃項(xiàng)目(1501069A);中國(guó)博士后科學(xué)基金項(xiàng)目(2015M581737)
施衛(wèi)東,男,江蘇南通人,研究員,博士生導(dǎo)師,主要從事流體機(jī)械及工程的研究。鎮(zhèn)江江蘇大學(xué)流體機(jī)械工程技術(shù)研究中心,212013。Email:wdshi@ujs.edu.cn
施衛(wèi)東,楊 陽(yáng),周 嶺,陸偉剛,潘 波.潛水泵縮比模型的相似性驗(yàn)證與內(nèi)部流場(chǎng)分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(3):50-57. doi:10.11975/j.issn.1002-6819.2017.03.007 http://www.tcsae.org
Shi Weidong, Yang Yang, Zhou Ling, Lu Weigang, Pan Bo.Verification of comparability and analysis of inner flow fields on scaling models of submersible well pump [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(3): 50-57. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.03.007 http://www.tcsae.org