• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    污染水體中河蜆的生物毒性響應(yīng)研究進展

    2017-10-13 03:06:22郭曉宇李茹楓馮成洪韓志華
    生態(tài)毒理學(xué)報 2017年3期
    關(guān)鍵詞:沉積物毒性水體

    郭曉宇,李茹楓,馮成洪,,*,韓志華

    1. 北京師范大學(xué)環(huán)境學(xué)院水環(huán)境模擬國家重點實驗室,北京 1008752. 北京師范大學(xué)環(huán)境學(xué)院水沙科學(xué)教育部重點實驗室,北京 1008753. 環(huán)境保護部南京環(huán)境科學(xué)研究所,南京 210042

    污染水體中河蜆的生物毒性響應(yīng)研究進展

    郭曉宇1,李茹楓2,馮成洪1,2,*,韓志華3

    1. 北京師范大學(xué)環(huán)境學(xué)院水環(huán)境模擬國家重點實驗室,北京 1008752. 北京師范大學(xué)環(huán)境學(xué)院水沙科學(xué)教育部重點實驗室,北京 1008753. 環(huán)境保護部南京環(huán)境科學(xué)研究所,南京 210042

    河蜆作為廣泛分布于世界各國的典型底棲生物,由于其活動性低、濾食性等特征被廣泛用作指示生物研究多種水體污染物的生物有效性。但迄今為止,尚沒有系統(tǒng)論述污染水體中河蜆生物毒性響應(yīng)的研究進展。為此,本文從污染物種類、測試指標(biāo)、試驗參數(shù)等角度探討了過去30多年間河蜆在氨、重金屬、有機污染物生物富集及生物毒性效應(yīng)等方面的研究過程及主要成果。以往研究主要以河蜆生物體內(nèi)累積、形態(tài)學(xué)及行為學(xué)觀察、生化指標(biāo)、代謝組學(xué)、基因完整性等指標(biāo)表征污染水體的生物毒性效應(yīng),并隨著分子生物學(xué)的發(fā)展已逐步由多指標(biāo)全面表征代替單一指標(biāo)測試。此外,現(xiàn)有研究多偏重于重金屬和持久性有機污染物,對氨、新型污染物及納米材料的河蜆生物毒性效應(yīng)探討尚處于起步階段。河蜆在自然水體污染狀況評估、污染水體的生物修復(fù)、水體毒性預(yù)測等方面具有較高適用性,但河蜆在沉積物毒性鑒定評估(TIE, Toxicity Identification and Evaluation)中的應(yīng)用研究依然較為缺乏,有待進一步開展。

    水體污染物;氨;重金屬;有機物;河蜆;生物毒性響應(yīng);生物累積

    Received12 October 2016accepted16 December 2016

    Abstract: As a typical benthonic species, Corbicula fluminea is widely used for biomonitoring freshwater pollution due to its sessile and filter-feeding characteristics. However, there is few reports reviewing the progress about biological toxic response and bioaccumulation for contaminants of C. fluminea in aquatic environment. Therefore, this study summarized the main achievements about the effects of pollutants (ammonia, trace metals, organic contaminants) on freshwater invertebrates C. fluminea in terms of pollutant species, test index, test medium and test duration. The results indicated that the common biomonitoring techniques applied in C. fluminea study could be classified as bioaccumulation, morphology, behavior observation, biochemical index alterations, metabonomics measure and genetic integrity changes. With the development of molecular biology, the use of single biomarker is gradually replaced by multi-biomarker approach. Furthermore, existing researches mainly focus on heavy metals and persistent organic pollutants, whereas studies on ammonia, emerging contaminants and nanomaterials are still in the initial stage. Overall, C. fluminea is a useful species for evaluating aquatic pollution, bioremediation, toxicity prediction. Studies on the application of C. fluminea in the area of sediment Toxicity Identification and Evaluation (TIE), by contrast, are still scarce and need extensive investigations.

    Keywords: water pollutants; ammonia; heavy metal; organic pollutants; Corbicula fluminea; biological toxicity response; bioaccumulation

    水體沉積物中具有明顯生物和生態(tài)效應(yīng)的污染物種類繁多,近年來,污染物的生物毒性響應(yīng)特征、過程與機制逐漸成為國內(nèi)外研究的熱點。生物毒性測試由于可反映污染物的生物可利用性,是評估水體綜合污染的有效手段之一,是化學(xué)分析和底棲生物群落結(jié)構(gòu)評價方法的有益補充[1]。雙殼貝類作為一類世界性分布的沿岸底棲水生動物,在污染物的生物富集和傳遞過程中起著重要作用,可通過食用影響人體健康,已成為環(huán)境毒理學(xué)研究關(guān)注的對象[20]。

    河蜆作為一種典型淡水底棲雙殼貝類,具有活動性低、易于培養(yǎng)、經(jīng)濟實用、分布廣泛等特征,對污染物具有較強的富集性,廣泛應(yīng)用于水體尤其是沉積物毒性效應(yīng)評價和鑒定研究[2]。河蜆原產(chǎn)于亞洲、非洲以及澳大利亞[3],由于其入侵性,目前亦廣泛分布于北美、南美以及歐洲等地[4-5]。美國[11,34,42,53-60,88,93,95-101]、中國[18-19,29,40,45-52,61-62,92]、法國[2,6,13-16,28,33,35,37-38,43-44,63-77,86,107-108]、德國[30,32]、英國[12]、葡萄牙[7-10,21,39,41,94,102]、阿根廷[79-80,90,103-104]、巴西[17,36,81,85,105]、西班牙[83,87]、塞爾維亞[91]、馬來西亞[82]、伊拉克[78]、菲律賓[106]等國家均開展了河蜆在污染物生物毒性響應(yīng)的研究。

    河蜆對污染物生物毒性響應(yīng)研究主要包括生物富集、生化指標(biāo)改變、形態(tài)學(xué)、行為學(xué)觀察、野外種群及群落水平分布調(diào)查等[1]。也有研究將其作為哨兵生物(sentinel organism),應(yīng)用于貽貝污染物監(jiān)測項目(NCCOS)等常規(guī)生物監(jiān)測程序探討[60]。整體上,河蜆作為水體尤其是沉積物污染受試生物的指示性應(yīng)用研究尚處于發(fā)展階段。近幾年,相關(guān)研究逐漸涉及到組織學(xué)、組織化學(xué)、組織病理學(xué)[7-11],代謝組學(xué)[12]和基因表達[13-19]等分子生物學(xué)方面。各種生物效應(yīng)、毒理學(xué)指標(biāo)也隨著分子生物學(xué)及相關(guān)分析檢測儀器技術(shù)的發(fā)展而快速更新。

    為系統(tǒng)認(rèn)識河蜆對污染物的生物毒性響應(yīng)特征,本文基于1983—2016年國外文獻中有關(guān)河蜆研究成果,結(jié)合前期已發(fā)表研究成果[20],從水體污染物類型、研究方法、指標(biāo)體系等方面綜合歸納整理河蜆的污染物生物富集及生物毒性效應(yīng)研究現(xiàn)狀及發(fā)展歷程。結(jié)果可為河蜆對水體及沉積物中污染物的生物富集、生物毒性鑒定研究提供參考。

    研究過程中,根據(jù)污染物種類、試驗參數(shù)、測試指標(biāo)進行分類,具體技術(shù)路線見圖-1。

    1 氨污染水體中河蜆的生物毒性響應(yīng)研究(The biological toxicity response of Corbicula fluminea in ammonia contaminated water)

    研究表明,氨對不同水生無脊椎動物具有不同程度的毒性,但是氨毒性可能是致命的[21]。有學(xué)者對多種淡水貝類進行氨毒性實驗,得出不同貝類的96 h半致死濃度(11.53~23.1 mg·L-1)[22-24]。Cooper等[25-27]曾研究人工模擬河流中河蜆大面積死亡時軟體組織腐敗所釋放氨對本土物種淡水貽貝的影響。但是氨對河蜆本身的急慢性毒性效應(yīng)卻報道較少。據(jù)作者檢索,國外報道中僅發(fā)現(xiàn)一篇文獻,論述長期慢性氨污染對河蜆的多種生物標(biāo)志物產(chǎn)生的亞致死影響研究(表1)[21]。研究發(fā)現(xiàn),采自污染河口區(qū)的河蜆由于長期處于污染環(huán)境中,其各項酶活性指標(biāo)均表現(xiàn)出較高背景值,因此受1 mg·L-1含氨水污染后,各項指標(biāo)并未表現(xiàn)出明顯差異。這說明長期處于污染水域會增強河蜆對氨的耐受性,有利于其入侵行為。由于水生生物的內(nèi)源排放及人類工農(nóng)業(yè)快速發(fā)展所引起的外源污染,氨氮已成為水環(huán)境中最普遍的污染物之一,但是目前水體中氨污染引起的河蜆毒性響應(yīng)研究甚少,此類研究有待進一步加強。

    圖1 研究過程技術(shù)路線Fig. 1 The technology roadmap of research

    2 重金屬污染水體中河蜆的生物毒性響應(yīng)研究(The biological toxicity response of Corbicula fluminea in metal contaminated water)

    表2匯總了1983—2016年間的65篇在國外期刊發(fā)表的有關(guān)河蜆對重金屬的生物毒性響應(yīng)研究進展。從表2可以看出,已有大量研究探討了重金屬污染水體中河蜆的生物毒性響應(yīng)。在研究所屬國家分類上,法國有相對較全面的研究。波爾多大學(xué)研究團隊從1997年到2014年間發(fā)表27篇文獻。美國、中國、德國、英國、阿根廷、巴西、馬來西亞、伊拉克、西班牙等在河蜆對污染物生物毒性響應(yīng)方面也均有研究。研究過程經(jīng)歷了從早期的河蜆不同軟體組織對重金屬的富集量、行為學(xué)特征(閉殼響應(yīng)、呼吸活性)[34,37,44,53-54,58,63,66-71,78-80],到后期的生物標(biāo)志物多指標(biāo)綜合研究,如:生化指標(biāo)中丙二醛(MDA)、金屬硫蛋白(MT)、谷胱甘肽(GSH)含量測定[7-10],抗氧化系統(tǒng)中過氧化氫酶(CAT)、超氧化物歧化酶(SOD)等酶活性的測定[9-10,43,61],蛋白定量驗證中MXR蛋白、熱休克蛋白Hsp60等的測定[36,72-74],再到分子標(biāo)記物中基因表達水平的測定研究[13-16]。也有很多研究,探討了不同非生物因子如pH、溫度、溶解氧(DO)、CO2含量等因素影響下不同重金屬對河蜆的生物毒性效應(yīng)[37,43,66-68,70-71]。除以上指標(biāo)外,還對污染物影響下河蜆消化腺病變、消化腺細胞內(nèi)污染物顆粒及溶酶體系統(tǒng)變化和中性脂質(zhì)含量等組織學(xué)、組織化學(xué)及組織病理學(xué)進行研究[7-10,15]。由于雙殼類消化腺在調(diào)整和消除外源有害物質(zhì)中起到關(guān)鍵作用,且消化道管壁上皮細胞對許多金屬及準(zhǔn)金屬污染物的損害影響較敏感[9],因此以往研究常對該器官進行組織學(xué)分析。英國學(xué)者Nicole等[12]還對河蜆代謝組學(xué)進行分析,探究Cd和Zn對不同大小河蜆代謝物的影響。整體而言,除法國、葡萄牙、巴西學(xué)者涉及到一些組織學(xué)觀察、生化指標(biāo)響應(yīng)、蛋白定量驗證、及基因表達方面的研究,其他國家研究多處于基礎(chǔ)階段,多采用河蜆體內(nèi)污染物富集量、死亡率、掘穴行為等常規(guī)指標(biāo)進行表征。我國學(xué)者對重金屬污染水體中河蜆的生物毒性響應(yīng)開展了大量研究[20,29,40,61-62,109-110],對河蜆的金屬富集、行為學(xué)觀察、生化指標(biāo)改變3個方面進行了污染物生物毒性響應(yīng)研究,但是對于重金屬污染,還未展開組織學(xué)、代謝組學(xué)、基因水平的研究。

    在重金屬種類上,常見重金屬Cd、Hg、Cu、Zn、Se、U、Ni、Pb等對河蜆的生物毒性效應(yīng)均有研究,而Cd作為對淡水生物群落毒性最強[28]的污染物,研究文獻最多。在79篇文獻中有46篇將其列為研究對象(表2)。還有少量研究探討金屬放射性同位素[28-29]、稀土元素[30]的生物毒性。對于近年來新的環(huán)境挑戰(zhàn),也有學(xué)者對納米材料尤其是納米金屬進行雙殼類生物毒性實驗。葡萄牙學(xué)者對納米金剛石及納米TiO2的河蜆生物毒性研究[9-10]表明,納米材料影響河蜆的氧化應(yīng)激系統(tǒng)且引起了消化腺上皮細胞的組織學(xué)變化。整體上納米材料對河蜆生物毒性研究較少。隨著納米材料應(yīng)用的增多,此類研究有必要繼續(xù)完善,為環(huán)境風(fēng)險評估提供可靠信息[31]。

    在基質(zhì)選取上,現(xiàn)有研究主要以現(xiàn)場監(jiān)測和室內(nèi)模擬模式開展水相(含沉積物孔隙水、沉積物上覆水)、全沉積物相實驗研究(表2)。其中,水相研究中包括天然水體的原位水相實驗和實驗室配水的室內(nèi)模擬實驗。相對而言,水相實驗易于操作控制,現(xiàn)有研究多采用水相加標(biāo)進行模擬實驗研究,針對全沉積物的毒性效應(yīng)研究較少(約占6%)。然而,河蜆作為底棲生物直接接觸沉積物,可通過鰓攝取沉積物間隙水中游離態(tài)污染物,也可通過攝食途徑取食富含污染物的顆粒物而累積污染物。因此,水相實驗難以全面、直接反映沉積物的污染和生物毒性。在生物毒性效應(yīng)研究中,實驗基質(zhì)的選取還需以全沉積物為主要基質(zhì)。

    從實驗周期角度來分析,根據(jù)研究類別的不同,野外監(jiān)測及原位試驗研究通常周期較長。野外監(jiān)測考慮河蜆富集的時空分布,通常進行不同季節(jié)多次采樣[32-34];原位試驗[35]由于污染物濃度的不可控性而需進行長期富集實驗。由于河蜆對重金屬具有較強的富集能力,除少數(shù)研究對河蜆進行體外急性(96 h)毒性實驗外[36],重金屬對河蜆的生物毒性及河蜆對重金屬的解毒機制[14, 37-38]研究多采用慢性(1個月~1年)毒性實驗。

    整體上,河蜆在水體重金屬污染中的應(yīng)用主要集中在4個方面:(1)通過野外監(jiān)測評估實際水生環(huán)境中重金屬污染情況;(2)研究河蜆對富含重金屬水體的生物修復(fù)能力,探討重金屬污染區(qū)域的生物修復(fù)技術(shù);(3)重金屬對河蜆健康影響的毒理學(xué)機理研究;(4)毒性預(yù)測——依據(jù)河蜆生物監(jiān)測得出的毒理學(xué)數(shù)據(jù)建立生物模型來評估及預(yù)測污染物潛在生態(tài)風(fēng)險。

    在野外監(jiān)測上,大量學(xué)者通過野外監(jiān)測分析河蜆體內(nèi)重金屬含量與環(huán)境介質(zhì)(如水體、沉積物)中重金屬含量關(guān)系,發(fā)現(xiàn)痕量重金屬在河蜆體內(nèi)富集量比周圍環(huán)境介質(zhì)中含量高幾個數(shù)量級[34, 39]。雖然河蜆體內(nèi)污染物含量不能反映環(huán)境水體的真實污染水平,但是河蜆對重金屬的累積特征與環(huán)境中重金屬量分布具有很好的相關(guān)性[13, 32-33, 40]。迄今為止,體內(nèi)污染物含量監(jiān)測是河蜆在天然水體環(huán)境污染研究中唯一的實際應(yīng)用。

    在生物修復(fù)應(yīng)用上,葡萄牙學(xué)者采用室內(nèi)模擬實驗研究河蜆對酸性礦排水的生物修復(fù)效果,發(fā)現(xiàn)河蜆對水體中重金屬有較強的去除率,證明了河蜆用于生物修復(fù)的適用性[41]。但目前仍未發(fā)現(xiàn)有研究采用河蜆對實際重金屬污染區(qū)域進行生物修復(fù),而室內(nèi)模擬研究僅此一篇文獻報道,相關(guān)研究有待繼續(xù)開展。

    在河蜆的生物毒理學(xué)研究上,河蜆在重金屬加標(biāo)介質(zhì)中的生化響應(yīng)[7, 10, 36, 42-43]、基因損傷[13-15]、解毒機制[14, 38, 44]等都有助于研究污染物對河蜆的潛在毒性影響。因為雙殼類底棲生物在污染物的影響下早期的指標(biāo)響應(yīng)表現(xiàn)在生物標(biāo)志物層面。毒性響應(yīng)首先會在亞細胞水平表現(xiàn)出明顯響應(yīng),隨后才會在更高生物水平顯現(xiàn)。與軟體組織內(nèi)污染物富集量測定相比,生物標(biāo)志物能夠提供更加完整的、生物學(xué)上更可靠的信息[31]。然而,受生物和非生物因素影響,生物標(biāo)志物亦無法絕對準(zhǔn)確地表征污染物生物毒性。此外,由于單生物標(biāo)志物無法充分反映生物體的健康損害程度,大量學(xué)者采用多標(biāo)志物[7-10, 43]監(jiān)測河蜆對污染物的生物毒性響應(yīng)。同時,生物標(biāo)志物與一般急性毒性實驗評價指標(biāo)——死亡率相比,更加困難、昂貴且耗時。綜上所述,河蜆毒理學(xué)機制研究仍亟需經(jīng)濟、快捷、準(zhǔn)確的測試指標(biāo),評估污染物對生物的健康損傷。

    在生物毒性預(yù)測方面,我國臺灣學(xué)者進行了大量的探索[45-52]。研究表明,閉殼響應(yīng)可作為一項生物監(jiān)測指標(biāo)研究金屬污染水體對雙殼貝類的健康影響。閉殼響應(yīng)模型技術(shù)可為將來生態(tài)預(yù)警系統(tǒng)的建立提供一個風(fēng)險管理框架。

    3 有機物污染水體中河蜆的生物毒性響應(yīng)研究(The biological toxicity response of Corbicula fluminea in organic contaminated water)

    天然水體受人類活動影響,接納了大量外源性有機污染物,如有機農(nóng)藥、多氯聯(lián)苯、多環(huán)芳烴等持久性有機污染物,烷基酚類,內(nèi)分泌干擾物、抗生素等多種藥物。河蜆在歐美等國被廣泛用作指示生物研究多種有機污染物的生物有效性。表3綜述了從1986到2015年間的31篇在國外期刊發(fā)表的有關(guān)河蜆對有機污染物的生物毒性響應(yīng)報道。

    表1 河蜆在氨生物毒性效應(yīng)中的應(yīng)用Table 1 Corbicula fluminea in ammonia biological toxicity test

    期刊名注釋(Journal Title Abbreviations): WASP-Water, Air, & Soil Pollution.

    測試指標(biāo)名稱注釋(Index Abbreviations): MDA-malondialdehyde, CAT-catalase, GPx-glutathione peroxidase, GST-glutathione S-transferase, GR-glutathione reductase, ChE-cholinesterase, ODH-octopine dehydrogenase.

    表2 河蜆在金屬污染物生物監(jiān)測中的應(yīng)用Table 2 Corbicula fluminea in metal contamination biomonitoring

    期刊名注釋(Journal Title Abbreviations): WASP-Water, Air, & Soil Pollution, STE-Science of the Total Environment, JEQ-Journal of Environmental Quality, EES-Ecotoxicology and Environmental Safety, TEC-Toxicological and Environmental Chemistry, WR-Water Research, CBP-Comparative Biochemistry & Physiology Part C Comparative Pharmacology, TSTE-The Science of the Total Environment, ET-Environmental Toxicology, EMA-Environmental Monitoring and Assessment, ESPI- Environmental Science: Processes & Impacts, ESPR-Environmental Science and Pollution Research, TE-Toxicology and Endocrinology, BECT- Bulletin of Environmental Contamination and Toxicology, JER-Journal of Environmental Radioactivity, JEM-Journal of Environmental Monitoring, WST-Water Science & Technology, BTER- Biological Trace Element Research, JHM-Journal of Hazardous Materials, AJE-Asian Journal of Ecotoxicology, JAES-Journal of Agro-Environment Science, JSCNU-Journal of South China Normal University (Natural Science Edition), ES-Environmental Science, OELS-Oceanologia Et Limnologia Sinica, JLS-Journal of Lake Science, CJAEB- Chinese Journal of Applied & Environmental Biology, CJAE-Chinese Journal of Applied Ecology, Eco-Ecologic Science, RF-Reservoir Fisheries, CJE-Chinese Journal of Ecology, JAAS-Journal of Anhui Agricultural Science.

    測試指標(biāo)名稱注釋(Index Abbreviations): SOD-superoxide dismutase, CAT- catalase, MT-metallothionein, LPO-lipid peroxidation, ChE-cholinesterase, ODH-octopine dehydrogenase, AEC-adenylate energy charge, ATP-adenosinetriphosphate, CA-carbonic anhydrase, HMBP-heavy metal binding protein, MXR-multixenobiotic resistance protein, MDA-malondialdehyde, GPx-glutathione peroxidase, GSTpi-glutathione S-transferase pi class, GST-glutathione S-transferase, GSH-glutathione, GR-glutathione reductase.

    表3 河蜆在有機污染物生物監(jiān)測中的應(yīng)用Table 3 Corbicula fluminea in organic contamination biomonitoring

    期刊名注釋(Journal Title Abbreviations): WASP- Water, Air, & Soil Pollution, AECT-Archives of Environmental Contamination and Toxicology, EC- Environmental Chemistry, EMA-Environmental Monitoring and Assessment, AT-Aquatic Toxicology, BECT- Bulletin of Environmental Contamination and Toxicology, EES-Ecotoxicology and Environmental Safety, ETP-Environmental Toxicology and Pharmacology, TP-Toxicologic Pathology, MR-GTEM--Mutation Research/Genetic Toxicology and Environmental Mutagenesis, MF-Marine Fishers, CJPS-Chinese Journal of Pesticide Science, JRE-Journal of Resources and Ecology, ASC-Acta Scientiae Circumstantiae, CJEE- Chinese Journal of Environmental Engineering.

    污染物名稱注釋(Contaminants Abbreviation): BFRs—brominated flame-retardants, TBB—2,3,4,5-tetrabromobenzoate, TBPH—2-ethylhexyl 2,3,4,5-etrabromophthalate, BTBPE—1,2-bis(2,4,6-tribromophenoxy) ethane, DBDPE—decabromodiphenyl ethane, DGH/QUAT—dodecylguanidine hydrochloride (DGH), QUAT—n-alkyl dimethylbenzyl ammonium chloride, polyDADMAC—poly diallyl dimethyl ammonium chloride, HCH—hexachlorocyolohexane (666), DDT—dichlorodiphenyltri-chloroe-thane.

    測試指標(biāo)名稱注釋(Index Abbreviations): P450, P418—cytochromes, NADH-red—NADH-cytochrome C reductase, CAT—catalase, PL—peroxidizable lipids, NP—net peroxidation, TOSC—total oxidant scavenging capacity, SOD—superoxide dismutase, GR—glutathione reductase, TR—thioredoxin reductase, MDA—malondialdehyde, TR—thioredoxin reductase, GPx—glutathione peroxidase, GSTpi—glutathione S-transferase pi class, EROD—ethoxyresorufin-O-deethylase, GST—glutathione S-transferase, BSAF—biota-sediment accumulation factor, DBF—dibenzylfluorescein dealkylase, AO—antioxidant enzymes.

    從研究區(qū)分布看,美國學(xué)者用河蜆做指示生物,表征有機污染物生物毒性的研究較多,其次為法國及阿根廷。我國學(xué)者在河蜆對有機污染物的生物毒性效應(yīng)研究中亦開展了大量工作[20,110-111]。測試指標(biāo)的采用及發(fā)展與重金屬污染的生物毒性研究相似。早期研究多偏重于河蜆體內(nèi)有機污染物富集量測定[30,32,88,90,95,96-98,103,107];后期逐步發(fā)展為多指標(biāo)聯(lián)用,如行為學(xué)指標(biāo)(虹吸行為、掘穴行為、閉殼響應(yīng))、形態(tài)學(xué)指標(biāo)(組織學(xué)、組織化學(xué)、組織病理學(xué)分析)[11,93]、生化指標(biāo)(SOD、CAT、GR、GPx、GST、膽堿酯酶、AO酶、EROD等氧化還原系統(tǒng)的多種酶學(xué)指標(biāo))[2,85,87,91,94,108]、分子生物學(xué)相關(guān)方法(轉(zhuǎn)錄組測序和分析[18-19]、DNA完整性[11, 17, 85-87])等。

    從污染物角度,有機污染物種類繁多,研究者多圍繞重點關(guān)注的持久性有機污染物、藥物、苯酚類物質(zhì)及用于船舶防污漆的三丁基錫,亦有少量學(xué)者進行重金屬與多氯聯(lián)苯(PCB)、多環(huán)芳烴(PAH)、有機氯農(nóng)藥(OCP)復(fù)合污染的研究[54, 80]。河蜆對有機污染物生物毒性效應(yīng)研究的試驗基質(zhì)選取情況與重金屬污染研究情況相同,多數(shù)研究采用水相加標(biāo)實驗。對于試驗周期,多以有機物毒性強弱及實驗濃度為依據(jù),確定不同試驗時長。持久性有機污染物及抗生素、雌激素等藥物多采用慢性毒性實驗[2, 11, 18-19, 54, 86-89]。

    整體上,與重金屬相比,河蜆在有機污染物生物毒性效應(yīng)中的研究報道相對較少,主要集中在2個方面:(1)采用野外監(jiān)測評估實際水生環(huán)境中有機污染物污染情況;(2)有機污染物對河蜆健康影響的毒理學(xué)機理研究。河蜆體內(nèi)有機污染物含量的野外監(jiān)測分析結(jié)果表明,河蜆對疏水性有機污染物有較強富集能力[90-92]。河蜆體內(nèi)有機污染物累積量與水體、沉積物中含量存在顯著相關(guān)性,且污染水域?qū)油樠趸瘧?yīng)激系統(tǒng)有不良影響。室內(nèi)模擬試驗及原位試驗發(fā)現(xiàn),低劑量長期暴露于有機污染物可引起行為學(xué)響應(yīng)[93]、形態(tài)學(xué)變化[11]、生化響應(yīng)[18-19, 85-87, 94]、基因損傷[17-19, 85, 87]等。由此可知,河蜆對有機污染物[19]有較強敏感性和生物累積能力,可以作為哨兵生物對有機物污染區(qū)域進行生物監(jiān)測。以往研究也從細胞水平驗證了河蜆用于環(huán)境風(fēng)險評估的適用性。然而,目前沉積物毒性鑒定評估(TIE)中所采用的生物響應(yīng)指標(biāo)多為受試生物死亡率,隨著環(huán)境治理的推進,極毒性污染逐漸減少,采用生物慢性毒性響應(yīng)指標(biāo)進行沉積物TIE顯得尤為重要。

    4 結(jié)論與展望(Conclusion and prospect)

    經(jīng)過30多年的探索,國內(nèi)外在污染水體的河蜆生物毒性響應(yīng)研究上已有較為全面的發(fā)展。大量學(xué)者采用河蜆生物體內(nèi)累積、形態(tài)學(xué)及行為學(xué)觀察、生化指標(biāo)改變、代謝組學(xué)、基因完整性等生物監(jiān)測技術(shù)對氨、重金屬、有機污染物的生物毒性效應(yīng)進行表征,認(rèn)證河蜆對實際水生環(huán)境污染狀況的評估能力,對污染水體的生物修復(fù)能力,對水體的毒性預(yù)測能力等。這些研究全面認(rèn)證了河蜆作為指示生物對于環(huán)境風(fēng)險評估的適用性。

    河蜆的生物毒性效應(yīng)研究多偏重于重金屬污染水體,對有機污染物研究相對較少且多局限于持久性有機污染物,對于氨、新型污染物及納米材料的研究尚處于起步階段,這些污染物對河蜆毒性影響有待進一步開展。且多種污染物對河蜆的復(fù)合毒性研究有待進一步加強。研究中多采用水相進行模擬實驗,對于全沉積物的研究仍需加強。

    河蜆測試指標(biāo)從早期的生物富集量測定、行為學(xué)形態(tài)學(xué)觀察,到后期出現(xiàn)的生化指標(biāo)測定,再到分子生物學(xué)指標(biāo)測定。不同測試指標(biāo)的選取針對不同研究目的。生物富集是污染物生物毒性效應(yīng)研究的重要過程,污染物在生物體內(nèi)的富集是一個包含攝食、排泄、儲存、降解的動態(tài)平衡過程;行為學(xué)及形態(tài)學(xué)觀察在污染物生物毒性響應(yīng)研究中可以提供最直觀快捷的反映;隨著生物技術(shù)的發(fā)展,污染物對蛋白質(zhì)、酶、核酸等生物大分子的毒性作用機理逐漸被關(guān)注,因此可以在不同水平進行毒性預(yù)測,近年發(fā)展的許多生物標(biāo)志物如氧化應(yīng)激酶、基因毒性、溶酶體改變、免疫活性以及膽堿酯酶活性等被用于毒理學(xué)研究。生物富集及形態(tài)學(xué)行為學(xué)觀察可以提供直接、基礎(chǔ)的研究,而生化指標(biāo)及分子生物學(xué)指標(biāo)可以提供更多生物水平層面的毒性預(yù)測,與軟體組織內(nèi)污染物富集量測定相比,生物標(biāo)志物能夠提供更加完整的、生物學(xué)上更可靠的信息。河蜆測試指標(biāo)隨著分子生物學(xué)及相關(guān)分析檢測儀器技術(shù)的飛速發(fā)展而快速更新,且多指標(biāo)全面表征逐步代替單一指標(biāo)測試,以更全面準(zhǔn)確評估污染物對河蜆的毒性影響。然而對于不同特定毒物的特異性生物標(biāo)志物的篩選研究比較匱乏,有待進一步研究。

    目前對河蜆在沉積物毒性鑒定評估(TIE)中的應(yīng)用研究較為缺乏,尤其將河蜆的行為學(xué)及形態(tài)學(xué)變化、生化響應(yīng)、基因損傷等指標(biāo)全面結(jié)合用于沉積物毒性鑒定評估(TIE)的研究鮮有報道。而河蜆作為廣泛分布且對污染物具有較強富集性及敏感性的雙殼類底棲生物,具有較全面的生物監(jiān)測背景研究,對于其在沉積物毒性鑒定評估中(TIE)的應(yīng)用研究工作有待開展。

    [1] Zhou Q F, Zhang J B, Fu J J, et al. Biomonitoring: An appealing tool for assessment of metal pollution in the aquatic ecosystem [J]. Analytica Chimica Acta, 2008, 606(2): 135-150

    [2] Bonnafé E, Sroda S, Budzinski H, et al. Responses of cytochrome P450, GST, and MXR in the mollusk Corbicula fluminea to the exposure to hospital wastewater effluents [J]. Environmental Science and Pollution Research, 2015, 22(14): 11033-11046

    [3] Sousa R, Antunes C, Guilhermino L. Ecology of the invasive Asian clam Corbicula fluminea (Müller, 1774) in aquatic ecosystems: An overview [J]. Annales de Limnologie - International Journal of Limnology, 2008, 44(2): 85-94

    [4] Hubenov Z, Trichkova T, Kenderov L, et al. Distribution of Corbicula fluminea (Mollusca: Corbiculidae) over an eleven-year period of its invasion in Bulgaria [J]. Acta Zoologica Bulgarica, 2013, 65(3): 315-326

    [5] Ilarri M I, Freitas F, Costa-Dias S, et al. Associated macrozoobenthos with the invasive Asian clam Corbicula fluminea [J]. Journal of Sea Research, 2012, 72: 113-120

    [6] Fournier E, Adam C, Massabuau J-C, et al. Bioaccumulation of waterborne selenium in the Asiatic clam Corbicula fluminea: Influence of feeding-induced ventilatory activity and selenium species [J]. Aquatic Toxicology, 2005, 72(3): 251-260

    [7] Santos H M, Diniz M S, Costa P M, et al. Toxicological effects and bioaccumulation in the freshwater clam (Corbicula fluminea) following exposure to trivalent arsenic [J]. Environmental Toxicology, 2007, 22(5): 502-509

    [8] Costa P M, Santos H M, Peres I, et al. Toxicokinetics of waterborne trivalent arsenic in the freshwater bivalve Corbicula fluminea [J]. Archives of Environmental Contamination and Toxicology, 2009, 57(2): 338-347

    [9] Vale G, Franco C, Diniz M S, et al. Bioavailability of cadmium and biochemical responses on the freshwater bivalve Corbicula fluminea—The role of TiO2nanoparticles [J]. Ecotoxicology and Environmental Safety, 2014, 109: 161-168

    [10] Cid A, Picado A, Correia J B, et al. Oxidative stress and histological changes following exposure to diamond nanoparticles in the freshwater Asian clam Corbicula fluminea (Müller, 1774) [J]. Journal of Hazardous Materials, 2015, 284: 27-34

    [11] Lehmann D W, Levine J F, McHugh Law J M. Polychlorinated biphenyl exposure causes gonadal atrophy and oxidative stress in Corbicula fluminea clams [J]. Toxicologic Pathology, 2007, 35(3): 356-365

    [12] Spann N, Aldridge D C, Griffin J L, et al. Size-dependent effects of low level cadmium and zinc exposure on the metabolome of the Asian clam, Corbicula fluminea [J]. Aquatic Toxicology, 2011, 105(3-4): 589-599

    [13] Arini A, Daffe G, Gonzalez P, et al. What are the outcomes of an industrial remediation on a metal-impacted hydrosystem? A 2-year field biomonitoring of the filter-feeding bivalve Corbicula fluminea [J]. Chemosphere, 2014, 108: 214-224

    [14] Arini A, Daffe G, Gonzalez P, et al. Detoxification and recovery capacities of Corbicula fluminea after an industrial metal contamination (Cd and Zn): A one-year depuration experiment [J]. Environmental Pollution, 2014, 192: 74-82

    [15] Bigot A, Minguez L, Giambérini L, et al. Early defense responses in the freshwater bivalve Corbicula fluminea exposed to copper and cadmium: Transcriptional and histochemical studies [J]. Environmental Toxicology, 2011, 26(6): 623-632

    [16] Simon O, Floriani M, Cavalie I, et al. Internal distribution of uranium and associated genotoxic damages in the chronically exposed bivalve Corbicula fluminea [J]. Journal of Environmental Radioactivity, 2011, 102(8): 766-773

    [17] Fedato R P, Simonato J D, Martinez C B R, et al. Genetic damage in the bivalve mollusk Corbicula fluminea induced by the water-soluble fraction of gasoline [J]. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 2010, 700(1-2): 80-85

    [18] Chen H H, Zha J M, Yuan L L, et al. Effects of fluoxetine on behavior, antioxidant enzyme systems, and multixenobiotic resistance in the Asian clam Corbicula fluminea [J]. Chemosphere, 2015, 119: 856-862

    [19] Chen H H, Zha J M, Liang X F, et al. Effects of the human antiepileptic drug carbamazepine on the behavior, biomarkers, and heat shock proteins in the Asian clam Corbicula fluminea [J]. Aquatic Toxicology, 2014, 155: 1-8

    [20] 郭曉宇, 李茹楓, 馮成洪. 河蜆在我國沉積物毒性評價與鑒定中的應(yīng)用研究[J]. 生態(tài)毒理學(xué)報, 2016, 11(2): 89-100

    Guo X Y, Li R F, Feng C H. Corbicula fluminea in sediment toxicity evaluation and identification studies in China [J]. Asian Journal of Ecotoxicology, 2016, 11(2): 89-100 (in Chinese)

    [21] Costa S, Guilhermino L. Influence of long-term exposure to background pollution on the response and recovery of the invasive species Corbicula fluminea to ammonia sub-lethal stress: A multi-marker approach with field estuarine populations [J]. Water, Air, & Soil Pollution, 2015, 226(4): 95

    [22] Mummert A K, Neves R J, Newcomb T J, et al. Sensitivity of juvenile freshwater mussels (Lampsilis fasciola, Villosa iris) to total and un-ionized ammonia [J]. Environmental Toxicology & Chemistry, 2003, 22(11): 2545-2553

    [23] Newton T J, Bartsch M R. Lethal and sublethal effects of ammonia to juvenile Lampsilis mussels (Unionidae) in sediment and water-only exposures [J]. Environmental Toxicology & Chemistry, 2007, 26(10): 2057-2065

    [24] Montresor L C, Miranda-Filho K C, Paglia A, et al. Short-term toxicity of ammonia, sodium hydroxide and a commercial biocide to golden mussel Limnoperna fortunei (Dunker, 1857) [J]. Ecotoxicology and Environmental Safety, 2013, 92: 150-154

    [25] Ilarri M I, Antunes C, Guilhermino L, et al. Massive mortality of the Asian clam Corbicula fluminea in a highly invaded area [J]. Biological Invasions, 2011, 13(2): 277-280

    [26] Cooper N L, Cherry D S. Potential effects of Asian clam (Corbicula fluminea) die-offs on native freshwater mussels (Unionidae) II: Porewater ammonia [J]. Journal of the North American Benthological Society, 2014, 24(2): 381-394

    [27] Cherry D S, Scheller J L, Cooper N L, et al. Potential effects of Asian clam (Corbicula fluminea) die-offs on native freshwater mussels (Unionidae) I: Water-column ammonia levels and ammonia toxicity [J]. Journal of the North American Benthological Society, 2014, 24(2): 369-380

    [28] Fraysse B, Baudin J P, Garnier-Laplace J, et al. Effects of Cd and Zn waterborne exposure on the uptake and depuration of 57Co, 110mAg and 134Cs by the Asiatic clam (Corbicula fluminea) and the zebra mussel (Dreissena polymorpha)—Whole organism study [J]. Environmental Pollution, 2002, 118(3): 297-306

    [29] Fan W H, Ren J Q, Wu C G, et al. Using enriched stable isotope technique to study Cu bioaccumulation and bioavailability in Corbicula fluminea from Taihu Lake, China [J]. Environmental Science and Pollution Research, 2014, 21(24): 14069-14077

    [30] Merschel G, Bau M. Rare earth elements in the aragonitic shell of freshwater mussel Corbicula fluminea and the bioavailability of anthropogenic lanthanum, samarium and gadolinium in river water [J]. Science of The Total Environment, 2015, 533: 91-101

    [31] Zuykov M, Pelletier E, Harper D A T. Bivalve mollusks in metal pollution studies: From bioaccumulation to biomonitoring [J]. Chemosphere, 2013, 93(2): 201-208

    [32] Sebesvari Z, Ettwig K F, Emons H. Biomonitoring of tin and arsenic in different compartments of a limnic ecosystem with emphasis on Corbicula fluminea and Dikerogammarus villosus [J]. Journal of Environmental Monitoring, 2005, 7(3): 203-207

    [33] Baudrimont M, Lemaire-Gony S, Ribeyre F, et al. Seasonal variations of metallothionein concentrations in the Asiatic clam (Corbicula fluminea) [J]. Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology, 1997, 118(3): 361-367

    [34] Leland H V, Scudder B C. Trace elements in Corbicula fluminea from the San Joaquin River, California [J]. Science of the Total Environment, 1990, 97-98(7): 641-672

    [35] Marie V, Baudrimont M, Boudou A. Cadmium and zinc bioaccumulation and metallothionein response in two freshwater bivalves (Corbicula fluminea and Dreissena polymorpha) transplanted along a polymetallic gradient [J]. Chemosphere, 2006, 65(4): 609-617

    [36] Rocha C T, Souza M M. The influence of lead on different proteins in gill cells from the freshwater bivalve, Corbicula fluminea, from defense to repair biomarkers [J]. Archives of Environmental Contamination and Toxicology, 2012, 62(1): 56-67

    [37] Inza B, Ribeyre F, Boudou A. Dynamics of cadmium and mercury compounds (inorganic mercury or methylmercury): Uptake and depuration in Corbicula fluminea. Effects of temperature and pH [J]. Aquatic Toxicology, 1998, 43(4): 273-285

    [38] Baudrimont M, Andres S, Durrieu G, et al. The key role of metallothioneins in the bivalve Corbicula fluminea during the depuration phase, after in situ exposure to Cd and Zn [J]. Aquatic Toxicology, 2003, 63(2): 89-102

    [39] Reis P A, Guilhermino L, Antunes C, et al. Assessment of the ecological quality of the Minho estuary (Northwest Iberian Peninsula) based on metal concentrations in sediments and in Corbicula fluminea [J]. Limnetica, 2014, 33(1): 161-173

    [40] Kong M, Hang X, Wang L, et al. Accumulation and risk assessment of heavy metals in sediments and zoobenthos (Bellamya aeruginosa and Corbicula fluminea) from Lake Taihu [J]. Water Science and Technology, 2016, 73(1): 203-214

    [41] Rosa I C, Costa R, Gon?alves F, et al. Bioremediation of metal-rich effluents: Could the invasive bivalve work as a biofilter? [J]. Journal of Environment Quality, 2014, 43(5): 1536-1545

    [42] Giesy J P, Duke C S, Bingham R D, et al. Changes in phosphoadenylate concentrations and adenylate energy charge as an integrated biochemical measure of stress in invertebrates: The effects of cadmium on the freshwater clam Corbicula fluminea [J]. Toxicological & Environmental Chemistry, 2008, 6(4): 259-295

    [43] Legeay A, Achard-Joris M, Baudrimont M, et al. Impact of cadmium contamination and oxygenation levels on biochemical responses in the Asiatic clam Corbicula fluminea [J]. Aquatic Toxicology, 2005, 74(3): 242-253

    [44] Simon O, Garnier-Laplace J. Kinetic analysis of uranium accumulation in the bivalve Corbicula fluminea: Effect of pH and direct exposure levels [J]. Aquatic Toxicology, 2004, 68(2): 95-108

    [45] Liao C-M, Jou L-J, Chen B-C. Risk-based approach to appraise valve closure in the clam Corbicula fluminea in response to waterborne metals [J]. Environmental Pollution, 2005, 135(1): 41-52

    [46] Jou L-J, Liao C-M. A dynamic artificial clam (Corbicula fluminea) allows parsimony on-line measurement of waterborne metals [J]. Environmental Pollution, 2006, 144(1): 172-183

    [47] Liao C-M, Lin C-M, Jou L-J, et al. Linking valve closure behavior and sodium transport mechanism in freshwater clam Corbicula fluminea in response to copper [J]. Environmental Pollution, 2007, 147(3): 656-667

    [48] Liao C-M, Jou L-J, Lin C-M, et al. Predicting acute copper toxicity to valve closure behavior in the freshwater clam Corbicula fluminea supports the biotic ligand model [J]. Environmental Toxicology, 2007, 22(3): 295-307

    [49] Liao C-M, Jau S-F, Chen W-Y, et al. Acute toxicity and bioaccumulation of arsenic in freshwater clam Corbicula fluminea [J]. Environmental Toxicology, 2008, 23(6): 702-711

    [50] Liao C-M, Jau S-F, Lin C-M, et al. Valve movement response of the freshwater clam Corbicula fluminea following exposure to waterborne arsenic [J]. Ecotoxicology, 2009, 18(5): 567-576

    [51] Jou L J, Chen W Y, Liao C M. Online detection of waterborne bioavailable copper by valve daily rhythms in freshwater clam Corbicula fluminea [J]. Environmental Monitoring and Assessment, 2009, 155(1-4): 257-272

    [52] Chen W-Y, Liao C-M, Jou L-J, et al. Predicting bioavailability and bioaccumulation of arsenic by freshwater clam Corbicula fluminea using valve daily activity [J]. Environmental Monitoring and Assessment, 2010, 169(1-4): 647-659

    [53] Graney R L, Cherry D S, Cairns J. The influence of substrate, pH, diet and temperature upon cadmium accumulation in the Asiatic clam (Corbicula fluminea) in laboratory artificial streams [J]. Water Research, 1984, 18(7): 833-842

    [54] Tatem H E. Bioaccumulation of polychlorinated biphenyls and metals from contaminated sediment by freshwater prawns, Macrobrachium rosenbergii and clams, Corbicula fluminea [J]. Archives of Environmental Contamination & Toxicology, 1986, 15(2): 171-183

    [55] Doherty F G, Failla M L, Cherry D S. Identification of a metallothionein-like, heavy metal binding protein in the freshwater bivalve, Corbicula fluminea [J]. Comparative Biochemistry & Physiology Part C Comparative Pharmacology, 1987, 87(1): 113-120

    [56] Doherty F G, Failla M L, Cherry D S. Metallothionein-like heavy metal binding protein levels in Asiatic clams are dependent on the duration and mode of exposure to cadmium [J]. Water Research, 1988, 22(7): 927-932

    [57] Mccloskey J T, Dixon P M, Newman M C. Effect of metal and metalloid contaminated sediment on the spatial distribution of Asiatic clams (Corbicula fluminea) [J]. Archives of Environmental Contamination & Toxicology, 1995, 28(2): 203-208

    [58] Lee B G, Lee J S, Luoma S N. Comparison of selenium bioaccumulation in the clams Corbicula fluminea and Potamocorbula amurensis: A bioenergetic modeling approach [J]. Environmental Toxicology & Chemistry, 2006, 25(7): 1933-1940

    [59] Peltier G L, Wright M S, Hopkins W A, et al. Accumulation of trace elements and growth responses in Corbicula fluminea downstream of a coal-fired power plant [J]. Ecotoxicology and Environmental Safety, 2009, 72(5): 1384-1391

    [60] Shoults-Wilson W A, Unrine J M, Rickard J, et al. Comparison of metal concentrations in Corbicula fluminea and Elliptio hopetonensis in the Altamaha River system, Georgia, USA [J]. Environmental Toxicology and Chemistry, 2010, 29(9): 2026-2033

    [61] Ren J, Luo J, Ma H, et al. Bioavailability and oxidative stress of cadmium to Corbicula fluminea [J]. Environmental Science: Processes & Impacts, 2013, 15(4): 860-869

    [62] Geng N, Wang C, Wang P F, et al. Cadmium accumulation and metallothionein response in the freshwater bivalve Corbicula fluminea under hydrodynamic conditions [J]. Biological Trace Element Research, 2015, 165(2): 222-232

    [63] Inza B, Ribeyre F, Maury-Brachet R, et al. Tissue distribution of inorganic mercury, methylmercury and cadmium in the Asiatic clam (Corbicula fluminea) in relation to the contamination levels of the water column and sediment [J]. Chemosphere, 1997, 35(12): 2817-2836

    [64] Bregni M, Ueno N T, Childs R. Bioaccumulation and metallothionein response in the Asiatic clam (Corbicula fluminea) after experimental exposure to cadmium and inorganic mercury [J]. Environmental Toxicology & Chemistry, 1997, 16(16): 2096-2105

    [65] Andrès S, Baudrimont M, Lapaquellerie Y, et al. Field transplantation of the freshwater bivalve Corbicula fluminea along a polymetallic contamination gradient (River Lot, France): I. Geochemical characteristics of the sampling sites and cadmium and zinc bioaccumulation kinetics [J]. Environmental Toxicology & Chemistry, 1999, 18(11): 2462-2471

    [66] Fraysse J P, Baudin J. Cadmium uptake by Corbicula fluminea and Dreissena polymorpha: Effects of pH and temperature [J]. Bulletin of Environmental Contamination and Toxicology, 2000, 65(5): 638-645

    [67] Tran D, Boudou A, Massabuau J C. How water oxygenation level influences cadmium accumulation pattern in the Asiatic clam Corbicula fluminea: A laboratory and field study [J]. Environmental Toxicology & Chemistry, 2001, 20(9): 2073-2080

    [68] Tran D, Boudou A, Massabuau J C. Relationship between feeding-induced ventilatory activity and bioaccumulation of dissolved and algal-bound cadmium in the Asiatic clam Corbicula fluminea [J]. Environmental Toxicology & Chemistry, 2002, 21(2): 327-333

    [69] Tran D, Fournier E, Durrieu G, et al. Copper detection in the Asiatic clam Corbicula fluminea: Optimum valve closure response [J]. Aquatic Toxicology, 2003, 65(3): 317-327

    [70] Tran D, Massabuau J C, Garnier-Laplace J. Effect of carbon dioxide on uranium bioaccumulation in the freshwater clam Corbicula fluminea [J]. Environmental Toxicology & Chemistry, 2004, 23(3): 739-747

    [71] Fournier E, Tran D, Denison F, et al. Valve closure response to uranium exposure for a freshwater bivalve (Corbicula fluminea): Quantification of the influence of pH [J]. Environmental Toxicology & Chemistry, 2004, 23(5): 1108-1114

    [72] Achard M. Induction of a multixenobiotic resistance protein (MXR) in the Asiatic clam Corbicula fluminea after heavy metals exposure [J]. Aquatic Toxicology, 2004, 67(4): 347-357

    [73] Tran D, Bourdineaud J P, Massabuau J C, et al. Modulation of uranium bioaccumulation by hypoxia in the freshwater clam Corbicula fluminea: Induction of multixenobiotic resistance protein and heat shock protein 60 in gill tissues [J]. Environmental Toxicology & Chemistry, 2005, 24(9): 2278-2284

    [74] Achard-Joris M, Gonzalez P, Marie V, et al. cDNA cloning and gene expression of ribosomal S9 protein gene in the mollusk Corbicula fluminea: A new potential biomarker of metal contamination up-regulated by cadmium and repressed by zinc [J]. Environmental Toxicology & Chemistry, 2006, 25(2): 527-533

    [75] Fournier E, Adam C, Massabuau J C, et al. Selenium bioaccumulation in Chlamydomonas reinhardtii and subsequent transfer to Corbicula fluminea: Role of selenium speciation and bivalve ventilation [J]. Environmental Toxicology & Chemistry, 2006, 25(10): 2692-2699

    [76] Tran D, Fournier E, Durrieu G, et al. Inorganic mercury detection by valve closure response in the freshwater clam Corbicula fluminea: Integration of time and water metal concentration changes [J]. Environmental Toxicology & Chemistry, 2007, 26(7): 1545-1551

    [77] Tran D, Massabuau J C, Garnier-Laplace J. Impact of hypoxia on hemolymph contamination by uranium in an aquatic animal, the freshwater clam Corbicula fluminea [J]. Environmental Pollution, 2008, 156(3): 821-826

    [78] Abaychi J K, Mustafa Y Z. The Asiatic clam, Corbicula fluminea: An indicator of trace metal pollution in the Shatt al-Arab River, Iraq [J]. Environmental Pollution, 1988, 54(2): 109-122

    [79] Bilos C, Colombo J C, Presa M J. Trace metals in suspended particles, sediments and Asiatic clams (Corbicula fluminea) of the Río de la Plata Estuary, Argentina [J]. Environmental Pollution, 1998, 99(1): 1-11

    [80] Cataldo D, Colombo J C, Boltovskoy D, et al. Environmental toxicity assessment in the Paraná River Delta (Argentina): Simultaneous evaluation of selected pollutants and mortality rates of Corbicula fluminea (Bivalvia) early juveniles [J]. Environmental Pollution, 2001, 112: 379-389

    [81] De Oliveira L F, Dos Reis Martinez C B. Chromium accumulation in the Asian clam, Corbicula fluminea (Müller, 1774), as an indicative of landfill leachate contamination [J]. Bulletin of Environmental Contamination and Toxicology, 2014, 93(2): 149-153

    [82] Ismail F A, Aris A Z, Latif P A. Dynamic behaviour of Cd2+adsorption in equilibrium batch studies by CaCO3-rich Corbicula fluminea shell [J]. Environmental Science and Pollution Research, 2014, 21(1): 344-354

    [83] Bonnail E, Sarmiento A M, DelValls T A, et al. Assessment of metal contamination, bioavailability, toxicity and bioaccumulation in extreme metallic environments (Iberian Pyrite Belt) using Corbicula fluminea [J]. Science of The Total Environment, 2016, 544: 1031-1044

    [84] Oneto M L, Basack S B, Casabe N B, et al. Biological responses in the freshwater bivalve Corbicula fluminea and the earthworm Eisenia fetida exposed to fenitrothion [J]. Fresenius Environmental Bulletin, 2005, 14(8): 716-720

    [85] Dos Santos K C, Martinez C B R. Genotoxic and biochemical effects of atrazine and Roundup?, alone and in combination, on the Asian clam Corbicula fluminea [J]. Ecotoxicology and Environmental Safety, 2014, 100: 7-14

    [86] Champeau O, Narbonne J-F. Effects of tributyltin and 17β-estradiol on immune and lysosomal systems of the Asian clam Corbicula fluminea (M.) [J]. Environmental Toxicology and Pharmacology, 2006, 21(3): 323-330

    [87] Aguirre-Martínez G V, DelValls A T, Laura Martín-Díaz M. Yes, caffeine, ibuprofen, carbamazepine, novobiocin and tamoxifen have an effect on Corbicula fluminea (Müller, 1774) [J]. Ecotoxicology and Environmental Safety, 2015, 120: 142-154

    [88] Peterson M J, Southworth G R, Ham K D. Effect of sublethal chlorinated discharges on PCB accumulation in transplanted Asiatic clams (Corbicula fluminea) [J]. Water Air & Soil Pollution, 1994, 73(73): 169-178

    [89] McLeod P B, Luoma S N, Luthy R G. Biodynamic modeling of PCB uptake by Macoma balthica and Corbicula fluminea from sediment amended with activated carbon [J]. Environmental Science & Technology, 2008, 42(2): 484-490

    [90] Colombo J C, Bilos C, Campanaro M, et al. Bioaccumulation of polychlorinated biphenyls and chlorinated pesticides by the Asiatic clam Corbicula fluminea; its use as sentinel organism in the Rio de La Plata Estuary, Argentina. [J]. Environmental Science & Technology, 1995, 29(4): 914-927

    [92] Lee C-C, Jhuang Y-F, Liu L-L, et al. The major source and impact of phenyltin contamination on freshwater aquaculture clam Corbicula fluminea and wild golden apple snail Pomacea canaliculata [J]. Environmental Chemistry, 2009, 6(4): 341-349

    [93] Cooper N L, Bidwell J R. Cholinesterase inhibition and impacts on behavior of the Asian clam, Corbicula fluminea, after exposure to an organophosphate insecticide [J]. Aquatic Toxicology, 2006, 76(3-4): 258-267

    [94] Brand?o F P, Pereira J L, Gon?alves F, et al. The impact of paracetamol on selected biomarkers of the mollusc species Corbicula fluminea [J]. Environmental Toxicology, 2014, 29(1): 74-83

    [95] Ramsay G G, Tackett J H, Morris D W. Effect of low-level continuous chlorination on Corbicula fluminea [J]. Environmental Toxicology & Chemistry, 1988, 7(10): 855-856

    [96] Rollins H B, Hutchinson P J, Prezant R S. Detection of xenophobic response in the periostracum of the bivalve, Corbicula fluminea, through laser-induced mass spectrometry [J]. Archives of Environmental Contamination & Toxicology, 1993, 24(2): 258-267

    [97] Ham K D, Peterson M J. Effect of fluctuating low-level chlorine concentrations on valve-movement behavior of the Asiatic clam (Corbicula fluminea) [J]. Environmental Toxicology & Chemistry, 1994, 13(3): 493-498

    [98] Bidwell J R, Farris J L, Cherry D S. Comparative response of the zebra mussel, Dreissena polymorpha, and the Asian clam, Corbicula fluminea, to DGH/QUAT, a nonoxidizing molluscicide [J]. Aquatic Toxicology, 1995, 33(3-4): 183-200

    [99] Bouldin J L, Farris J L, Moore M T, et al. Assessment of diazinon toxicity in sediment and water of constructed wetlands using deployed Corbicula fluminea and laboratory testing [J]. Archives of Environmental Contamination and Toxicology, 2007, 53(2): 174-182

    [100] La Guardia M J, Hale R C, Harvey E, et al. In situ accumulation of HBCD, PBDEs, and several alternative flame-retardants in the bivalve (Corbicula fluminea) and gastropod (Elimia proxima) [J]. Environmental Science & Technology, 2012, 46(11): 5798-5805

    [101] Ismail N S, Müller C E, Morgan R R, et al. Uptake of contaminants of emerging concern by the bivalves Anodonta californiensis and Corbicula fluminea [J]. Environmental Science & Technology, 2014, 48(16): 9211-9219

    [102] Rosa I C, Garrido R, Ré A, et al. Sensitivity of the invasive bivalve Corbicula fluminea to candidate control chemicals: The role of dissolved oxygen conditions [J]. Science of The Total Environment, 2015, 536: 825-830

    [103] Basack S B, Oneto M L, Verrengia Guerrero N R, et al. Accumulation and elimination of pentachlorophenol in the freshwater bivalve Corbicula fluminea [J]. Bulletin of Environmental Contamination & Toxicology, 1997, 58(3): 497-503

    [104] Basack S B, Oneto M L, Fuchs J S, et al. Esterases of Corbicula fluminea as biomarkers of exposure to organophosphorus pesticides [J]. Bulletin of Environmental Contamination & Toxicology, 1998, 61(5): 569-576

    [105] Jacomini A E, Avelar W E P, Martinêz A S, et al. Bioaccumulation of atrazine in freshwater bivalves Anodontites trapesialis (Lamarck, 1819) and Corbicula fluminea (Müller, 1774) [J]. Archives of Environmental Contamination and Toxicology, 2006, 51(3): 387-391

    [106] Beltran K S, Pocsidio G N. Acetylcholinesterase activity in Corbicula fluminea Mull, as a biomarker of organophosphate pesticide pollution in Pinacanauan River, Philippines [J]. Environmental Monitoring and Assessment, 2010, 165(1-4): 331-340

    [107] Narbonne J F, Djomo J E, Ribera D, et al. Accumulation kinetics of polycyclic aromatic hydrocarbons adsorbed to sediment by the mollusk Corbicula fluminea [J]. Ecotoxicology & Environmental Safety, 1999, 42(1): 1-8

    [108] Vidal M, Basseres A, Narbonne J. Potential biomarkers of trichloroethylene and toluene exposure in Corbicula fluminea [J]. Environmental Toxicology and Pharmacology, 2001, 9(3): 87-97

    [109] 韓雨薇, 張彥峰, 陳萌, 等. 沉積物中重金屬Pb和Cd對河蜆的毒性效應(yīng)研究[J]. 生態(tài)毒理學(xué)報, 2015, 10(4): 129-137

    Han Y W, Zhang Y F, Chen M, et al. Toxicity of Pb/Cd-spiked freshwater sediments to Corbicula fluminea [J]. Asian Journal of Ecotoxicology, 2015, 10(4): 129-137 (in Chinese)

    [110] 邱昕曄, 俞爽, 劉紅玲. 河蜆(Corbicula fluminea)在生態(tài)毒理學(xué)研究中的應(yīng)用與評價[J]. 生態(tài)毒理學(xué)報, 2016, 11(1): 80-93

    Qiu X Y, Yu S, Liu H L. A review of ecotoxicological studies of Corbicula fluminea [J]. Asian Journal of Ecotoxicology, 2016, 11(1): 80-93 (in Chinese)

    [111] 金小偉, 查金苗, 許宜平, 等. 3種氯酚類化合物對河蜆的毒性和氧化應(yīng)激[J]. 生態(tài)毒理學(xué)報, 2009, 4(6): 816-822

    Jin X W, Zha J M, Xu Y P, et al. Toxicity and oxidative stress of three chlorophenols to freshwater clam Corbicula fluminea [J]. Asian Journal of Ecotoxicology, 2009, 4(6): 816-822 (in Chinese)

    AReviewofBiologicalToxicityResponseofAsianClamCorbiculaflumineatoContaminatedEnvironment

    Guo Xiaoyu1, Li Rufeng2, Feng Chenghong1,2,*, Han Zhihua3

    1. State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China2. Key Laboratory for Water and Sediment Science of Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, China3. Nanjing Institute of Environmental Science, Ministry of Environmental Protection, Nanjing 210042, China

    10.7524/AJE.1673-5897.20161012002

    2016-10-12錄用日期2016-12-16

    1673-5897(2017)3-086-24

    X171.5

    A

    馮成洪(1978-),男,博士,副教授,研究方向為污染物遷移轉(zhuǎn)化及環(huán)境效應(yīng)。

    環(huán)境保護部公益性行業(yè)科研專項(No.201409040);北京市高等學(xué)校青年英才計劃項目(No.YETP0235);環(huán)境模擬與污染控制國家重點聯(lián)合實驗室聯(lián)合基金(16L01ESPC)

    郭曉宇(1988-),女,博士研究生,研究方向為污染物遷移轉(zhuǎn)化及環(huán)境效應(yīng),E-mail: guoxiaoyu@mail.bnu.edu.cn

    *通訊作者(Corresponding author), E-mail: fengchenghong@bnu.edu.cn

    郭曉宇, 李茹楓, 馮成洪, 等. 污染水體中河蜆的生物毒性響應(yīng)研究進展[J]. 生態(tài)毒理學(xué)報,2017, 12(3): 86-109

    Guo X Y, Li R F, Feng C H, et al. A review of biological toxicity response of Asian clam Corbicula fluminea to contaminated environment [J]. Asian Journal of Ecotoxicology, 2017, 12(3): 86-109 (in Chinese)

    猜你喜歡
    沉積物毒性水體
    晚更新世以來南黃海陸架沉積物源分析
    海洋通報(2022年2期)2022-06-30 06:07:04
    農(nóng)村黑臭水體治理和污水處理淺探
    渤海油田某FPSO污水艙沉積物的分散處理
    海洋石油(2021年3期)2021-11-05 07:43:12
    生態(tài)修復(fù)理念在河道水體治理中的應(yīng)用
    水體表層沉積物對磷的吸收及釋放研究進展
    動物之最——毒性誰最強
    廣元:治理黑臭水體 再還水清岸美
    RGD肽段連接的近紅外量子點對小鼠的毒性作用
    討論用ICP-AES測定土壤和沉積物時鈦對鈷的干擾
    PM2.5中煤煙聚集物最具毒性
    xxx大片免费视频| av一本久久久久| 18禁裸乳无遮挡动漫免费视频| 丰满乱子伦码专区| 91精品国产国语对白视频| 免费观看性生交大片5| 亚洲色图综合在线观看| 高清欧美精品videossex| 午夜激情av网站| 国产无遮挡羞羞视频在线观看| videos熟女内射| 欧美人与善性xxx| 色94色欧美一区二区| 欧美精品一区二区大全| 亚洲精品日韩av片在线观看| 少妇人妻 视频| 搡老乐熟女国产| 国产免费一区二区三区四区乱码| 高清欧美精品videossex| 国产日韩欧美视频二区| 嫩草影院入口| 男人爽女人下面视频在线观看| 免费看av在线观看网站| 日本91视频免费播放| 色5月婷婷丁香| 久久国产精品大桥未久av| 两个人的视频大全免费| 男人操女人黄网站| 久久久久久久久大av| 国产亚洲午夜精品一区二区久久| 一级二级三级毛片免费看| 中国国产av一级| 性色avwww在线观看| 成年人午夜在线观看视频| 麻豆乱淫一区二区| 欧美成人午夜免费资源| 两个人免费观看高清视频| a级片在线免费高清观看视频| 色94色欧美一区二区| 亚洲av欧美aⅴ国产| 久久99精品国语久久久| 欧美日韩精品成人综合77777| 十分钟在线观看高清视频www| 99九九线精品视频在线观看视频| 99久久综合免费| 51国产日韩欧美| 女的被弄到高潮叫床怎么办| 涩涩av久久男人的天堂| 飞空精品影院首页| 蜜桃久久精品国产亚洲av| 自线自在国产av| 自线自在国产av| 亚洲av成人精品一区久久| 国产毛片在线视频| 99国产综合亚洲精品| 亚洲av欧美aⅴ国产| 人人妻人人澡人人看| 七月丁香在线播放| 午夜久久久在线观看| 黑人欧美特级aaaaaa片| 免费观看性生交大片5| 国内精品宾馆在线| a 毛片基地| 国产老妇伦熟女老妇高清| 欧美xxxx性猛交bbbb| 亚洲av在线观看美女高潮| 天天影视国产精品| 欧美人与善性xxx| 亚洲成人av在线免费| 最新的欧美精品一区二区| 一区在线观看完整版| 又粗又硬又长又爽又黄的视频| 国产高清国产精品国产三级| 久久国产亚洲av麻豆专区| 中文字幕精品免费在线观看视频 | 在线观看三级黄色| 黑人猛操日本美女一级片| 久久 成人 亚洲| 麻豆乱淫一区二区| av在线app专区| 国产成人午夜福利电影在线观看| 国产白丝娇喘喷水9色精品| 伊人亚洲综合成人网| 亚洲国产av新网站| 日韩强制内射视频| 毛片一级片免费看久久久久| a级毛片黄视频| 亚洲欧美日韩另类电影网站| 久久久久久久国产电影| 一个人免费看片子| 熟女av电影| 久久久国产精品麻豆| 国产极品天堂在线| 国产国语露脸激情在线看| 黑人猛操日本美女一级片| 好男人视频免费观看在线| 国产精品久久久久久精品古装| 欧美精品高潮呻吟av久久| 亚洲在久久综合| 久久久亚洲精品成人影院| 我的女老师完整版在线观看| 亚洲色图综合在线观看| 国产乱来视频区| 精品亚洲乱码少妇综合久久| 蜜桃在线观看..| 欧美日本中文国产一区发布| av网站免费在线观看视频| 少妇丰满av| 在线观看国产h片| 久久人人爽av亚洲精品天堂| 成人无遮挡网站| 麻豆乱淫一区二区| 老熟女久久久| 亚洲精品一二三| 欧美日韩一区二区视频在线观看视频在线| 国产黄频视频在线观看| 亚洲国产av影院在线观看| 有码 亚洲区| 国精品久久久久久国模美| 欧美 亚洲 国产 日韩一| 特大巨黑吊av在线直播| 日韩一区二区视频免费看| 色94色欧美一区二区| 国产午夜精品久久久久久一区二区三区| 777米奇影视久久| 亚洲婷婷狠狠爱综合网| 国产精品99久久99久久久不卡 | 日韩一区二区视频免费看| 看十八女毛片水多多多| 亚洲国产精品一区二区三区在线| 色婷婷av一区二区三区视频| 亚洲精品久久午夜乱码| 丝袜脚勾引网站| 欧美 日韩 精品 国产| av视频免费观看在线观看| 狠狠婷婷综合久久久久久88av| 黄片无遮挡物在线观看| 一级片'在线观看视频| 黄色毛片三级朝国网站| 下体分泌物呈黄色| 国产深夜福利视频在线观看| 一级毛片aaaaaa免费看小| 少妇高潮的动态图| 日韩人妻高清精品专区| 日日撸夜夜添| 91在线精品国自产拍蜜月| 免费日韩欧美在线观看| 亚洲不卡免费看| 日日摸夜夜添夜夜添av毛片| 中文字幕人妻丝袜制服| 日韩中字成人| 99九九线精品视频在线观看视频| 啦啦啦中文免费视频观看日本| 在线 av 中文字幕| 亚洲av综合色区一区| 日韩视频在线欧美| 九草在线视频观看| 亚洲精品亚洲一区二区| 日韩av免费高清视频| 精品国产国语对白av| 美女视频免费永久观看网站| 18+在线观看网站| 最近中文字幕2019免费版| 欧美日韩在线观看h| 欧美精品国产亚洲| 最近手机中文字幕大全| 自线自在国产av| 色5月婷婷丁香| 边亲边吃奶的免费视频| www.色视频.com| 国产黄片视频在线免费观看| 亚洲欧美日韩另类电影网站| 午夜免费男女啪啪视频观看| 日韩av在线免费看完整版不卡| 欧美精品国产亚洲| 国产亚洲精品久久久com| 国产在线一区二区三区精| 亚洲精华国产精华液的使用体验| 一级,二级,三级黄色视频| 日韩大片免费观看网站| 日韩成人av中文字幕在线观看| 国产精品一区www在线观看| 精品久久久噜噜| 全区人妻精品视频| 精品一区二区免费观看| 91精品伊人久久大香线蕉| 亚洲精品456在线播放app| 亚洲精品一二三| 成人毛片a级毛片在线播放| 成人国产av品久久久| 蜜臀久久99精品久久宅男| 一级毛片电影观看| 亚洲国产精品成人久久小说| 久久久久久久亚洲中文字幕| 国产精品一区二区在线观看99| 日韩不卡一区二区三区视频在线| av国产精品久久久久影院| 91精品国产九色| 久久久久久久久久成人| 久久99蜜桃精品久久| 青青草视频在线视频观看| 99热6这里只有精品| 80岁老熟妇乱子伦牲交| 亚洲激情五月婷婷啪啪| 97在线视频观看| 51国产日韩欧美| 精品一品国产午夜福利视频| 天天操日日干夜夜撸| 在线观看三级黄色| 精品一区二区三区视频在线| 亚洲第一av免费看| 大话2 男鬼变身卡| 777米奇影视久久| 亚洲av免费高清在线观看| 中文字幕人妻熟人妻熟丝袜美| 久久精品人人爽人人爽视色| 少妇人妻 视频| 好男人视频免费观看在线| 精品人妻一区二区三区麻豆| 亚洲成人av在线免费| 国产成人91sexporn| 精品少妇内射三级| 丝瓜视频免费看黄片| 黄色一级大片看看| 又大又黄又爽视频免费| 中文字幕av电影在线播放| 永久免费av网站大全| 男女国产视频网站| 国产无遮挡羞羞视频在线观看| 十八禁网站网址无遮挡| 成人黄色视频免费在线看| 欧美少妇被猛烈插入视频| 一边摸一边做爽爽视频免费| 午夜免费观看性视频| 满18在线观看网站| 777米奇影视久久| 亚洲精品日本国产第一区| 亚洲三级黄色毛片| 22中文网久久字幕| 亚洲欧洲日产国产| 免费黄色在线免费观看| 久热这里只有精品99| 欧美精品一区二区大全| 男女高潮啪啪啪动态图| 国产精品国产三级国产专区5o| 国产不卡av网站在线观看| 久久99蜜桃精品久久| 久久97久久精品| 自线自在国产av| 一级毛片黄色毛片免费观看视频| 亚洲精品色激情综合| 亚洲综合精品二区| 久久久久久久国产电影| 国产精品一区二区在线观看99| 国产精品人妻久久久影院| 水蜜桃什么品种好| 亚洲av成人精品一区久久| 在线看a的网站| 久久久精品94久久精品| 欧美3d第一页| 国产探花极品一区二区| 欧美日韩在线观看h| 国精品久久久久久国模美| 亚洲图色成人| 我的老师免费观看完整版| 国产亚洲最大av| 国产69精品久久久久777片| 久久久国产精品麻豆| 黑人高潮一二区| 亚洲欧美日韩另类电影网站| 看免费成人av毛片| 亚洲av男天堂| 国产精品一区www在线观看| 国产毛片在线视频| 观看av在线不卡| 91久久精品国产一区二区成人| 亚洲国产精品国产精品| 免费观看av网站的网址| 日本猛色少妇xxxxx猛交久久| 麻豆乱淫一区二区| 欧美日本中文国产一区发布| 七月丁香在线播放| 国产成人aa在线观看| 国产一区二区三区综合在线观看 | 亚洲欧洲国产日韩| 99久国产av精品国产电影| 精品视频人人做人人爽| 日韩av在线免费看完整版不卡| 丰满迷人的少妇在线观看| 女的被弄到高潮叫床怎么办| 一级毛片黄色毛片免费观看视频| 大片电影免费在线观看免费| 少妇人妻精品综合一区二区| 国产毛片在线视频| 国产一区二区在线观看日韩| 亚洲婷婷狠狠爱综合网| 亚洲三级黄色毛片| 国产精品成人在线| 99九九在线精品视频| 国产色婷婷99| 欧美日韩成人在线一区二区| 久久97久久精品| 国产日韩欧美亚洲二区| 亚洲一区二区三区欧美精品| 丰满迷人的少妇在线观看| 亚洲精品乱码久久久v下载方式| 日本黄大片高清| 国产片内射在线| 欧美丝袜亚洲另类| 色网站视频免费| 一级毛片电影观看| 亚洲国产成人一精品久久久| 在线天堂最新版资源| 国国产精品蜜臀av免费| 飞空精品影院首页| 精品熟女少妇av免费看| 国产精品欧美亚洲77777| 91精品国产九色| 肉色欧美久久久久久久蜜桃| 一级毛片电影观看| 久久久久久人妻| av.在线天堂| 日韩av免费高清视频| 国产精品一二三区在线看| 成人亚洲欧美一区二区av| 激情五月婷婷亚洲| 99热这里只有精品一区| 中文字幕人妻丝袜制服| 一级二级三级毛片免费看| 精品人妻一区二区三区麻豆| 亚洲精品自拍成人| 久久国产亚洲av麻豆专区| 免费人成在线观看视频色| 69精品国产乱码久久久| 免费日韩欧美在线观看| 日本黄色日本黄色录像| 国产精品国产三级国产av玫瑰| 亚洲精品成人av观看孕妇| 大香蕉久久网| 又粗又硬又长又爽又黄的视频| 久久精品久久久久久久性| 亚洲人成77777在线视频| 免费av中文字幕在线| 欧美成人精品欧美一级黄| 午夜福利在线观看免费完整高清在| 国产高清国产精品国产三级| 97在线人人人人妻| 免费高清在线观看视频在线观看| 日韩欧美精品免费久久| 日韩成人伦理影院| 七月丁香在线播放| 久久精品国产亚洲网站| 99精国产麻豆久久婷婷| 国产日韩一区二区三区精品不卡 | 色网站视频免费| 亚洲精品国产色婷婷电影| 成年av动漫网址| 久久久久久久久久久久大奶| 午夜福利视频精品| 久久国产精品男人的天堂亚洲 | 日韩人妻高清精品专区| 国产成人a∨麻豆精品| 成年女人在线观看亚洲视频| 五月伊人婷婷丁香| 男人爽女人下面视频在线观看| 少妇高潮的动态图| 91久久精品国产一区二区三区| 国产乱人偷精品视频| 中文欧美无线码| 91久久精品国产一区二区三区| 18禁动态无遮挡网站| 国产免费福利视频在线观看| 黄色怎么调成土黄色| 乱码一卡2卡4卡精品| 国产精品成人在线| 亚洲国产色片| 五月开心婷婷网| 在线观看国产h片| 国产一区有黄有色的免费视频| 国产精品成人在线| 日韩亚洲欧美综合| 成年人免费黄色播放视频| 日韩av免费高清视频| 国产爽快片一区二区三区| 精品人妻偷拍中文字幕| 美女福利国产在线| 久久久欧美国产精品| 女人精品久久久久毛片| 999精品在线视频| 国产永久视频网站| 大片免费播放器 马上看| 热99久久久久精品小说推荐| 亚洲精品乱久久久久久| 婷婷成人精品国产| 中文天堂在线官网| 日日摸夜夜添夜夜爱| 亚洲丝袜综合中文字幕| 亚洲怡红院男人天堂| 亚洲精品成人av观看孕妇| 制服丝袜香蕉在线| √禁漫天堂资源中文www| 内地一区二区视频在线| 亚洲精品视频女| 美女cb高潮喷水在线观看| 国产精品99久久久久久久久| 中文精品一卡2卡3卡4更新| 亚洲精品国产av蜜桃| 最新的欧美精品一区二区| 午夜福利影视在线免费观看| 日本黄色日本黄色录像| 精品一区在线观看国产| 国产成人精品一,二区| 国产一区二区在线观看av| 国产精品一二三区在线看| 亚洲无线观看免费| 日本vs欧美在线观看视频| 国产乱来视频区| 国产精品不卡视频一区二区| 国产一区二区在线观看日韩| 久久精品国产亚洲网站| 人妻夜夜爽99麻豆av| 18禁在线无遮挡免费观看视频| 在线精品无人区一区二区三| 国产精品欧美亚洲77777| 午夜福利视频在线观看免费| 视频区图区小说| 妹子高潮喷水视频| 久久久久久久久久久久大奶| 一本大道久久a久久精品| 岛国毛片在线播放| 久久久久人妻精品一区果冻| 精品视频人人做人人爽| 七月丁香在线播放| 丝袜在线中文字幕| 91午夜精品亚洲一区二区三区| 免费日韩欧美在线观看| 欧美最新免费一区二区三区| 亚洲欧美日韩卡通动漫| 欧美人与善性xxx| 丰满乱子伦码专区| 国产免费又黄又爽又色| 中文欧美无线码| 下体分泌物呈黄色| 国产av码专区亚洲av| 久久久久久久精品精品| 国产成人午夜福利电影在线观看| 一级片'在线观看视频| 涩涩av久久男人的天堂| 亚洲美女视频黄频| 国产精品久久久久久久久免| 国产极品天堂在线| 久久久久精品性色| 精品熟女少妇av免费看| 精品国产国语对白av| 免费大片黄手机在线观看| 青青草视频在线视频观看| 少妇的逼水好多| 有码 亚洲区| 又黄又爽又刺激的免费视频.| 精品国产一区二区久久| 亚洲精品国产av蜜桃| 如日韩欧美国产精品一区二区三区 | 视频区图区小说| 久热久热在线精品观看| 欧美日韩成人在线一区二区| 97精品久久久久久久久久精品| 成年美女黄网站色视频大全免费 | 国产精品.久久久| 午夜免费鲁丝| 色5月婷婷丁香| 精品一区在线观看国产| av黄色大香蕉| 91精品三级在线观看| 99九九线精品视频在线观看视频| 日韩一区二区视频免费看| 五月玫瑰六月丁香| 老熟女久久久| 国产国语露脸激情在线看| 国产欧美日韩一区二区三区在线 | 日本黄色片子视频| 欧美亚洲 丝袜 人妻 在线| 秋霞在线观看毛片| 男女边摸边吃奶| 日韩 亚洲 欧美在线| 日韩人妻高清精品专区| 久久久久精品性色| 国产成人精品无人区| 日本欧美国产在线视频| 美女脱内裤让男人舔精品视频| 一区二区三区免费毛片| 色94色欧美一区二区| 亚洲,一卡二卡三卡| 国产一区二区三区综合在线观看 | 久久久国产一区二区| 午夜精品国产一区二区电影| 亚洲熟女精品中文字幕| 在线免费观看不下载黄p国产| 久久99一区二区三区| 在线观看免费高清a一片| 亚洲三级黄色毛片| 亚洲av男天堂| 91精品国产九色| 亚洲av日韩在线播放| 能在线免费看毛片的网站| 肉色欧美久久久久久久蜜桃| 美女cb高潮喷水在线观看| 成人亚洲精品一区在线观看| 久久午夜福利片| 最近中文字幕2019免费版| 午夜老司机福利剧场| 久久国产精品大桥未久av| videossex国产| 国产高清不卡午夜福利| 午夜91福利影院| 最近中文字幕2019免费版| 欧美日韩国产mv在线观看视频| 99精国产麻豆久久婷婷| 欧美日韩国产mv在线观看视频| 欧美激情极品国产一区二区三区 | 好男人视频免费观看在线| 久久久久久久久久久免费av| av在线播放精品| 免费大片黄手机在线观看| 黄色毛片三级朝国网站| 少妇高潮的动态图| 成人二区视频| 亚洲熟女精品中文字幕| 成人二区视频| 男人操女人黄网站| 亚洲精品中文字幕在线视频| 日本午夜av视频| 18禁观看日本| 精品国产一区二区久久| 老熟女久久久| 中国三级夫妇交换| 男女无遮挡免费网站观看| 精品久久国产蜜桃| 91精品一卡2卡3卡4卡| 国产精品女同一区二区软件| 国产精品99久久久久久久久| 青青草视频在线视频观看| 在线精品无人区一区二区三| 美女xxoo啪啪120秒动态图| 在线播放无遮挡| 18禁在线播放成人免费| 精品人妻熟女毛片av久久网站| 日日爽夜夜爽网站| 色94色欧美一区二区| 午夜91福利影院| 男女免费视频国产| 亚洲欧美一区二区三区国产| 18在线观看网站| 韩国高清视频一区二区三区| 少妇被粗大猛烈的视频| 欧美成人午夜免费资源| 美女国产视频在线观看| 亚洲第一av免费看| 国国产精品蜜臀av免费| 久久av网站| 啦啦啦视频在线资源免费观看| 色94色欧美一区二区| 人妻人人澡人人爽人人| 纵有疾风起免费观看全集完整版| 少妇熟女欧美另类| 91aial.com中文字幕在线观看| a级毛色黄片| 91国产中文字幕| 如何舔出高潮| 日韩制服骚丝袜av| av在线老鸭窝| 97在线视频观看| 久久久久久久久久成人| 久久韩国三级中文字幕| 九九在线视频观看精品| 日本欧美国产在线视频| 亚洲激情五月婷婷啪啪| 妹子高潮喷水视频| 久久久久精品久久久久真实原创| 97在线人人人人妻| 国产国拍精品亚洲av在线观看| 97超碰精品成人国产| 最近中文字幕高清免费大全6| 免费av不卡在线播放| 大香蕉97超碰在线| 精品人妻偷拍中文字幕| 日本黄色片子视频| 成人国产麻豆网| 一个人免费看片子| 欧美国产精品一级二级三级| 麻豆成人av视频| 美女福利国产在线| 日本免费在线观看一区| 下体分泌物呈黄色| 大香蕉久久成人网| 熟妇人妻不卡中文字幕| 日韩三级伦理在线观看| 赤兔流量卡办理| 精品少妇久久久久久888优播| 国产精品一区二区在线观看99| 国产精品熟女久久久久浪| 国产黄色免费在线视频| 91精品国产九色| 亚洲av.av天堂| 亚洲丝袜综合中文字幕| 欧美性感艳星| .国产精品久久| 下体分泌物呈黄色| 男人操女人黄网站| 精品亚洲成a人片在线观看| 国产精品免费大片| 亚洲久久久国产精品| 成人无遮挡网站| 一级,二级,三级黄色视频| 女的被弄到高潮叫床怎么办| 成人国语在线视频|