• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Study on Preparation and Properties of the Graphene Functional Layer by the Spray Coating Method

    2017-10-13 03:46:20WANGXiaojuXURuxiangDUNTaoQIKangchengCAOGuichuanandLINZulun
    電子科技大學(xué)學(xué)報 2017年1期
    關(guān)鍵詞:掃描電鏡結(jié)果表明活性劑

    WANG Xiao-ju, XU Ru-xiang, DUN Tao, QI Kang-cheng, CAO Gui-chuan, and LIN Zu-lun

    ?

    Study on Preparation and Properties of the Graphene Functional Layer by the Spray Coating Method

    WANG Xiao-ju1,2, XU Ru-xiang1, DUN Tao2, QI Kang-cheng2, CAO Gui-chuan2, and LIN Zu-lun2

    (1. General Hospital of Beijing Military Region Dongcheng Beijing 100700; 2. School of Opto-Electronic Information, University of Electronic Science and Technology of China Chengdu 610054)

    Stable aqueous graphene dispersion with sodium dodecyl benzene sulfonate (SDBS) surfactant was prepared by using an ultrasonic dispersing process. Graphene films were deposited on glass and silicon substrate as functional layers by the spray coating method. The study of the influence of SDBS concentration on graphene dispersing performance show that SDBS concentration of 15% is adequate for preparing stable graphene dispersion. Optical and morphological properties of the resulting graphene films are also investigated by ultraviolet-visible spectrophotometer and scanning electron microscopy, respectively. The results indicate that the visible light transmittance of graphene coating is higher than 82% and the graphene film shows a cluster structure with blade-like edges. The field emission analyses were carried out by a diode test cell in a vacuum system, which confirms that this graphene functional layer has good field-emission performance with low turn-on field of 3 V/μm and large enhancement factor of 3 580. Collectively, this deposition method may be a viable and cost-effective route for fabricating graphene films.

    dispersions; field emission; graphene; surfactant; transmittance

    Graphene is a flat layer of Sp2-bonded carbon with one-atom thick. Due to its optical, thermal, mechanical and electronic properties[1-3], graphene has stimulated intense researches over past decades. These unique features make graphene a promising material in many potential applications. For example, it can be used as anodes of organic solar cells[4], electrodes for batteries with high capacity[5-6], and surface plasmon resonance based fiber optic sensors[7-8].Moreover, graphene is one of excellent field-emission materials. Graphene field-emission has high field emitting current taking an advantage of high aspect ratio (ratio of lateral size to thickness). Moreover, graphene field emission has excellent field emitting stability for its unique mechanical and conductive properties.

    To date, numerous methods have been reported regarding the preparation of graphene thin films, such as vacuum filtration[9], spin coating[10], self-assembly[11], and electrophoretic deposition approach[12]. These reports focused mainly on the optimization of depositing conditions, as well as the electrical and optical properties of fabricated films. However, no systematic study has been performed to investigate the field emitting characteristics of graphene films by using the spray coating method.

    Spray coating has been widely used as an economical and versatile processing technique for deposition of various nanomaterials and films, such as LaB6film[13]and CNTs[14], owing to its good uniformity, controlled thickness, and high deposition rate and throughput. For example, Ostfeld et al. fabricated P3HT-PCBM organic solar cells by utilizing spray-coated transparent conductive CNT films as the electrode material, and achieved power conversion efficiency of 2.3%, which was comparable to those of solar cells by using indium tin oxide transparent electrodes[14]. In this work, we demonstrate the fabrication of spray-coated graphene films from sodium dodecyl benzene sulfonate (SDBS) aqueous dispersed graphene solution. Optically, morphological and field-emission characterizations are presented and discussed.

    1 Experiments

    The graphene nanomaterials used in our experiments were commercially provided by Nanjing Kefu Nano Technology Co. Ltd., Beijing, China. The powder mainly consisted of multi-layer graphene (MLG) flakes, having an average primary particle size of less than 5 μm, average thickness of 1~6 nm, and layers of less than ten. The process of producing the graphene functional layer included two key steps: fabricating uniform and stable graphene dispersion, and depositing graphene on Si substrate. First, the graphene (0.06 g) was dispersed in deionized water (60 mL) by sonication for 30 min. Sodium dodecyl benzene sulfonate as surfactant was then added and ultrasonic vibrated for 5 h to form a type of uniform solution. Because SDBS was a kind of viscous liquid, the weight of SDBS was selected not only to prevent the aggregation of graphene sheets but also avoid a significant viscous phenomenon. The stable dispersion of graphene was held at room temperature for 48 h. Next, the graphene films were coated on the clean glass and silicon substrate using a spray gun, followed by annealing at 400 ℃ in air for 30 min.

    To study the dispersing properties of graphene, the solutions were treated by centrifugal processing and upper stable dispersions were analyzed by an ultraviolet-visible spectrophotometer relative to air. Surface morphologies and transmission measurements of graphene films were carried out with a scanning electron microscope and a UV-VIS spectrophotometer, respectively. The field-emission properties were characterized via a diode system in vacuum. Figure 1 shows the simple schematic diagram of the field emission test system. The silicon substrate with graphene functional layer was used as cathode and a stainless steel plate was introduced as anode. The distance between the cathode and anode was ~0.1 mm.

    Fig. 1 Schematic diagram of the diode configuration used for an investigation of field emitting properties of graphene films

    2 Results and Discussions

    Figure 2 shows the UV-vis absorption spectra for the stable graphene dispersions with different concentrations of SDBS surfactant (10 wt %, 15 wt %). Two samples exhibited similar spectrums and both displayed an obvious absorption maximum at about 255 nm with tailing to 800 nm. It verified that graphene has been successfully dispersed in the solvents. In more detail, the peak value raised along with an increase in SDBS. However, when the concentration of SDBS increased to 20 wt %, the solution became too viscous in our experiment, which was unfit for spraying. In addition, the aqueous dispersion (15 wt % SDBS) was found to be very stable and homogeneous even if the storage time was over 60 days, which indicated that SDBS surfactant combining with an ultrasound technology was efficient to assist preparation of the high-quality graphene dispersion. The fantastic dispersibility of SDBS- graphene was attributed to the presence of small amounts of-OH and SO3-groups introduced by SDBS.

    Figure 3 shows the transmittance spectrum of sprayed graphene coating on glass substrate. By using a clean glass slide as a reference, the transmittance in the visible wavelength range was greater than 82%. Especially, in the 650~800 nm wavelength range, the transmittance was higher than 90%. There were many other literatures focusing on the optical properties of graphene films. According to their research, a graphene coating deposited on glass substrate with a high visible light transmittance of more than 96% could be achieved by air-brush spraying of a chemically converted graphene solution[15]. The relationship between the transmittance and the layers of graphene films was defined by the following equation:

    whereis the layers of graphene films,and0are transmittance of fabricated graphene films and single layer graphene, respectively. According to Eq. (1), we can consider that the lower transmittance in our experiment may be attributed to the overlapping and clustering of graphene.

    Figure 4 shows the SEM image of the fabricated graphene functional layer. Due to the coarse nature of the coating procedure, the graphene flakes overlapped irregularly, and film thickness ranged from hundreds of nanometers to a few micrometers. This morphology was consistent with the previous results of the slightly lower transmittance in Fig.3. It also can be seen that, the graphene cluster consisted of a number of sheet-like structures. Making use of these blade-like edges with atomic thickness, it could greatly increase the electric field enhancement factor.

    Fig.3 A transmission spectrum of a graphene functional layer coated on a glass slide by spraying of graphene solution (15 wt % SDBS)

    Fig.4 SEM image of graphene functional layer coated on silicon substrate by spraying of graphene solution (15 wt % SDBS)

    Figure 5a shows the field emitting current density-voltage (-) characteristics of graphene functional layer coated on silicon substrate at 6×10-5Pa in diode geometry. With the increase of anode voltage, the emission current density increased very rapidly, finally reached 5 mA/cm2at electric field of 17.5 V/μm. Furthermore, it exhibited a low turn-on field of 3 V/μm, which was well comparable to other cold cathodes, including a Si nanotip array of 8.5 V/μm[16]and CNT field emitters of 2~5 V/μm[17]. We suggested that this satisfactory field emitting performance of graphene film was not only due to its unique high aspect ratio but also due to its special appearance presented in the SEM photograph (Fig.4). As shown in Fig.4, graphene films were made of flat graphene sheets laminated together. Although this flat sheet structure was contrary to conventional field-emission cathodes with sharp surface (i.e. Spindt emitters and CNTs), when there was a strong vertical electric field applied, the graphene sheets would be pulled up and more edges exposed. Owing to the special edge-field enhancing effect, lots of electrons emitted from graphene films. Moreover, because the pulled up graphene sheets were separated, the influence of electric field shielding effect may be reduced and field emitting performance would be improved further.

    Figure 5b shows the Fowler-Nordheim (-) plots of measured graphene films. The-points formed a straight line approximately, which confirmed that the current was indeed the result of field emission. According to the Fowler-Nordheim theory, electric field enhancement factor () of emitter surface was evaluated by using the Fowler-Nordheim equation, i.e.,

    (2)

    whereis work function in eV;is field-dependent correction factor, which is approximated asfor most applications;is electric field strength in V/cm;is field emitting current density in A/cm2. Consequently, the slope of the-plot in Fig.5b was given by:

    Assuming that the work function of multilayer graphene films was 4.3 eV[18], the field enhancement factor of graphene film was determined to be 3 580 from the constant-slope. This large enhancement factor allowed for sufficient tunneling of electrons from graphene through surface barriers and resulted in the low turn-on voltage as previously described.

    3 Conclusions

    We developed a simple and practical method to obtain a graphene functional layer with remarkable field-emission performance by using the spray-coating method. The UV-vis absorption spectra for the stable graphene dispersions were measured to examine their dispersion properties. The optical transmittance and morphological of the prepared films were investigated. The results revealed that the visible light transmittance of graphene film was higher than 82% and graphene flakes overlapped irregularly on silicon substrate with numerous blade-like edges. In addition, the graphene films showed excellent field-emission properties, with low turn-on field of 3 V/μm and large enhancement factor of 3 580. These results provide a convenient approach to create new graphene-based devices.

    [1] CANTY R, GONZALEZ E, MACDONALD C, et al. Reduction expansion synthesis as strategy to control nitrogen doping level and surface area in graphene[J]. Materials, 2015, 8(10): 7048-7058.

    [2] FAN Y, IGARASHI G, JIANG W, et al. Highly strain tolerant and tough ceramic composite by incorporation of graphene[J]. Carbon, 2015, 90: 274-283.

    [3] OTHMAN M, RITIKOS R, MUHAMMAD H, et al. Low -temperature plasma-enhanced chemical vapour deposition of transfer-free graphene thin films[J]. Materials Letters, 2015, 158: 436-438.

    [4] VAIANELLA F, ROSOLEN G, MAES B. Graphene as a transparent electrode for amorphous silicon-based solar cells[J]. Journal of Applied Physics, 2015, 117(24): 243102.

    [5] ERVIN M H. Etching holes in graphene supercapacitor electrodes for faster performance[J]. Nanotechnology, 2015, 26(23): 234003.

    [6] LAI L, YANG H, WANG L, et al. Preparation of supercapacitor electrodes through selection of graphene surface functionalities[J]. ACS Nano, 2012, 6(7): 5941- 5951.

    [7] VADIVAAMBIGAI A, SENTHILVASAN P A, KOTHURKAR N, et al. Graphene-oxide-based electro chemical sensor for salicylic acid[J]. Nanoscience and Nanotechnology Letters, 2015, 7(2): 140-146.

    [8] LEE J S, OH J, JUN J, et al. Wireless hydrogen smart sensor based on Pt/graphene-immobilized radio-frequency identification tag[J]. ACS Nano, 2015, 9(8): 7783-7790.

    [9] EDA G, FANCHINI G, CHHOWALLA M. large area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material[J]. Nature Nanotechnology, 2008, 3(5): 270-274.

    [10] GUO Y L, DI C A, LIU H T, et al. General route toward patterning of graphene oxide by a combination of wettability modulation and spin-coating[J]. ACS Nano, 2010, 4(10): 5749-5754.

    [11] ARAPOV K, GORYACHEV A, WITH G D, et al. A simple and ?exible route to large-area conductive transparent graphene thin-?lms[J]. Synthetic Metals, 2015, 201: 67-75.

    [12] WU Z S, PEI S F, REN W C, et al. Field emission of single-layer graphene films prepared by electrophoretic deposition[J]. Advanced Materials, 2009, 21:1756-1760.

    [13] DENG J, ZENG B Q, WANG X J, et al. Lowering of the firing voltage and reducing of the discharge delay time in alternating current plasma display panels by a discontinuous spin-coated LaB6 film on the MgO protective layer[J]. AIP Advance, 2014(4): 037109.

    [14] OSTFELD A E, CATHELINE A, LIGSAY K, et al. Single-walled carbon nanotube transparent conductive films fabricated by reductive dissolution and spray coating for organic photovoltaics[J]. Applied Physics Letters, 2014, 105: 253301.

    [15] LI D, MüLLER M B, GILJE S, et al. Processable aqueous dispersions of graphene nanosheets[J]. Nature Nanotechnology, 2008, 3(2): 101-105.

    [16] HUANG G S, WU X L, CHENG Y C, et al. Fabrication and field emission property of a Si nanotip array[J]. Nanotechnology, 2006, 17: 5573-5576.

    [17] JUNG M S, KO Y K, JUNG D H, et al. Electrical and field-emission properties of chemically anchored single-walled carbon nanotube patterns[J]. Appied Physics Letters,2005, 87: 013114.

    [18] PARK S J, PARK H, LEE Y, et al. Increasing the effective work function of multilayer rapheme films using silver nanoparticles[J]. Journal of Vacuum Science and Technology B, 2014, 32(1): 011214.

    編 輯 漆 蓉

    噴涂法制備石墨烯功能層及性能研究

    王小菊1,2,徐如祥1,敦 濤2,祁康成2,曹貴川2,林祖?zhèn)?

    (1. 北京軍區(qū)總醫(yī)院 北京東城區(qū) 100700;2. 電子科技大學(xué)光電信息學(xué)院 成都 610054)

    以十二烷基苯磺酸鈉(SDBS)為表面活性劑,采用超聲分散工藝制備出穩(wěn)定的石墨烯水分散液,并采用噴涂法分別在玻璃和n-Si基底上形成石墨烯薄膜。研究了表面活性劑濃度對石墨烯分散效果的影響。結(jié)果表明,采用濃度為15%的SDBS可獲得穩(wěn)定的石墨烯水溶液分散液。利用分光光度計和掃描電鏡對石墨烯薄膜的透過率和表面形貌進行表征,結(jié)果表明其可見光透過率超過82%,薄膜具有刀刃狀的邊緣結(jié)構(gòu)。采用二極管結(jié)構(gòu)對石墨烯薄膜的場發(fā)射性能進行測試,其開啟電場為3 V/μm,場增強因子為3 580。實驗結(jié)果表明,這是一種可行的、低成本的制作石墨烯功能層的有效方法。

    分散液; 場發(fā)射; 石墨烯; 表面活性劑; 透過率

    O462.4

    A

    2016-02-16;

    2016-06-21

    10.3969/j.issn.1001-0548.2017.01.020

    2016-02-16;Revised date:2016-06-21

    Biography:WANG Xiao-ju was born in 1981, female, associate professor, her research interest includes vacuum materials and devices.

    王小菊(1981-),女,博士,副教授,主要從事電真空材料與器件方面的研究.

    猜你喜歡
    掃描電鏡結(jié)果表明活性劑
    掃描電鏡能譜法分析紙張的不均勻性
    智富時代(2018年7期)2018-09-03 03:47:26
    掃描電鏡在雙金屬層狀復(fù)合材料生產(chǎn)和研究中的應(yīng)用
    電線電纜(2017年4期)2017-07-25 07:49:48
    AOS-AA表面活性劑的制備及在浮選法脫墨中的應(yīng)用
    中國造紙(2015年7期)2015-12-16 12:40:48
    基于PSO-GRG的背散射模式掃描電鏡的數(shù)字處理及應(yīng)用
    化學(xué)降解表面活性劑的開發(fā)
    來源于微生物的生物表面活性劑
    掃描電鏡法觀察雞蛋殼超微結(jié)構(gòu)形貌
    陰離子表面活性劑的應(yīng)用與創(chuàng)新
    體育鍛煉也重要
    闊世瑪與世瑪用于不同冬小麥品種的安全性試驗
    av天堂久久9| 午夜激情av网站| 欧美日韩av久久| 欧美成人午夜免费资源| 赤兔流量卡办理| 欧美+日韩+精品| 高清黄色对白视频在线免费看| 少妇人妻久久综合中文| 王馨瑶露胸无遮挡在线观看| 精品人妻一区二区三区麻豆| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲高清免费不卡视频| 国产成人91sexporn| 最新中文字幕久久久久| 黄片无遮挡物在线观看| 亚洲av日韩在线播放| 夫妻性生交免费视频一级片| 国产精品99久久久久久久久| 99久久精品一区二区三区| 黄色欧美视频在线观看| 欧美人与善性xxx| 美女脱内裤让男人舔精品视频| 国产有黄有色有爽视频| 只有这里有精品99| 亚洲综合色网址| 卡戴珊不雅视频在线播放| 美女cb高潮喷水在线观看| 久久精品夜色国产| 久久久久久久国产电影| 国产午夜精品一二区理论片| 日本免费在线观看一区| 精品国产一区二区久久| 少妇的逼好多水| 亚洲综合精品二区| 特大巨黑吊av在线直播| av在线app专区| 久久精品国产亚洲av涩爱| 狠狠婷婷综合久久久久久88av| 免费观看在线日韩| 永久网站在线| 人人妻人人澡人人爽人人夜夜| 久久久久久久久久人人人人人人| 日本黄色日本黄色录像| 日韩熟女老妇一区二区性免费视频| 美女大奶头黄色视频| 久久久久精品久久久久真实原创| 久久久久精品久久久久真实原创| 午夜久久久在线观看| 人妻制服诱惑在线中文字幕| 18+在线观看网站| 国产精品不卡视频一区二区| 日韩在线高清观看一区二区三区| kizo精华| 亚洲国产日韩一区二区| 大陆偷拍与自拍| 亚洲av欧美aⅴ国产| 国产 一区精品| 十分钟在线观看高清视频www| 成人毛片60女人毛片免费| 丝瓜视频免费看黄片| 中文字幕免费在线视频6| 亚洲丝袜综合中文字幕| 久久久国产欧美日韩av| 丝瓜视频免费看黄片| 国产色婷婷99| 久久精品国产亚洲av天美| 在线观看一区二区三区激情| 人妻系列 视频| 国产老妇伦熟女老妇高清| 在现免费观看毛片| 久久精品国产亚洲网站| 久久精品国产亚洲av天美| 久久精品国产a三级三级三级| 大香蕉97超碰在线| 97在线人人人人妻| 日韩 亚洲 欧美在线| 久久精品久久久久久久性| 999精品在线视频| 欧美丝袜亚洲另类| 十八禁高潮呻吟视频| 亚洲无线观看免费| 夜夜看夜夜爽夜夜摸| 久久99蜜桃精品久久| 亚洲综合色惰| 亚洲精品色激情综合| 9色porny在线观看| 在现免费观看毛片| 蜜桃久久精品国产亚洲av| 在线观看免费视频网站a站| 人妻制服诱惑在线中文字幕| 亚洲av欧美aⅴ国产| 少妇丰满av| 国产片内射在线| 国内精品宾馆在线| 久久99热6这里只有精品| 性色av一级| 中文字幕av电影在线播放| 免费日韩欧美在线观看| 蜜桃久久精品国产亚洲av| 人妻系列 视频| 啦啦啦在线观看免费高清www| 99热国产这里只有精品6| 日韩制服骚丝袜av| 久久久久人妻精品一区果冻| 国产成人免费无遮挡视频| 国内精品宾馆在线| 91精品国产九色| 免费人成在线观看视频色| www.av在线官网国产| 亚洲精品久久久久久婷婷小说| 久久久久久久久大av| 青青草视频在线视频观看| 日本欧美国产在线视频| 亚洲美女搞黄在线观看| 国产又色又爽无遮挡免| 欧美日韩一区二区视频在线观看视频在线| 国产欧美日韩综合在线一区二区| av一本久久久久| 精品国产国语对白av| 亚洲精品中文字幕在线视频| av视频免费观看在线观看| 99国产综合亚洲精品| 看十八女毛片水多多多| 久久久久精品性色| 中文字幕制服av| 国产精品久久久久久精品古装| 国模一区二区三区四区视频| 99热这里只有精品一区| 欧美变态另类bdsm刘玥| av网站免费在线观看视频| 大片电影免费在线观看免费| 国产老妇伦熟女老妇高清| av线在线观看网站| 在线精品无人区一区二区三| 午夜日本视频在线| 日本猛色少妇xxxxx猛交久久| 九色亚洲精品在线播放| 高清在线视频一区二区三区| 少妇被粗大的猛进出69影院 | 亚洲,一卡二卡三卡| av国产久精品久网站免费入址| 嘟嘟电影网在线观看| 99re6热这里在线精品视频| 亚洲美女黄色视频免费看| 黑人欧美特级aaaaaa片| 日本黄色片子视频| 亚洲人成网站在线观看播放| 婷婷色麻豆天堂久久| 精品一区在线观看国产| 亚洲欧美一区二区三区国产| 在线观看免费视频网站a站| 免费观看在线日韩| 18禁裸乳无遮挡动漫免费视频| 久久 成人 亚洲| 国产精品久久久久成人av| 成人18禁高潮啪啪吃奶动态图 | 色婷婷久久久亚洲欧美| 少妇人妻精品综合一区二区| 精品亚洲成国产av| 国产日韩欧美在线精品| 伦精品一区二区三区| 国产永久视频网站| 五月玫瑰六月丁香| 亚洲成人手机| 欧美日韩亚洲高清精品| 久久这里有精品视频免费| 熟女电影av网| 国产伦精品一区二区三区视频9| 日韩成人av中文字幕在线观看| 九色亚洲精品在线播放| 国产成人精品一,二区| 成人亚洲精品一区在线观看| 国产一区二区在线观看日韩| 久久午夜综合久久蜜桃| 色婷婷久久久亚洲欧美| 国产亚洲av片在线观看秒播厂| videosex国产| 欧美人与性动交α欧美精品济南到 | 最近最新中文字幕免费大全7| 熟女人妻精品中文字幕| 欧美激情国产日韩精品一区| 国产国拍精品亚洲av在线观看| 欧美变态另类bdsm刘玥| 黑丝袜美女国产一区| 亚洲色图 男人天堂 中文字幕 | 简卡轻食公司| 人妻一区二区av| 人妻夜夜爽99麻豆av| 久久影院123| 亚洲四区av| 涩涩av久久男人的天堂| 国产高清不卡午夜福利| 满18在线观看网站| 日本91视频免费播放| 99久久精品一区二区三区| 免费看光身美女| 日本-黄色视频高清免费观看| 美女主播在线视频| 精品亚洲成国产av| 狠狠精品人妻久久久久久综合| 丝瓜视频免费看黄片| 午夜福利,免费看| 日本黄大片高清| 国产精品无大码| 成人手机av| 国产高清三级在线| 亚洲国产日韩一区二区| 亚洲中文av在线| 2022亚洲国产成人精品| 亚洲欧洲日产国产| 下体分泌物呈黄色| 青春草视频在线免费观看| 肉色欧美久久久久久久蜜桃| 日日撸夜夜添| 亚洲av免费高清在线观看| 亚洲欧美色中文字幕在线| 熟女av电影| 伊人亚洲综合成人网| 一本色道久久久久久精品综合| 国产 一区精品| 亚洲精品美女久久av网站| 亚洲精品乱码久久久久久按摩| 久久久久国产网址| 国产精品人妻久久久久久| 男女边摸边吃奶| 一本色道久久久久久精品综合| 大片免费播放器 马上看| 精品亚洲成国产av| 91久久精品电影网| 黄片播放在线免费| 丝瓜视频免费看黄片| 夜夜看夜夜爽夜夜摸| 在线观看三级黄色| 中文字幕av电影在线播放| 久久久久久久大尺度免费视频| 亚洲欧美成人精品一区二区| 久久99精品国语久久久| 中国国产av一级| 大香蕉97超碰在线| 国产一区有黄有色的免费视频| 两个人的视频大全免费| 激情五月婷婷亚洲| 亚洲国产色片| 青春草视频在线免费观看| 亚洲av日韩在线播放| 亚洲伊人久久精品综合| 一区二区三区乱码不卡18| 一级爰片在线观看| 亚洲激情五月婷婷啪啪| 亚洲欧洲精品一区二区精品久久久 | 国产黄色视频一区二区在线观看| 亚洲精品日本国产第一区| 欧美成人精品欧美一级黄| 人妻制服诱惑在线中文字幕| 视频区图区小说| 高清不卡的av网站| 18禁观看日本| 国产高清不卡午夜福利| 免费不卡的大黄色大毛片视频在线观看| 婷婷色综合www| 久久精品熟女亚洲av麻豆精品| 男女啪啪激烈高潮av片| 亚洲精品国产色婷婷电影| 一边摸一边做爽爽视频免费| 人人妻人人爽人人添夜夜欢视频| 一区二区av电影网| 国语对白做爰xxxⅹ性视频网站| 精品一品国产午夜福利视频| 亚洲av国产av综合av卡| 人人妻人人添人人爽欧美一区卜| 亚洲国产成人一精品久久久| 中文天堂在线官网| 日韩亚洲欧美综合| 亚洲第一区二区三区不卡| av国产精品久久久久影院| h视频一区二区三区| 丝瓜视频免费看黄片| 亚洲成色77777| 成人毛片60女人毛片免费| 成人毛片60女人毛片免费| 亚洲欧美成人综合另类久久久| 黄片播放在线免费| 在线观看www视频免费| 精品人妻熟女毛片av久久网站| 欧美人与性动交α欧美精品济南到 | 欧美 亚洲 国产 日韩一| 久久狼人影院| 亚洲精品日韩在线中文字幕| 久久久精品94久久精品| 国产黄频视频在线观看| 极品人妻少妇av视频| 色婷婷久久久亚洲欧美| 亚洲丝袜综合中文字幕| 91午夜精品亚洲一区二区三区| 狂野欧美激情性xxxx在线观看| 欧美日韩国产mv在线观看视频| 精品久久久久久电影网| 国产一区亚洲一区在线观看| 水蜜桃什么品种好| 国产毛片在线视频| 少妇被粗大猛烈的视频| videossex国产| 人人妻人人爽人人添夜夜欢视频| 99热国产这里只有精品6| 九色亚洲精品在线播放| 久久久久久久久久久免费av| 一本色道久久久久久精品综合| 最近2019中文字幕mv第一页| 成年女人在线观看亚洲视频| 只有这里有精品99| 久久午夜福利片| kizo精华| 精品国产乱码久久久久久小说| 一本一本综合久久| 18+在线观看网站| 亚洲成人av在线免费| 亚洲一区二区三区欧美精品| 夫妻午夜视频| 三上悠亚av全集在线观看| 精品99又大又爽又粗少妇毛片| 久久精品夜色国产| 成人午夜精彩视频在线观看| 成年美女黄网站色视频大全免费 | videossex国产| 嘟嘟电影网在线观看| 性色av一级| 肉色欧美久久久久久久蜜桃| 国产综合精华液| 女的被弄到高潮叫床怎么办| 在线精品无人区一区二区三| 色吧在线观看| 国产精品99久久99久久久不卡 | 久久久久久久亚洲中文字幕| 国产av精品麻豆| 日韩伦理黄色片| 伦理电影免费视频| 亚洲四区av| 久久狼人影院| 制服丝袜香蕉在线| 亚洲精品日韩av片在线观看| 亚洲av电影在线观看一区二区三区| 国内精品宾馆在线| 免费少妇av软件| 亚洲欧美一区二区三区黑人 | av在线app专区| 午夜福利网站1000一区二区三区| 在线观看美女被高潮喷水网站| 日本91视频免费播放| 熟女电影av网| 色吧在线观看| 国产精品久久久久久av不卡| 欧美97在线视频| 人人妻人人澡人人爽人人夜夜| 久久狼人影院| 国产精品.久久久| 69精品国产乱码久久久| 久久国产亚洲av麻豆专区| 午夜影院在线不卡| 欧美人与性动交α欧美精品济南到 | 一区二区三区免费毛片| 午夜免费男女啪啪视频观看| 菩萨蛮人人尽说江南好唐韦庄| 天堂俺去俺来也www色官网| 九九在线视频观看精品| 国精品久久久久久国模美| 国产精品人妻久久久久久| 菩萨蛮人人尽说江南好唐韦庄| 免费看av在线观看网站| 亚洲欧美精品自产自拍| av卡一久久| 精品人妻熟女毛片av久久网站| 多毛熟女@视频| 日日啪夜夜爽| 日韩中字成人| 亚洲精品第二区| 成人毛片a级毛片在线播放| 久久97久久精品| 亚洲精品久久成人aⅴ小说 | 好男人视频免费观看在线| 在线精品无人区一区二区三| 久久久精品94久久精品| 大又大粗又爽又黄少妇毛片口| 亚洲欧洲国产日韩| 欧美3d第一页| 亚洲av国产av综合av卡| videossex国产| 五月开心婷婷网| 自拍欧美九色日韩亚洲蝌蚪91| 一边摸一边做爽爽视频免费| 伊人亚洲综合成人网| 亚洲成人手机| 欧美一级a爱片免费观看看| 精品国产乱码久久久久久小说| 人妻少妇偷人精品九色| 国产熟女欧美一区二区| 国产高清有码在线观看视频| 欧美97在线视频| 七月丁香在线播放| 国产无遮挡羞羞视频在线观看| 久久99一区二区三区| 久久 成人 亚洲| 亚洲美女搞黄在线观看| 日韩人妻高清精品专区| 最近手机中文字幕大全| 国产成人freesex在线| 欧美精品国产亚洲| av在线老鸭窝| 极品人妻少妇av视频| 如何舔出高潮| 2022亚洲国产成人精品| 精品一区二区三区视频在线| 美女脱内裤让男人舔精品视频| 国产精品一区二区在线不卡| 男人添女人高潮全过程视频| 纯流量卡能插随身wifi吗| 国产精品一区二区三区四区免费观看| 精品久久国产蜜桃| 欧美亚洲日本最大视频资源| 亚洲欧美一区二区三区黑人 | 色视频在线一区二区三区| 成人二区视频| 国产av码专区亚洲av| 成人国产av品久久久| 一区二区三区四区激情视频| 欧美变态另类bdsm刘玥| 精品午夜福利在线看| 久久精品国产鲁丝片午夜精品| 69精品国产乱码久久久| 最近的中文字幕免费完整| 国产男女超爽视频在线观看| 黄色怎么调成土黄色| 欧美一级a爱片免费观看看| 99热国产这里只有精品6| 国产精品久久久久久精品古装| 美女大奶头黄色视频| 我要看黄色一级片免费的| 久久久久久久久久久免费av| 免费av中文字幕在线| videos熟女内射| av免费观看日本| 亚洲精品成人av观看孕妇| 国产av精品麻豆| 国产高清有码在线观看视频| 亚洲精华国产精华液的使用体验| 精品午夜福利在线看| 久久精品国产鲁丝片午夜精品| 日本色播在线视频| 97精品久久久久久久久久精品| 亚洲国产精品一区二区三区在线| 亚洲欧美色中文字幕在线| 街头女战士在线观看网站| 亚洲成人手机| 性高湖久久久久久久久免费观看| av又黄又爽大尺度在线免费看| 亚洲五月色婷婷综合| 天堂中文最新版在线下载| 中文字幕av电影在线播放| 亚洲精品一区蜜桃| 国产精品一国产av| 欧美精品亚洲一区二区| 人体艺术视频欧美日本| 高清不卡的av网站| 久久毛片免费看一区二区三区| 午夜激情久久久久久久| 少妇被粗大的猛进出69影院 | 国产精品成人在线| 国产成人免费观看mmmm| 在线观看免费高清a一片| 亚洲国产精品999| 啦啦啦在线观看免费高清www| 在线亚洲精品国产二区图片欧美 | 亚洲av电影在线观看一区二区三区| 国产亚洲精品第一综合不卡 | 日本vs欧美在线观看视频| 丝袜在线中文字幕| 成人亚洲精品一区在线观看| 一区二区三区精品91| 人妻少妇偷人精品九色| 人体艺术视频欧美日本| 日日摸夜夜添夜夜爱| 国产av一区二区精品久久| 欧美bdsm另类| 免费不卡的大黄色大毛片视频在线观看| 水蜜桃什么品种好| 国产欧美亚洲国产| 久久久精品94久久精品| 亚洲av在线观看美女高潮| 中文欧美无线码| 国产成人aa在线观看| 精品熟女少妇av免费看| 黄色毛片三级朝国网站| 亚洲精华国产精华液的使用体验| 亚洲综合色网址| 国产一区有黄有色的免费视频| 国产欧美另类精品又又久久亚洲欧美| 国产日韩欧美亚洲二区| 视频区图区小说| 中文字幕久久专区| 国产黄片视频在线免费观看| 欧美xxⅹ黑人| 欧美3d第一页| 爱豆传媒免费全集在线观看| 人人妻人人爽人人添夜夜欢视频| 日本av手机在线免费观看| 不卡视频在线观看欧美| 成人免费观看视频高清| 五月伊人婷婷丁香| a级毛片黄视频| 性高湖久久久久久久久免费观看| 男女边吃奶边做爰视频| 国产精品麻豆人妻色哟哟久久| 少妇人妻久久综合中文| 99热这里只有精品一区| 91国产中文字幕| 日本黄色片子视频| av在线观看视频网站免费| 国产精品一区www在线观看| 高清黄色对白视频在线免费看| 能在线免费看毛片的网站| 亚洲经典国产精华液单| 亚洲,一卡二卡三卡| 欧美人与善性xxx| 亚洲色图综合在线观看| 国产精品嫩草影院av在线观看| 中文字幕人妻丝袜制服| 精品一区二区三区视频在线| 国产亚洲一区二区精品| 视频区图区小说| 国产成人精品一,二区| 国产精品欧美亚洲77777| 亚洲国产精品999| 卡戴珊不雅视频在线播放| 九九在线视频观看精品| 中国三级夫妇交换| 亚洲图色成人| 七月丁香在线播放| 极品少妇高潮喷水抽搐| 国产精品人妻久久久影院| tube8黄色片| 2018国产大陆天天弄谢| 赤兔流量卡办理| 9色porny在线观看| 亚洲国产日韩一区二区| 午夜91福利影院| 午夜福利网站1000一区二区三区| 亚洲人与动物交配视频| 久久99精品国语久久久| 在线亚洲精品国产二区图片欧美 | 9色porny在线观看| 少妇高潮的动态图| av电影中文网址| 久久免费观看电影| 国产精品久久久久久精品古装| 国产伦精品一区二区三区视频9| 欧美97在线视频| 亚洲情色 制服丝袜| 久久久国产精品麻豆| 亚洲四区av| 最新的欧美精品一区二区| 婷婷色av中文字幕| 五月伊人婷婷丁香| 伊人久久国产一区二区| 午夜免费观看性视频| 最新中文字幕久久久久| 十八禁高潮呻吟视频| 哪个播放器可以免费观看大片| 午夜精品国产一区二区电影| 免费播放大片免费观看视频在线观看| 飞空精品影院首页| 亚洲欧美成人综合另类久久久| 中国三级夫妇交换| 亚洲欧美色中文字幕在线| 国产精品三级大全| 久久久久久久久久成人| 黄色毛片三级朝国网站| 男女免费视频国产| a级毛色黄片| 搡女人真爽免费视频火全软件| 精品亚洲成a人片在线观看| 午夜激情久久久久久久| 91精品一卡2卡3卡4卡| av国产精品久久久久影院| 熟女电影av网| 人妻少妇偷人精品九色| 在线观看免费日韩欧美大片 | 亚洲欧美精品自产自拍| 狂野欧美白嫩少妇大欣赏| 在线观看免费日韩欧美大片 | 国产极品粉嫩免费观看在线 | 午夜福利网站1000一区二区三区| 亚洲精品第二区| 日本色播在线视频| 午夜福利视频在线观看免费| 91久久精品国产一区二区三区| 日韩,欧美,国产一区二区三区| 午夜老司机福利剧场| 天天操日日干夜夜撸| 免费黄色在线免费观看| av免费观看日本| 亚洲精品一区蜜桃| 中文精品一卡2卡3卡4更新| 国产又色又爽无遮挡免| 高清不卡的av网站| 成年美女黄网站色视频大全免费 | 国产 一区精品| 久久精品国产鲁丝片午夜精品| 亚洲内射少妇av| 欧美老熟妇乱子伦牲交| 国精品久久久久久国模美| 成人亚洲欧美一区二区av| 精品一区二区三区视频在线| 国产精品国产三级专区第一集| 亚洲av不卡在线观看| 精品久久蜜臀av无| 日韩成人伦理影院|