• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Study on Preparation and Properties of the Graphene Functional Layer by the Spray Coating Method

    2017-10-13 03:46:20WANGXiaojuXURuxiangDUNTaoQIKangchengCAOGuichuanandLINZulun
    電子科技大學(xué)學(xué)報 2017年1期
    關(guān)鍵詞:掃描電鏡結(jié)果表明活性劑

    WANG Xiao-ju, XU Ru-xiang, DUN Tao, QI Kang-cheng, CAO Gui-chuan, and LIN Zu-lun

    ?

    Study on Preparation and Properties of the Graphene Functional Layer by the Spray Coating Method

    WANG Xiao-ju1,2, XU Ru-xiang1, DUN Tao2, QI Kang-cheng2, CAO Gui-chuan2, and LIN Zu-lun2

    (1. General Hospital of Beijing Military Region Dongcheng Beijing 100700; 2. School of Opto-Electronic Information, University of Electronic Science and Technology of China Chengdu 610054)

    Stable aqueous graphene dispersion with sodium dodecyl benzene sulfonate (SDBS) surfactant was prepared by using an ultrasonic dispersing process. Graphene films were deposited on glass and silicon substrate as functional layers by the spray coating method. The study of the influence of SDBS concentration on graphene dispersing performance show that SDBS concentration of 15% is adequate for preparing stable graphene dispersion. Optical and morphological properties of the resulting graphene films are also investigated by ultraviolet-visible spectrophotometer and scanning electron microscopy, respectively. The results indicate that the visible light transmittance of graphene coating is higher than 82% and the graphene film shows a cluster structure with blade-like edges. The field emission analyses were carried out by a diode test cell in a vacuum system, which confirms that this graphene functional layer has good field-emission performance with low turn-on field of 3 V/μm and large enhancement factor of 3 580. Collectively, this deposition method may be a viable and cost-effective route for fabricating graphene films.

    dispersions; field emission; graphene; surfactant; transmittance

    Graphene is a flat layer of Sp2-bonded carbon with one-atom thick. Due to its optical, thermal, mechanical and electronic properties[1-3], graphene has stimulated intense researches over past decades. These unique features make graphene a promising material in many potential applications. For example, it can be used as anodes of organic solar cells[4], electrodes for batteries with high capacity[5-6], and surface plasmon resonance based fiber optic sensors[7-8].Moreover, graphene is one of excellent field-emission materials. Graphene field-emission has high field emitting current taking an advantage of high aspect ratio (ratio of lateral size to thickness). Moreover, graphene field emission has excellent field emitting stability for its unique mechanical and conductive properties.

    To date, numerous methods have been reported regarding the preparation of graphene thin films, such as vacuum filtration[9], spin coating[10], self-assembly[11], and electrophoretic deposition approach[12]. These reports focused mainly on the optimization of depositing conditions, as well as the electrical and optical properties of fabricated films. However, no systematic study has been performed to investigate the field emitting characteristics of graphene films by using the spray coating method.

    Spray coating has been widely used as an economical and versatile processing technique for deposition of various nanomaterials and films, such as LaB6film[13]and CNTs[14], owing to its good uniformity, controlled thickness, and high deposition rate and throughput. For example, Ostfeld et al. fabricated P3HT-PCBM organic solar cells by utilizing spray-coated transparent conductive CNT films as the electrode material, and achieved power conversion efficiency of 2.3%, which was comparable to those of solar cells by using indium tin oxide transparent electrodes[14]. In this work, we demonstrate the fabrication of spray-coated graphene films from sodium dodecyl benzene sulfonate (SDBS) aqueous dispersed graphene solution. Optically, morphological and field-emission characterizations are presented and discussed.

    1 Experiments

    The graphene nanomaterials used in our experiments were commercially provided by Nanjing Kefu Nano Technology Co. Ltd., Beijing, China. The powder mainly consisted of multi-layer graphene (MLG) flakes, having an average primary particle size of less than 5 μm, average thickness of 1~6 nm, and layers of less than ten. The process of producing the graphene functional layer included two key steps: fabricating uniform and stable graphene dispersion, and depositing graphene on Si substrate. First, the graphene (0.06 g) was dispersed in deionized water (60 mL) by sonication for 30 min. Sodium dodecyl benzene sulfonate as surfactant was then added and ultrasonic vibrated for 5 h to form a type of uniform solution. Because SDBS was a kind of viscous liquid, the weight of SDBS was selected not only to prevent the aggregation of graphene sheets but also avoid a significant viscous phenomenon. The stable dispersion of graphene was held at room temperature for 48 h. Next, the graphene films were coated on the clean glass and silicon substrate using a spray gun, followed by annealing at 400 ℃ in air for 30 min.

    To study the dispersing properties of graphene, the solutions were treated by centrifugal processing and upper stable dispersions were analyzed by an ultraviolet-visible spectrophotometer relative to air. Surface morphologies and transmission measurements of graphene films were carried out with a scanning electron microscope and a UV-VIS spectrophotometer, respectively. The field-emission properties were characterized via a diode system in vacuum. Figure 1 shows the simple schematic diagram of the field emission test system. The silicon substrate with graphene functional layer was used as cathode and a stainless steel plate was introduced as anode. The distance between the cathode and anode was ~0.1 mm.

    Fig. 1 Schematic diagram of the diode configuration used for an investigation of field emitting properties of graphene films

    2 Results and Discussions

    Figure 2 shows the UV-vis absorption spectra for the stable graphene dispersions with different concentrations of SDBS surfactant (10 wt %, 15 wt %). Two samples exhibited similar spectrums and both displayed an obvious absorption maximum at about 255 nm with tailing to 800 nm. It verified that graphene has been successfully dispersed in the solvents. In more detail, the peak value raised along with an increase in SDBS. However, when the concentration of SDBS increased to 20 wt %, the solution became too viscous in our experiment, which was unfit for spraying. In addition, the aqueous dispersion (15 wt % SDBS) was found to be very stable and homogeneous even if the storage time was over 60 days, which indicated that SDBS surfactant combining with an ultrasound technology was efficient to assist preparation of the high-quality graphene dispersion. The fantastic dispersibility of SDBS- graphene was attributed to the presence of small amounts of-OH and SO3-groups introduced by SDBS.

    Figure 3 shows the transmittance spectrum of sprayed graphene coating on glass substrate. By using a clean glass slide as a reference, the transmittance in the visible wavelength range was greater than 82%. Especially, in the 650~800 nm wavelength range, the transmittance was higher than 90%. There were many other literatures focusing on the optical properties of graphene films. According to their research, a graphene coating deposited on glass substrate with a high visible light transmittance of more than 96% could be achieved by air-brush spraying of a chemically converted graphene solution[15]. The relationship between the transmittance and the layers of graphene films was defined by the following equation:

    whereis the layers of graphene films,and0are transmittance of fabricated graphene films and single layer graphene, respectively. According to Eq. (1), we can consider that the lower transmittance in our experiment may be attributed to the overlapping and clustering of graphene.

    Figure 4 shows the SEM image of the fabricated graphene functional layer. Due to the coarse nature of the coating procedure, the graphene flakes overlapped irregularly, and film thickness ranged from hundreds of nanometers to a few micrometers. This morphology was consistent with the previous results of the slightly lower transmittance in Fig.3. It also can be seen that, the graphene cluster consisted of a number of sheet-like structures. Making use of these blade-like edges with atomic thickness, it could greatly increase the electric field enhancement factor.

    Fig.3 A transmission spectrum of a graphene functional layer coated on a glass slide by spraying of graphene solution (15 wt % SDBS)

    Fig.4 SEM image of graphene functional layer coated on silicon substrate by spraying of graphene solution (15 wt % SDBS)

    Figure 5a shows the field emitting current density-voltage (-) characteristics of graphene functional layer coated on silicon substrate at 6×10-5Pa in diode geometry. With the increase of anode voltage, the emission current density increased very rapidly, finally reached 5 mA/cm2at electric field of 17.5 V/μm. Furthermore, it exhibited a low turn-on field of 3 V/μm, which was well comparable to other cold cathodes, including a Si nanotip array of 8.5 V/μm[16]and CNT field emitters of 2~5 V/μm[17]. We suggested that this satisfactory field emitting performance of graphene film was not only due to its unique high aspect ratio but also due to its special appearance presented in the SEM photograph (Fig.4). As shown in Fig.4, graphene films were made of flat graphene sheets laminated together. Although this flat sheet structure was contrary to conventional field-emission cathodes with sharp surface (i.e. Spindt emitters and CNTs), when there was a strong vertical electric field applied, the graphene sheets would be pulled up and more edges exposed. Owing to the special edge-field enhancing effect, lots of electrons emitted from graphene films. Moreover, because the pulled up graphene sheets were separated, the influence of electric field shielding effect may be reduced and field emitting performance would be improved further.

    Figure 5b shows the Fowler-Nordheim (-) plots of measured graphene films. The-points formed a straight line approximately, which confirmed that the current was indeed the result of field emission. According to the Fowler-Nordheim theory, electric field enhancement factor () of emitter surface was evaluated by using the Fowler-Nordheim equation, i.e.,

    (2)

    whereis work function in eV;is field-dependent correction factor, which is approximated asfor most applications;is electric field strength in V/cm;is field emitting current density in A/cm2. Consequently, the slope of the-plot in Fig.5b was given by:

    Assuming that the work function of multilayer graphene films was 4.3 eV[18], the field enhancement factor of graphene film was determined to be 3 580 from the constant-slope. This large enhancement factor allowed for sufficient tunneling of electrons from graphene through surface barriers and resulted in the low turn-on voltage as previously described.

    3 Conclusions

    We developed a simple and practical method to obtain a graphene functional layer with remarkable field-emission performance by using the spray-coating method. The UV-vis absorption spectra for the stable graphene dispersions were measured to examine their dispersion properties. The optical transmittance and morphological of the prepared films were investigated. The results revealed that the visible light transmittance of graphene film was higher than 82% and graphene flakes overlapped irregularly on silicon substrate with numerous blade-like edges. In addition, the graphene films showed excellent field-emission properties, with low turn-on field of 3 V/μm and large enhancement factor of 3 580. These results provide a convenient approach to create new graphene-based devices.

    [1] CANTY R, GONZALEZ E, MACDONALD C, et al. Reduction expansion synthesis as strategy to control nitrogen doping level and surface area in graphene[J]. Materials, 2015, 8(10): 7048-7058.

    [2] FAN Y, IGARASHI G, JIANG W, et al. Highly strain tolerant and tough ceramic composite by incorporation of graphene[J]. Carbon, 2015, 90: 274-283.

    [3] OTHMAN M, RITIKOS R, MUHAMMAD H, et al. Low -temperature plasma-enhanced chemical vapour deposition of transfer-free graphene thin films[J]. Materials Letters, 2015, 158: 436-438.

    [4] VAIANELLA F, ROSOLEN G, MAES B. Graphene as a transparent electrode for amorphous silicon-based solar cells[J]. Journal of Applied Physics, 2015, 117(24): 243102.

    [5] ERVIN M H. Etching holes in graphene supercapacitor electrodes for faster performance[J]. Nanotechnology, 2015, 26(23): 234003.

    [6] LAI L, YANG H, WANG L, et al. Preparation of supercapacitor electrodes through selection of graphene surface functionalities[J]. ACS Nano, 2012, 6(7): 5941- 5951.

    [7] VADIVAAMBIGAI A, SENTHILVASAN P A, KOTHURKAR N, et al. Graphene-oxide-based electro chemical sensor for salicylic acid[J]. Nanoscience and Nanotechnology Letters, 2015, 7(2): 140-146.

    [8] LEE J S, OH J, JUN J, et al. Wireless hydrogen smart sensor based on Pt/graphene-immobilized radio-frequency identification tag[J]. ACS Nano, 2015, 9(8): 7783-7790.

    [9] EDA G, FANCHINI G, CHHOWALLA M. large area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material[J]. Nature Nanotechnology, 2008, 3(5): 270-274.

    [10] GUO Y L, DI C A, LIU H T, et al. General route toward patterning of graphene oxide by a combination of wettability modulation and spin-coating[J]. ACS Nano, 2010, 4(10): 5749-5754.

    [11] ARAPOV K, GORYACHEV A, WITH G D, et al. A simple and ?exible route to large-area conductive transparent graphene thin-?lms[J]. Synthetic Metals, 2015, 201: 67-75.

    [12] WU Z S, PEI S F, REN W C, et al. Field emission of single-layer graphene films prepared by electrophoretic deposition[J]. Advanced Materials, 2009, 21:1756-1760.

    [13] DENG J, ZENG B Q, WANG X J, et al. Lowering of the firing voltage and reducing of the discharge delay time in alternating current plasma display panels by a discontinuous spin-coated LaB6 film on the MgO protective layer[J]. AIP Advance, 2014(4): 037109.

    [14] OSTFELD A E, CATHELINE A, LIGSAY K, et al. Single-walled carbon nanotube transparent conductive films fabricated by reductive dissolution and spray coating for organic photovoltaics[J]. Applied Physics Letters, 2014, 105: 253301.

    [15] LI D, MüLLER M B, GILJE S, et al. Processable aqueous dispersions of graphene nanosheets[J]. Nature Nanotechnology, 2008, 3(2): 101-105.

    [16] HUANG G S, WU X L, CHENG Y C, et al. Fabrication and field emission property of a Si nanotip array[J]. Nanotechnology, 2006, 17: 5573-5576.

    [17] JUNG M S, KO Y K, JUNG D H, et al. Electrical and field-emission properties of chemically anchored single-walled carbon nanotube patterns[J]. Appied Physics Letters,2005, 87: 013114.

    [18] PARK S J, PARK H, LEE Y, et al. Increasing the effective work function of multilayer rapheme films using silver nanoparticles[J]. Journal of Vacuum Science and Technology B, 2014, 32(1): 011214.

    編 輯 漆 蓉

    噴涂法制備石墨烯功能層及性能研究

    王小菊1,2,徐如祥1,敦 濤2,祁康成2,曹貴川2,林祖?zhèn)?

    (1. 北京軍區(qū)總醫(yī)院 北京東城區(qū) 100700;2. 電子科技大學(xué)光電信息學(xué)院 成都 610054)

    以十二烷基苯磺酸鈉(SDBS)為表面活性劑,采用超聲分散工藝制備出穩(wěn)定的石墨烯水分散液,并采用噴涂法分別在玻璃和n-Si基底上形成石墨烯薄膜。研究了表面活性劑濃度對石墨烯分散效果的影響。結(jié)果表明,采用濃度為15%的SDBS可獲得穩(wěn)定的石墨烯水溶液分散液。利用分光光度計和掃描電鏡對石墨烯薄膜的透過率和表面形貌進行表征,結(jié)果表明其可見光透過率超過82%,薄膜具有刀刃狀的邊緣結(jié)構(gòu)。采用二極管結(jié)構(gòu)對石墨烯薄膜的場發(fā)射性能進行測試,其開啟電場為3 V/μm,場增強因子為3 580。實驗結(jié)果表明,這是一種可行的、低成本的制作石墨烯功能層的有效方法。

    分散液; 場發(fā)射; 石墨烯; 表面活性劑; 透過率

    O462.4

    A

    2016-02-16;

    2016-06-21

    10.3969/j.issn.1001-0548.2017.01.020

    2016-02-16;Revised date:2016-06-21

    Biography:WANG Xiao-ju was born in 1981, female, associate professor, her research interest includes vacuum materials and devices.

    王小菊(1981-),女,博士,副教授,主要從事電真空材料與器件方面的研究.

    猜你喜歡
    掃描電鏡結(jié)果表明活性劑
    掃描電鏡能譜法分析紙張的不均勻性
    智富時代(2018年7期)2018-09-03 03:47:26
    掃描電鏡在雙金屬層狀復(fù)合材料生產(chǎn)和研究中的應(yīng)用
    電線電纜(2017年4期)2017-07-25 07:49:48
    AOS-AA表面活性劑的制備及在浮選法脫墨中的應(yīng)用
    中國造紙(2015年7期)2015-12-16 12:40:48
    基于PSO-GRG的背散射模式掃描電鏡的數(shù)字處理及應(yīng)用
    化學(xué)降解表面活性劑的開發(fā)
    來源于微生物的生物表面活性劑
    掃描電鏡法觀察雞蛋殼超微結(jié)構(gòu)形貌
    陰離子表面活性劑的應(yīng)用與創(chuàng)新
    體育鍛煉也重要
    闊世瑪與世瑪用于不同冬小麥品種的安全性試驗
    在线看a的网站| 日韩视频在线欧美| 国产探花极品一区二区| 亚洲av二区三区四区| 国产精品伦人一区二区| 男女无遮挡免费网站观看| 欧美一级a爱片免费观看看| av一本久久久久| 亚洲人成网站高清观看| 永久免费av网站大全| 天天一区二区日本电影三级| 在线观看人妻少妇| 激情五月婷婷亚洲| 精华霜和精华液先用哪个| 国产乱人视频| 欧美潮喷喷水| 免费黄色在线免费观看| 春色校园在线视频观看| 国产av国产精品国产| 午夜免费鲁丝| 美女xxoo啪啪120秒动态图| 自拍偷自拍亚洲精品老妇| 欧美精品人与动牲交sv欧美| 国产乱人视频| 男女啪啪激烈高潮av片| 亚洲精品乱码久久久久久按摩| 波野结衣二区三区在线| 天天一区二区日本电影三级| 国产伦精品一区二区三区四那| 久久久久久久大尺度免费视频| 亚洲美女搞黄在线观看| 精品亚洲乱码少妇综合久久| 国产色爽女视频免费观看| 免费看av在线观看网站| a级毛色黄片| 性插视频无遮挡在线免费观看| 日日摸夜夜添夜夜爱| av国产久精品久网站免费入址| 免费观看性生交大片5| av免费观看日本| 亚洲性久久影院| 麻豆国产97在线/欧美| 三级男女做爰猛烈吃奶摸视频| 亚洲av中文字字幕乱码综合| 亚洲国产精品国产精品| 极品教师在线视频| 51国产日韩欧美| 久久久久久久精品精品| 欧美潮喷喷水| 高清欧美精品videossex| 丰满乱子伦码专区| 亚洲av国产av综合av卡| 男人狂女人下面高潮的视频| 成人漫画全彩无遮挡| 777米奇影视久久| av国产免费在线观看| 国产精品.久久久| 午夜视频国产福利| 国产大屁股一区二区在线视频| 久久精品国产亚洲av天美| 国产淫语在线视频| 欧美日韩综合久久久久久| h日本视频在线播放| 看十八女毛片水多多多| 亚洲精品日韩在线中文字幕| 七月丁香在线播放| av在线播放精品| 国内精品宾馆在线| 欧美 日韩 精品 国产| 国产伦精品一区二区三区四那| 亚洲经典国产精华液单| 日本色播在线视频| 精品久久国产蜜桃| 久久综合国产亚洲精品| 国产美女午夜福利| 免费少妇av软件| 国产成人freesex在线| 亚洲国产高清在线一区二区三| 亚洲自拍偷在线| 中国三级夫妇交换| 久久6这里有精品| 国产亚洲av嫩草精品影院| 香蕉精品网在线| 日日啪夜夜爽| 欧美老熟妇乱子伦牲交| 国产永久视频网站| 亚洲自偷自拍三级| 18禁裸乳无遮挡免费网站照片| 国产乱来视频区| 成人美女网站在线观看视频| 成人亚洲欧美一区二区av| 亚洲精品自拍成人| 国产亚洲91精品色在线| 亚洲国产最新在线播放| 熟妇人妻不卡中文字幕| 国产探花极品一区二区| 日韩人妻高清精品专区| 色吧在线观看| 女人十人毛片免费观看3o分钟| 国产精品久久久久久精品电影小说 | 精品视频人人做人人爽| 精品少妇久久久久久888优播| 联通29元200g的流量卡| 嫩草影院精品99| 欧美日韩在线观看h| 国产成人午夜福利电影在线观看| 亚洲国产成人一精品久久久| 91精品国产九色| 欧美3d第一页| 国产黄色免费在线视频| 看十八女毛片水多多多| 国产毛片a区久久久久| a级一级毛片免费在线观看| 成年女人在线观看亚洲视频 | 尾随美女入室| 男女啪啪激烈高潮av片| 夫妻午夜视频| 一本一本综合久久| 国产亚洲av片在线观看秒播厂| 一个人看视频在线观看www免费| 亚洲国产日韩一区二区| 汤姆久久久久久久影院中文字幕| 嫩草影院精品99| av天堂中文字幕网| 久久精品国产自在天天线| 国产精品久久久久久av不卡| 性色av一级| 男人添女人高潮全过程视频| 大话2 男鬼变身卡| 国产国拍精品亚洲av在线观看| 中国国产av一级| 亚洲人与动物交配视频| 欧美潮喷喷水| av.在线天堂| 搡女人真爽免费视频火全软件| 色哟哟·www| 精品久久久精品久久久| 精品人妻一区二区三区麻豆| av福利片在线观看| 亚洲精品国产成人久久av| 91精品国产九色| 精品少妇久久久久久888优播| 51国产日韩欧美| 日韩电影二区| 久久久久精品久久久久真实原创| 性色avwww在线观看| 久久精品熟女亚洲av麻豆精品| 亚洲一区二区三区欧美精品 | 国产 一区 欧美 日韩| 欧美xxⅹ黑人| 国产精品爽爽va在线观看网站| 欧美成人精品欧美一级黄| 欧美日韩综合久久久久久| 久久人人爽人人爽人人片va| 天堂俺去俺来也www色官网| 天天一区二区日本电影三级| 啦啦啦在线观看免费高清www| 少妇人妻精品综合一区二区| 搞女人的毛片| 大码成人一级视频| 亚洲国产色片| 免费看不卡的av| 男女边摸边吃奶| 美女主播在线视频| 久久女婷五月综合色啪小说 | 亚洲国产av新网站| 国产黄片视频在线免费观看| 免费黄网站久久成人精品| 久久久久国产网址| 国产精品无大码| 噜噜噜噜噜久久久久久91| 好男人在线观看高清免费视频| 最近最新中文字幕大全电影3| 色网站视频免费| 精品久久久久久电影网| 大片免费播放器 马上看| 亚洲国产精品国产精品| 最近中文字幕2019免费版| 最新中文字幕久久久久| 国产精品爽爽va在线观看网站| 天天躁日日操中文字幕| 三级国产精品片| 伦精品一区二区三区| 黄片wwwwww| 王馨瑶露胸无遮挡在线观看| 国产 一区 欧美 日韩| 亚洲av日韩在线播放| 少妇的逼好多水| 老司机影院成人| 九九爱精品视频在线观看| 一个人看的www免费观看视频| 国产精品久久久久久精品电影| 亚洲欧美日韩卡通动漫| 亚洲人成网站在线播| .国产精品久久| 欧美日韩在线观看h| 视频中文字幕在线观看| 麻豆精品久久久久久蜜桃| 精品一区二区三卡| 在线看a的网站| 国产成人精品婷婷| 午夜老司机福利剧场| 免费看av在线观看网站| 免费看av在线观看网站| 可以在线观看毛片的网站| 久久这里有精品视频免费| 欧美+日韩+精品| 午夜福利高清视频| 久久99热这里只有精品18| 亚洲av电影在线观看一区二区三区 | videossex国产| 亚洲国产精品成人久久小说| 国产精品久久久久久精品古装| 日韩在线高清观看一区二区三区| h日本视频在线播放| 最新中文字幕久久久久| 嫩草影院入口| 国产v大片淫在线免费观看| 精品久久久久久久人妻蜜臀av| 美女脱内裤让男人舔精品视频| 午夜日本视频在线| 男女下面进入的视频免费午夜| 国产黄a三级三级三级人| 欧美激情在线99| 韩国av在线不卡| 国产欧美日韩一区二区三区在线 | 亚洲av中文字字幕乱码综合| 肉色欧美久久久久久久蜜桃 | 国产综合精华液| 美女主播在线视频| 一边亲一边摸免费视频| 久久ye,这里只有精品| 偷拍熟女少妇极品色| 欧美成人a在线观看| 欧美成人一区二区免费高清观看| a级毛色黄片| 中文资源天堂在线| 寂寞人妻少妇视频99o| 大码成人一级视频| 一级毛片我不卡| 亚洲人成网站在线播| www.av在线官网国产| 亚洲欧美日韩无卡精品| 精品一区在线观看国产| 日韩一区二区三区影片| 99热这里只有是精品50| 亚洲第一区二区三区不卡| 亚洲一级一片aⅴ在线观看| videossex国产| 尤物成人国产欧美一区二区三区| 人人妻人人澡人人爽人人夜夜| 亚洲av成人精品一二三区| 国产精品久久久久久av不卡| av在线app专区| 国产熟女欧美一区二区| 爱豆传媒免费全集在线观看| 禁无遮挡网站| 亚洲天堂国产精品一区在线| 国产精品一区二区在线观看99| 精品国产三级普通话版| 嫩草影院入口| 在线观看人妻少妇| 亚洲一区二区三区欧美精品 | 日本黄色片子视频| 久久精品国产亚洲av涩爱| 99热国产这里只有精品6| 国模一区二区三区四区视频| 中文字幕制服av| 国产毛片在线视频| 国产高潮美女av| 亚洲综合色惰| 舔av片在线| videossex国产| 成年av动漫网址| 成人午夜精彩视频在线观看| av福利片在线观看| 精品久久久久久久久亚洲| 日本猛色少妇xxxxx猛交久久| 少妇猛男粗大的猛烈进出视频 | 人人妻人人爽人人添夜夜欢视频 | freevideosex欧美| 久久久久久伊人网av| 亚洲av福利一区| 久久韩国三级中文字幕| 日韩亚洲欧美综合| 国产精品久久久久久久久免| 久久精品国产亚洲av涩爱| 精品久久久久久电影网| 美女内射精品一级片tv| 天堂网av新在线| 亚洲精品亚洲一区二区| 啦啦啦在线观看免费高清www| 中文乱码字字幕精品一区二区三区| 18+在线观看网站| 精品人妻偷拍中文字幕| 精品久久国产蜜桃| 又爽又黄无遮挡网站| 熟女av电影| 黄片wwwwww| 亚洲婷婷狠狠爱综合网| 乱码一卡2卡4卡精品| 制服丝袜香蕉在线| 深爱激情五月婷婷| av国产久精品久网站免费入址| 成人美女网站在线观看视频| 国产亚洲5aaaaa淫片| 大香蕉97超碰在线| 免费观看av网站的网址| 美女cb高潮喷水在线观看| 大香蕉久久网| 99九九线精品视频在线观看视频| 看黄色毛片网站| 啦啦啦在线观看免费高清www| 涩涩av久久男人的天堂| av国产免费在线观看| 三级国产精品片| 国产爱豆传媒在线观看| 婷婷色综合www| 大香蕉久久网| 国国产精品蜜臀av免费| 女人被狂操c到高潮| 大陆偷拍与自拍| 久久热精品热| 国产白丝娇喘喷水9色精品| 亚洲欧美成人综合另类久久久| 99九九线精品视频在线观看视频| 日韩精品有码人妻一区| 亚洲一级一片aⅴ在线观看| 校园人妻丝袜中文字幕| 亚洲精品456在线播放app| 看十八女毛片水多多多| 3wmmmm亚洲av在线观看| 制服丝袜香蕉在线| 五月玫瑰六月丁香| 免费观看的影片在线观看| 日韩在线高清观看一区二区三区| 亚洲欧美成人综合另类久久久| 亚洲欧美清纯卡通| 大又大粗又爽又黄少妇毛片口| 免费看a级黄色片| 大片免费播放器 马上看| 国产在线男女| 男女啪啪激烈高潮av片| 男人和女人高潮做爰伦理| 亚洲成色77777| 丝袜美腿在线中文| 亚洲成色77777| 在线观看免费高清a一片| 伦精品一区二区三区| 99九九线精品视频在线观看视频| 高清视频免费观看一区二区| 深爱激情五月婷婷| 国产探花极品一区二区| 久久6这里有精品| 亚洲国产日韩一区二区| 国产免费视频播放在线视频| 国产精品久久久久久av不卡| 久久久久久久久久成人| 一级二级三级毛片免费看| 久久这里有精品视频免费| 国产男女内射视频| 另类亚洲欧美激情| 搡老乐熟女国产| 免费av观看视频| 97在线视频观看| 成人午夜精彩视频在线观看| 国产亚洲午夜精品一区二区久久 | 亚洲av成人精品一二三区| 久久久久久久国产电影| 日韩制服骚丝袜av| 精品人妻一区二区三区麻豆| 我的女老师完整版在线观看| 欧美一级a爱片免费观看看| 五月玫瑰六月丁香| 可以在线观看毛片的网站| 麻豆国产97在线/欧美| 国产日韩欧美在线精品| 日韩三级伦理在线观看| 亚洲av成人精品一区久久| 久久久久久伊人网av| videos熟女内射| 精品久久久久久电影网| 亚洲人成网站高清观看| 色哟哟·www| 波多野结衣巨乳人妻| 亚洲精品国产成人久久av| 国产又色又爽无遮挡免| 色视频在线一区二区三区| 亚洲性久久影院| 中国国产av一级| 91狼人影院| 综合色av麻豆| 极品教师在线视频| 亚洲在久久综合| 精品99又大又爽又粗少妇毛片| 五月开心婷婷网| 国产成人福利小说| 熟妇人妻不卡中文字幕| 国产又色又爽无遮挡免| 久久久久九九精品影院| 新久久久久国产一级毛片| 亚洲一区二区三区欧美精品 | 九九爱精品视频在线观看| 午夜福利在线观看免费完整高清在| 免费观看性生交大片5| 精品久久久久久久人妻蜜臀av| 亚洲综合色惰| 欧美3d第一页| 亚洲精品乱码久久久久久按摩| av国产久精品久网站免费入址| 九草在线视频观看| 成人无遮挡网站| 精品国产一区二区三区久久久樱花 | 少妇的逼好多水| 久热这里只有精品99| 久久精品综合一区二区三区| 欧美人与善性xxx| 日本av手机在线免费观看| 日本熟妇午夜| 天天躁日日操中文字幕| 亚洲欧美精品自产自拍| 在线免费观看不下载黄p国产| 自拍偷自拍亚洲精品老妇| 国产精品久久久久久久久免| 少妇人妻久久综合中文| 男女无遮挡免费网站观看| 精品久久久久久久久av| 日韩在线高清观看一区二区三区| 亚洲色图综合在线观看| 人体艺术视频欧美日本| 简卡轻食公司| 亚洲欧美日韩无卡精品| 伊人久久国产一区二区| 大码成人一级视频| 亚洲精品一二三| 欧美日韩视频高清一区二区三区二| 99re6热这里在线精品视频| 久久韩国三级中文字幕| 国产午夜福利久久久久久| 水蜜桃什么品种好| 亚洲精品日韩av片在线观看| 日日啪夜夜爽| 日本猛色少妇xxxxx猛交久久| 欧美老熟妇乱子伦牲交| 久久韩国三级中文字幕| 国产免费福利视频在线观看| 国产乱来视频区| 国产一区二区在线观看日韩| 中文字幕人妻熟人妻熟丝袜美| 亚洲av福利一区| 久久久欧美国产精品| 嫩草影院新地址| 国产白丝娇喘喷水9色精品| 日本一二三区视频观看| 午夜日本视频在线| 精品99又大又爽又粗少妇毛片| 99久久中文字幕三级久久日本| 精品久久久噜噜| 噜噜噜噜噜久久久久久91| 成人高潮视频无遮挡免费网站| 男男h啪啪无遮挡| 在线天堂最新版资源| 国产人妻一区二区三区在| 日日啪夜夜撸| 久久久久久久大尺度免费视频| 久久久久久伊人网av| 久久精品熟女亚洲av麻豆精品| 中国国产av一级| 伦理电影大哥的女人| 亚洲最大成人手机在线| 亚洲精品日韩在线中文字幕| 99热这里只有精品一区| 国产国拍精品亚洲av在线观看| 看黄色毛片网站| 亚洲,一卡二卡三卡| 大陆偷拍与自拍| 老司机影院成人| 免费看a级黄色片| 成年av动漫网址| 精品午夜福利在线看| 日韩在线高清观看一区二区三区| 国产成人a∨麻豆精品| 精品一区二区免费观看| 中文字幕制服av| 国产精品国产三级国产av玫瑰| 久久久a久久爽久久v久久| 亚洲av男天堂| 人妻系列 视频| 成人高潮视频无遮挡免费网站| 麻豆成人av视频| 欧美精品国产亚洲| 亚洲精品乱码久久久v下载方式| 亚洲第一区二区三区不卡| 国产毛片a区久久久久| av免费在线看不卡| 一本久久精品| 丝袜喷水一区| 美女主播在线视频| 女人被狂操c到高潮| 自拍偷自拍亚洲精品老妇| 少妇熟女欧美另类| 亚洲精品久久久久久婷婷小说| 国产淫片久久久久久久久| 两个人的视频大全免费| 男人和女人高潮做爰伦理| 免费观看在线日韩| 最后的刺客免费高清国语| 午夜免费男女啪啪视频观看| 天天一区二区日本电影三级| 国产成人福利小说| 99热这里只有是精品50| 中国三级夫妇交换| 在线观看人妻少妇| 日韩大片免费观看网站| 老师上课跳d突然被开到最大视频| 亚洲av成人精品一二三区| 熟妇人妻不卡中文字幕| 99热网站在线观看| 精品久久久久久久人妻蜜臀av| av国产精品久久久久影院| 精品国产一区二区三区久久久樱花 | av又黄又爽大尺度在线免费看| kizo精华| 精品久久久精品久久久| av在线观看视频网站免费| 亚洲美女搞黄在线观看| 麻豆国产97在线/欧美| 九草在线视频观看| 久久久久精品性色| 久久精品久久久久久噜噜老黄| 国产亚洲91精品色在线| 欧美激情国产日韩精品一区| 99久久精品国产国产毛片| 成人毛片a级毛片在线播放| 欧美丝袜亚洲另类| 日本色播在线视频| 精品一区二区三卡| 女人十人毛片免费观看3o分钟| 1000部很黄的大片| 中文字幕制服av| 成人国产av品久久久| 丰满人妻一区二区三区视频av| 欧美变态另类bdsm刘玥| 国产成人a∨麻豆精品| 久久久亚洲精品成人影院| 丝瓜视频免费看黄片| 成人特级av手机在线观看| 久久女婷五月综合色啪小说 | 免费观看在线日韩| 国产一级毛片在线| 国产精品人妻久久久影院| 日韩国内少妇激情av| 亚洲精品日本国产第一区| 亚洲成人精品中文字幕电影| 国产成人精品一,二区| 久久99热这里只频精品6学生| 国内精品美女久久久久久| 成人二区视频| 大片电影免费在线观看免费| 色综合色国产| 午夜爱爱视频在线播放| 精品国产乱码久久久久久小说| 青春草视频在线免费观看| 最近中文字幕高清免费大全6| 国产女主播在线喷水免费视频网站| 超碰97精品在线观看| 中文精品一卡2卡3卡4更新| 亚洲,欧美,日韩| 色婷婷久久久亚洲欧美| 99热国产这里只有精品6| 成人午夜精彩视频在线观看| 国模一区二区三区四区视频| 久久99蜜桃精品久久| 亚洲av成人精品一区久久| 啦啦啦中文免费视频观看日本| 成人毛片a级毛片在线播放| 免费黄网站久久成人精品| 91久久精品国产一区二区三区| 久久女婷五月综合色啪小说 | 永久免费av网站大全| 亚洲人成网站在线播| 91久久精品国产一区二区三区| 美女脱内裤让男人舔精品视频| 成人鲁丝片一二三区免费| 国产av不卡久久| 岛国毛片在线播放| 水蜜桃什么品种好| 国产成人免费观看mmmm| 国产探花极品一区二区| 国产 精品1| 日韩不卡一区二区三区视频在线| 免费av观看视频| 大香蕉97超碰在线| 最新中文字幕久久久久| 97超碰精品成人国产| 一本久久精品| 国产 一区精品| 国产欧美日韩精品一区二区| 国模一区二区三区四区视频| 亚洲欧美日韩无卡精品| 久久这里有精品视频免费| 最后的刺客免费高清国语| 亚洲精品日韩av片在线观看| 人妻 亚洲 视频| videossex国产| 少妇人妻一区二区三区视频| 中文字幕久久专区| 大片免费播放器 马上看| 亚洲成人精品中文字幕电影| 欧美潮喷喷水| 精品久久久精品久久久| 精华霜和精华液先用哪个| 国产午夜精品一二区理论片| 日韩欧美精品免费久久| 国产一区二区三区av在线|