曹力媛
太原市環(huán)境監(jiān)測(cè)中心站, 山西 太原 030002
基于SPAMS的太原市典型生活區(qū)停暖前后PM2.5來(lái)源及組成
曹力媛
太原市環(huán)境監(jiān)測(cè)中心站, 山西 太原 030002
為分析太原市采暖期和非采暖期PM2.5的特征,利用單顆粒氣溶膠質(zhì)譜儀(SPAMS)分析太原市典型生活區(qū)采暖期(2016年3月11—18日)和非采暖期(2016年4月1—7日)PM2.5的來(lái)源及組成. 結(jié)果表明:①采暖期(停暖前)顆粒物有機(jī)碳、硫酸鹽和多環(huán)芳烴等信號(hào)強(qiáng)度大于非采暖期(停暖后),而元素碳、硝酸鹽、銨鹽等反之. ②為了盡可能排除氣象因素的影響,選取風(fēng)向(東南風(fēng))、風(fēng)級(jí)(二級(jí))相同時(shí)段的顆粒物進(jìn)行分析,停暖前后顆粒物主要化學(xué)組分為有機(jī)碳、混合碳和元素碳,采暖前有機(jī)碳占比(達(dá)51.9%)最高,非采暖期元素碳占比(32.6%)最高. 采暖期有機(jī)碳、高分子有機(jī)物和左旋葡聚糖占比明顯高于非采暖期,元素碳、礦物質(zhì)和重金屬反之. ③停暖前后首要的兩類污染源為燃煤和機(jī)動(dòng)車尾氣,二者貢獻(xiàn)率之和分別高達(dá)70.1%和67.4%,可見本地主要受這兩類源的影響. 燃煤在采暖期為首要污染源,并且貢獻(xiàn)比例高于非采暖期,而機(jī)動(dòng)車尾氣在非采暖期為首要污染源,且比例明顯高于采暖期. 研究顯示,采暖和非采暖期雖然首要污染源有所差異,但在污染過(guò)程中,機(jī)動(dòng)車尾氣源的貢獻(xiàn)比例均高于優(yōu)良時(shí)段,說(shuō)明無(wú)論是采暖期還是非采暖期,除燃煤排放的影響外,機(jī)動(dòng)車尾氣的影響也需得到重視,建議加強(qiáng)機(jī)動(dòng)車燃油品質(zhì)的升級(jí),使用清潔煤,并在重污染時(shí)段采取相應(yīng)的管控措施.
單顆粒氣溶膠質(zhì)譜儀(SPAMS); 源解析; 太原市; 采暖期
Abstract: A single particle aerosol mass spectrometer (SPAMS) was used to analyze the sources and chemical characteristics of PM2.5in a typical living quarter of Taiyuan City during heating (March 11th- 18th, 2016) and non-heating (April 1st- 7th, 2016) periods. The results showed that: (1) Intensities of organic carbon (OC), sulfate and polycyclic aromatic hydrocarbons (PAHs) during the heating period were higher than during the non-heating period, while intensities of elemental carbon (EC), nitrate and ammonium were opposite. (2) Particles under the same wind scale during the same period were chosen to exclude the effects of meteorological factors. The results showed that OC, internally mixed organic and elemental carbon (ECOC) and EC were the main components during the two periods, and OC was dominant during the heating period (51.9%), while EC was dominant during the non-heating period (32.6%). Proportions of OC, high molecular weight organic matter (HOC) and levoglucosan (LEV) during the heating period were higher than those during the non-heating period, while proportions of EC, mineral dust and heavy metal (HM) showed an opposite trend. (3) The two main pollution sources during the heating period and the non-heating period were both coal combustion and vehicle exhaust, the sum of which contributed 70.1% and 67.4% to the total particles during the heating and non-heating periods, respectively. Coal combustion was the primary source during the heating period, while vehicle exhaust was the primary source during the non-heating period. The results showed that although the primary sources during heating and non-heating periods differed a lot, the proportion of vehicle exhaust increased significantly during both periods, indicating that vehicle emissions should be treated more carefully during both periods. Corresponding measures should be implemented, such as petrol quality upgrading, using clean coal and other controlling strategies, during heavy pollution periods.
Keywords: single particle aerosol mass spectrometer (SPAMS); source apportionment; Taiyuan City; heating period
大氣細(xì)顆粒物(PM2.5)與空氣能見度下降和重污染天氣過(guò)程密切相關(guān). 近年來(lái),隨著我國(guó)社會(huì)經(jīng)濟(jì)的持續(xù)高速發(fā)展、工業(yè)化和城鎮(zhèn)化進(jìn)程加速,環(huán)境空氣PM2.5區(qū)域性污染問(wèn)題日趨嚴(yán)重,嚴(yán)重影響社會(huì)經(jīng)濟(jì)發(fā)展和居民日常生活,危害人體健康和生態(tài)安全. 我國(guó)城市地區(qū)空氣中懸浮的微粒曾是全世界最高的,其中山西太原空氣中懸浮微粒的含量是世界衛(wèi)生組織規(guī)定標(biāo)準(zhǔn)的8倍、濟(jì)南的近7倍、北京和沈陽(yáng)的近6倍[1].
太原市位于黃土高原東側(cè)邊緣,城市周圍東、西、北三面環(huán)山,南寬北窄成扇形,北高南低逐漸傾斜呈簸箕型. 太原市屬于溫帶大陸性季風(fēng)氣候,受地形影響,冬季以偏北風(fēng)或西北風(fēng)居多,夏季以南風(fēng)或東南風(fēng)為主,年均風(fēng)速1.6~2.4 m/s,年靜風(fēng)頻率達(dá)25%~30%. 由于地形及風(fēng)速的影響,逆溫出現(xiàn)頻率高. 特殊的地形及氣候條件非常不利于污染物的擴(kuò)散、傳輸、沉降和去除. 太原市的環(huán)境空氣污染問(wèn)題是一個(gè)背景性、應(yīng)急性和潛在性污染相互疊加的生態(tài)環(huán)境問(wèn)題,造成空氣污染的根本原因還沒(méi)有完全得到遏制[2]. 太原市是我國(guó)重要的煤炭生產(chǎn)基地,作為一個(gè)老工業(yè)城市[3],特殊的資源狀況、工業(yè)結(jié)構(gòu)、燃料結(jié)構(gòu)等多因素共同作用,導(dǎo)致太原市大氣環(huán)境處于高污染水平,PM2.5等顆粒物污染嚴(yán)重[4],空氣污染防治形勢(shì)依然嚴(yán)峻. 如何快速有效監(jiān)測(cè)PM2.5的污染物組分構(gòu)成、獲取足夠的化學(xué)信息、及時(shí)判斷主要污染源及其影響程度、確定優(yōu)先治理對(duì)象,是目前大氣污染控制決策面臨的一個(gè)十分重要而又異常復(fù)雜的問(wèn)題.
近20年來(lái),氣溶膠飛行時(shí)間質(zhì)譜儀在國(guó)際上逐漸發(fā)展成為一種廣泛采用的氣溶膠研究手段[5];在國(guó)內(nèi),中國(guó)環(huán)境科學(xué)研究院[6-7]、上海環(huán)境科學(xué)研究院[8]、暨南大學(xué)[9-10]、石家莊市環(huán)境監(jiān)測(cè)中心[11]、江蘇省蘇州市環(huán)境監(jiān)測(cè)中心[12]等單位已經(jīng)在該領(lǐng)域開展了一些研究,在大氣氣溶膠的特征、來(lái)源及污染過(guò)程中顆粒物的混合狀態(tài)及灰霾成因等方面得到了重要成果.該研究采用廣州禾信儀器股份有限公司自主生產(chǎn)的在線單顆粒氣溶膠質(zhì)譜儀(SPAMS0515)進(jìn)行監(jiān)測(cè),對(duì)2016年太原市典型生活區(qū)采暖期和非采暖期PM2.5來(lái)源及組成進(jìn)行比較,并分別對(duì)采暖期和非采暖期污染時(shí)段與優(yōu)良時(shí)段的顆粒物來(lái)源及組成進(jìn)行比較和分析,得到太原市停暖前后典型生活區(qū)域的初步源解析情況,以期為相關(guān)管理部門的大氣污染防治工作提供參考.
監(jiān)測(cè)點(diǎn)位于山西省太原市小店區(qū)教育園區(qū)太原學(xué)院四樓,屬于生活區(qū),距離太原市中心達(dá)18 km. 監(jiān)測(cè)點(diǎn)周邊5 km范圍之內(nèi)多為居民村落,污染源較少,距離監(jiān)測(cè)點(diǎn)約700 m和7 km處分別有源夢(mèng)駕校的訓(xùn)練場(chǎng)和太原武宿國(guó)際機(jī)場(chǎng),監(jiān)測(cè)點(diǎn)位可能會(huì)受到機(jī)動(dòng)車尾氣和航空引擎發(fā)動(dòng)機(jī)排放的影響.
監(jiān)測(cè)儀器為在線單顆粒氣溶膠質(zhì)譜儀——SPAMS0515(簡(jiǎn)稱SPAMS,廣州禾信儀器股份有限公司). 采暖期選取2016年3月11日00:00—3月18日08:00(有效數(shù)據(jù)時(shí)長(zhǎng)共計(jì)145 h),非采暖期選取2016年4月1日12:00—4月7日12:00(有效數(shù)據(jù)時(shí)長(zhǎng)共計(jì)145 h). 其中,采暖期缺失數(shù)據(jù)時(shí)段3月15日15:00—17:00(3 h)和3月16日14:00—17日18:00(29 h)為源譜測(cè)樣時(shí)間.
采暖期共采集到具有粒徑信息的顆粒物 4 290 484 個(gè),其中有正負(fù)譜圖的顆粒物 1 485 314 個(gè);非采暖期共采集到具有粒徑信息的顆粒物 3 555 087 個(gè),其中有正負(fù)譜圖的顆粒物 450 802 個(gè).
SPAMS的工作原理和性能見文獻(xiàn)[13-15],這里僅做簡(jiǎn)單介紹. SPAMS由進(jìn)樣系統(tǒng)、測(cè)徑系統(tǒng)、激光電離系統(tǒng)和飛行時(shí)間質(zhì)量分析器4個(gè)主要部分組成,氣溶膠顆粒物通過(guò)PM2.5的切割頭進(jìn)樣,利用系統(tǒng)內(nèi)外壓差經(jīng)過(guò)空氣動(dòng)力學(xué)透鏡聚焦進(jìn)入真空系統(tǒng),在測(cè)徑區(qū)域,通過(guò)兩束532 nm的測(cè)徑激光進(jìn)行測(cè)徑后,被一束266 nm的電離激光電離,電離產(chǎn)生的正負(fù)離子進(jìn)入飛行時(shí)間質(zhì)量分析器被檢測(cè)其粒徑和化學(xué)組成.
區(qū)別于常規(guī)基于濾膜采樣的受體模型源解析方法,基于SPAMS的在線源解析結(jié)果是根據(jù)不同污染源質(zhì)譜特征,將采集到的受體顆粒物通過(guò)示蹤離子法進(jìn)行分類統(tǒng)計(jì),得到基于顆粒物數(shù)濃度而非質(zhì)量濃度的源解析結(jié)果,對(duì)污染源的分類、定義也與常規(guī)方法有一定差異. 該研究結(jié)合本地的能源和產(chǎn)業(yè)結(jié)構(gòu),根據(jù)各類污染源的源譜特征,將顆粒物分為七大類源:揚(yáng)塵源指以地殼元素鎂、鋁、鈣、硅酸鹽等為表征的顆粒,主要包含建筑揚(yáng)塵、道路揚(yáng)塵、地表土壤塵等;生物質(zhì)燃燒源是指以鉀和左旋葡聚糖為表征的顆粒,主要是秸稈、野草等的焚燒及生物燃料的燃燒產(chǎn)生的顆粒;機(jī)動(dòng)車尾氣源是指以元素碳等為表征的顆粒,包含了柴油車、汽油車等交通工具排放的顆粒;燃煤源是指以有機(jī)碳、元素碳、多環(huán)芳烴等為表征的顆粒,包含了燃煤電廠、鍋爐等排放的顆粒;工業(yè)工藝源是指以重金屬、高分子有機(jī)物等為表征的顆粒,包含了化工、金屬冶煉等工藝過(guò)程排放的顆粒(非燃燒類);二次無(wú)機(jī)源是指質(zhì)譜圖中只含有硫酸鹽、硝酸鹽、銨鹽等二次離子成分的顆粒物,該類顆粒物在一定程度上反映大氣二次反應(yīng)的強(qiáng)度;其他未包含在上述源類以及未被識(shí)別的顆粒物歸于其他源.
此外,通過(guò)大數(shù)據(jù)聚類方法對(duì)采集到的海量顆粒物成分類別進(jìn)行分析,用以輔助判定顆粒來(lái)源. 顆粒的成分分類由自動(dòng)分類和人工合并兩個(gè)步驟構(gòu)成[16-17]. 顆粒的粒徑及質(zhì)譜信息在MATLAB平臺(tái)上結(jié)合SPAMS Data Analysis V2.2軟件包進(jìn)行處理,通過(guò)自適共振神經(jīng)網(wǎng)絡(luò)分類(ART-2a)算法對(duì)采集到的顆粒物質(zhì)譜數(shù)據(jù)進(jìn)行快速簡(jiǎn)單計(jì)算后自動(dòng)分類,該算法自動(dòng)將具有特定相似度質(zhì)譜特征的顆粒歸為同一類,在不影響已有類別的情況下,增加新的類別[18].
該研究中使用ART-2a算法參數(shù)如下:相似度為0.7,學(xué)習(xí)效率為0.05[16]. ART-2a算法將所有顆粒分成了數(shù)百種顆粒類型,再經(jīng)過(guò)人工合并,最終確定八大類顆粒物,分別為元素碳(elemental carbon, EC)、混合碳(internally mixed organic and elemental carbon, ECOC)、有機(jī)碳(organic carbon, OC)、高分子有機(jī)物(high molecular weight organic matter,HOC)、左旋葡聚糖(levoglucosan, LEV)、富鉀(K-rich, K)、重金屬(heavy metal, HM)、礦物質(zhì)(mineral dust, MD).
采樣期間的質(zhì)量控制和質(zhì)量保證主要通過(guò)確認(rèn)儀器的各項(xiàng)運(yùn)行參數(shù)在正常范圍及儀器校正來(lái)實(shí)現(xiàn). 通過(guò)檢查儀器的運(yùn)行狀態(tài)參數(shù),定期清洗維護(hù)儀器進(jìn)樣處的小孔片,確保進(jìn)樣處的壓力需維持在初始讀數(shù)±0.05 Torr(1 Torr≈133.3 Pa)范圍內(nèi),以免堵塞影響顆粒物的進(jìn)樣量和數(shù)據(jù)的有效性. 質(zhì)量保證通過(guò)對(duì)儀器的校正來(lái)實(shí)現(xiàn),SPAMS的校正[11]分為粒徑校正和質(zhì)譜校正兩部分,分別用以保證顆粒物粒徑檢測(cè)和質(zhì)譜檢測(cè)的準(zhǔn)確性. 采樣前,分別將具有標(biāo)準(zhǔn)粒徑(0.2、0.3、0.5、0.72、1.0、0.3和2.0 μm)的聚苯乙烯小球(polystyrene latex spheres,PSLs)通過(guò)氣溶膠發(fā)生器進(jìn)入儀器檢測(cè)粒徑,實(shí)現(xiàn)顆粒物校正,校準(zhǔn)系數(shù)R2>0.99,并用10 mg/mL的NaI標(biāo)準(zhǔn)物質(zhì)氣溶膠對(duì)儀器的質(zhì)荷比進(jìn)行校正,確保儀器分析的準(zhǔn)確性.
研究表明,SPAMS采集的顆粒物數(shù)濃度和空氣動(dòng)力學(xué)粒徑譜儀APS(aerodynamic particle sizer,TSI model 3321)測(cè)得的顆粒物數(shù)濃度趨勢(shì)一致[19],可以在一定程度上反映PM2.5的污染情況. 該研究中由于沒(méi)有APS同步,因此通過(guò)顆粒物數(shù)濃度與質(zhì)量濃度的相關(guān)性分析,初步判斷觀測(cè)數(shù)據(jù)的有效性. 停暖前后的ρ(PM2.5)〔數(shù)據(jù)源于太原市小店(國(guó)控點(diǎn))自動(dòng)監(jiān)測(cè)點(diǎn),采樣點(diǎn)位距該國(guó)控點(diǎn)位最近〕與SPAMS采集顆粒數(shù)濃度的相關(guān)性分析結(jié)果如圖1所示,結(jié)果顯示二者隨時(shí)間的變化趨勢(shì)一致,具有較好的相關(guān)性(R=0.73).
采暖期間平均ρ(PM2.5)為80 μg/m3(有效數(shù)據(jù)對(duì)應(yīng)時(shí)段的值),空氣質(zhì)量達(dá)到優(yōu)的天氣占比為27.6%,達(dá)到良的天氣占比為30.3%,輕度污染、中度污染和重度污染的天氣占比分別為15.9%、9.0%和15.9%,嚴(yán)重污染的天氣占比為0.1%,嚴(yán)重污染天氣發(fā)生時(shí),ρ(PM2.5)最高達(dá)到272 μg/m3,出現(xiàn)在3月16日02:00. 非采暖期間平均ρ(PM2.5)為48 μg/m3,比采暖期低32 μg/m3,其中空氣質(zhì)量達(dá)到優(yōu)的天氣占比為42.8%,達(dá)到良的天氣占比為31.7%,輕度污染的天氣占比為25.5%,未出現(xiàn)中度以上污染天氣,ρ(PM2.5)最高達(dá)到116 μg/m3,相比采暖期低156 μg/m3,出現(xiàn)在4月7日09:00.
圖1 2016年3月11日—4月7日太原市小店(國(guó)控點(diǎn))自動(dòng)監(jiān)測(cè)點(diǎn)ρ(PM2.5)與顆粒物數(shù)濃度的相關(guān)性Fig.1 Correlation of concentration of PM2.5and count concentration of PM2.5 at Xiaodian Station in Taiyuan City from March 11th to April 7th, 2016
氣象條件如風(fēng)速、濕度的變化等對(duì)氣溶膠濃度變化影響顯著[4]. 監(jiān)測(cè)期間采暖期平均風(fēng)速為1.4 m/s,風(fēng)向148.5°,平均濕度36.5%;非采暖期平均風(fēng)速為2.2 m/s,風(fēng)向148.4°,平均濕度58.2%〔數(shù)據(jù)源于太原市小店(國(guó)控點(diǎn))自動(dòng)監(jiān)測(cè)點(diǎn),采樣點(diǎn)位距該國(guó)控點(diǎn)位最近〕. 經(jīng)對(duì)比可見,采暖期風(fēng)速整體低于非采暖期,并且污染高峰時(shí)風(fēng)速偏低,接近靜穩(wěn)天氣. 停暖前后的風(fēng)玫瑰圖(見圖2)顯示,采暖期和非采暖期的風(fēng)向很接近,均以南風(fēng)及東南風(fēng)向?yàn)橹?
圖2 停暖前后的風(fēng)玫瑰圖Fig.2 Wind rose diagram during heating and non-heating period
2.3.1顆粒物質(zhì)譜特征
圖3 停暖前后顆粒物的差分質(zhì)譜圖Fig.3 Differential spectra of particles collected during heating and non-heating period
停暖前后測(cè)得顆粒物中均有較明顯的C+、C3+、C2-、C3-、C4-等黑碳(EC)信息〔m/z(質(zhì)荷比)分別為12、36、-24、-36、-48,下同〕,NH4+(18),Na+(23)及有機(jī)碳(OC)碎片CnHn+(37、43、50、51、61、62、63等),CN-(-26)、CNO-(-42)、NO2-(-46)、NO3-(-62)、SO3-(-80)、HSO4-(-97)等. 通過(guò)分析停暖前后顆粒的差分質(zhì)譜(見圖3),比較停暖前后顆粒物的成分差異,結(jié)果顯示,采暖期有機(jī)碳、硫酸鹽、多環(huán)芳烴及碳氮離子等信號(hào)峰較非采暖期更為明顯,而非采暖期的元素碳、硝酸鹽、銨鹽等二次離子以及鉀離子的信號(hào)強(qiáng)度明顯大于采暖期. 采暖期正譜圖中有較多的多環(huán)芳烴碎片(PAHs)離子峰(m/z分別為189、202、228),這與采暖期燃煤的不完全燃燒有關(guān)[20-21].
2.3.2顆粒物化學(xué)組成
由采暖期和非采暖期顆粒物數(shù)濃度及其所占比例隨時(shí)間的變化趨勢(shì)(見圖4)可以看出,對(duì)于采暖期的有機(jī)碳、高分子有機(jī)物和左旋葡聚糖顆粒,無(wú)論顆粒物數(shù)濃度還是其所占比例都較高,而非采暖期的元素碳和重金屬顆粒物數(shù)濃度及其所占比例都較高,有機(jī)碳和左旋葡聚糖所占比例相對(duì)下降,其他成分變化不明顯.
圖4 2016年太原市停暖前后各顆粒數(shù)濃度及其所占比例隨時(shí)間的變化Fig.4 Variation of count and proportion of particles collected with time during heating and non-heating period in Taiyuan City, 2016
為了盡可能排除氣象因素的影響,選取采暖期和非采暖期風(fēng)向(東南風(fēng))和風(fēng)級(jí)(二級(jí))相同的顆粒物進(jìn)行成分比較分析. 太原市停暖前后基于數(shù)濃度的顆粒物組分的分類結(jié)果如圖5所示,結(jié)果顯示,采暖期和非采暖期顆粒物主要成分占比差異明顯. 采暖期前三大類顆粒物組分為有機(jī)碳、混合碳和元素碳,有機(jī)碳占比遠(yuǎn)高于元素碳;非采暖期前三大類顆粒物組分為元素碳、有機(jī)碳和混合碳,元素碳占比略高于有機(jī)碳. 通過(guò)對(duì)比發(fā)現(xiàn),采暖期有機(jī)碳、高分子有機(jī)物和左旋葡聚糖占比明顯高于非采暖期,其中有機(jī)碳占比是非采暖期的2.0倍,高分子有機(jī)物占比是非采暖期的3.0倍,左旋葡聚糖占比是非采暖期的1.9倍;而非采暖期的元素碳、礦物質(zhì)和重金屬占比明顯高于采暖期,元素碳占比是采暖期的2.9倍,礦物質(zhì)占比是采暖期的2.8倍,重金屬占比是采暖期的8.7倍,其他組分占比差異不明顯. 顆粒物組分分類結(jié)果在一定程度上可反映點(diǎn)位受到污染源影響的情況. 有機(jī)碳顆粒主要來(lái)源于燃煤源與工業(yè)工藝源的排放[11,22],元素碳主要來(lái)源于機(jī)動(dòng)車尾氣與燃煤源的排放[22-24],混合碳顆粒主要來(lái)源于機(jī)動(dòng)車尾氣[25]、燃煤[22]的排放,礦物質(zhì)顆粒主要來(lái)源于揚(yáng)塵源的排放[25-26],部分燃煤也有排放,富鉀顆粒主要來(lái)源于生物質(zhì)燃燒[27-28]與二次無(wú)機(jī)源的排放,左旋葡聚糖顆粒主要來(lái)源于生物質(zhì)燃燒源的排放[29-32],重金屬顆粒主要來(lái)源于工業(yè)工藝源的排放[11].
圖5 停暖前后顆粒物組分的分類結(jié)果Fig.5 Composition classification of particles collected during heating and non-heating period
為了盡可能排除氣象因素的影響,仍然選取采暖期和非采暖期風(fēng)向(東南風(fēng))和風(fēng)級(jí)(二級(jí))相同時(shí)段的顆粒物進(jìn)行源解析比較. 停暖前后監(jiān)測(cè)點(diǎn)位顆粒物來(lái)源分布如圖6所示,結(jié)果顯示,停暖前后污染來(lái)源分布有明顯區(qū)別,占比最高的兩類污染源均為燃煤和機(jī)動(dòng)車尾氣,采暖期和非采暖期二者貢獻(xiàn)率之和分別高達(dá)70.1%和67.4%,可見監(jiān)測(cè)期間本地大氣顆粒物主要受到這兩類污染源的影響. 采暖期燃煤貢
獻(xiàn)(41.4%)明顯高于非采暖期(23.7%),非采暖期機(jī)動(dòng)車尾氣貢獻(xiàn)(43.7%)高于采暖期(28.7%). 采暖期生物質(zhì)燃燒(14.2%)和揚(yáng)塵(8.6%)貢獻(xiàn)分別排名第三和第四. 非采暖期揚(yáng)塵(13.6%)和工業(yè)工藝源(8.1%)貢獻(xiàn)分別排名第三和第四. 其他幾種污染源的貢獻(xiàn)均低于5%. 該結(jié)果與2.3.2節(jié)中顆粒物組分餅圖的分類結(jié)果較為對(duì)應(yīng).
圖6 停暖前后顆粒物來(lái)源分析Fig.6 Source apportion of particles collected during heating and non-heating period
停暖前后優(yōu)良與污染時(shí)段的污染源解析和成分所占比例的結(jié)果比較如圖7所示,其中優(yōu)良時(shí)段ρ(PM2.5)為0~75 μg/m3,污染時(shí)段ρ(PM2.5)大于75 μg/m3. 通過(guò)對(duì)比可見,采暖期優(yōu)良和污染時(shí)段的首要污染源都是燃煤,其次是機(jī)動(dòng)車尾氣. 污染時(shí)段機(jī)動(dòng)車尾氣源貢獻(xiàn)(32.2%)比優(yōu)良時(shí)段(25.0%)高22.3%,燃煤源貢獻(xiàn)(37.7%)比優(yōu)良時(shí)段(44.3%)低17.5%,其他各源貢獻(xiàn)差異不明顯,說(shuō)明采暖期一方面受到燃煤大量排放的影響,另一方面污染時(shí)段機(jī)動(dòng)車尾氣源的累積也是影響空氣質(zhì)量的重要因素. 從成分角度看,采暖期污染時(shí)段元素碳比例(15.6%)也明顯高于優(yōu)良時(shí)段(7.3%),而有機(jī)碳比例(48.8%)低于優(yōu)良時(shí)段(54.8%),其他成分差異不大.
與采暖期不同,非采暖期優(yōu)良時(shí)段和污染時(shí)段的首要污染源都是機(jī)動(dòng)車尾氣,其次是燃煤. 但在污染時(shí)段,機(jī)動(dòng)車尾氣源貢獻(xiàn)(45.8%)進(jìn)一步增加,比優(yōu)良時(shí)段(40.7%)高11.1%,燃煤源的貢獻(xiàn)(24.2%)比優(yōu)良時(shí)段(25.6%)略低,其他各源的貢獻(xiàn)差異不明顯,說(shuō)明非采暖期污染時(shí)段也受機(jī)動(dòng)車尾氣源變化的影響較大. 從成分角度看,非采暖期污染時(shí)段元素碳比例(32.6%)也略高于優(yōu)良時(shí)段(30.0%),而有機(jī)碳比例(27.0%)低于優(yōu)良時(shí)段(29.3%),其他成分差異不明顯.
圖7 停暖前后優(yōu)良和污染時(shí)段顆粒物源解析結(jié)果和成分的比較Fig.7 Comparison of pollution source apportionment and components in clear and haze air during heating and non-heating period
對(duì)比采暖期和非采暖期的污染時(shí)段可見,采暖期的燃煤和生物質(zhì)燃燒源的貢獻(xiàn)明顯高于非采暖期,其中燃煤高出35.7%,生物質(zhì)燃燒源高出68.1%,其他各類源貢獻(xiàn)則低于非采暖期. 從成分的比例來(lái)看,采暖期有機(jī)碳、高分子有機(jī)物和左旋葡聚糖的占比均高于非采暖期,分別高出44.7%、55.9%和57.6%.
綜上分析,采暖期首要污染源為燃煤,其次是機(jī)動(dòng)車尾氣,非采暖期則相反,首要污染源是機(jī)動(dòng)車尾氣,其次是燃煤;兩個(gè)時(shí)段雖然首要污染源有所差異,但在污染時(shí)段中,機(jī)動(dòng)車尾氣源的貢獻(xiàn)比例均高于優(yōu)良時(shí)段,說(shuō)明無(wú)論是采暖期還是非采暖期,除燃煤排放的影響外,機(jī)動(dòng)車尾氣的影響也不可忽視.
a) 太原市典型生活區(qū)監(jiān)測(cè)期間顆粒物中有明顯的元素碳、有機(jī)碳、水溶性離子及陰離子、左旋葡聚糖碎片等質(zhì)譜特征,此外還有較弱的多環(huán)芳烴(PAHs)離子峰,這與燃煤源的排放有關(guān)系. 采暖期顆粒物中的有機(jī)碳、硫酸鹽、多環(huán)芳烴及碳氮離子等的質(zhì)譜信號(hào)強(qiáng)度大于非采暖期,而非采暖期的元素碳、鉀離子、硝酸鹽、銨鹽等二次離子的信號(hào)強(qiáng)度明顯大于采暖期.
b) 為了盡可能排除氣象因素的影響,選取采暖期和非采暖期相同風(fēng)向風(fēng)級(jí)范圍的顆粒物進(jìn)行比較,發(fā)現(xiàn)采暖期顆粒物主要成分依次為有機(jī)碳、混合碳和元素碳,非采暖期顆粒物主要成分依次為元素碳、有機(jī)碳和混合碳. 采暖期有機(jī)碳、高分子有機(jī)物和左旋葡聚糖占比明顯高于非采暖期,非采暖期的元素碳、礦物質(zhì)和重金屬明顯高于采暖期.
c) 對(duì)相同風(fēng)向和風(fēng)級(jí)范圍的顆粒物進(jìn)行比較,發(fā)現(xiàn)停暖前后首要的兩類污染源均為燃煤和機(jī)動(dòng)車尾氣,二者貢獻(xiàn)率之和高達(dá)70.1%和67.4%,可見當(dāng)?shù)卮髿忸w粒物主要受到這兩類污染源的影響. 采暖期的燃煤貢獻(xiàn)比例高于非采暖期,非采暖期的機(jī)動(dòng)車尾氣大于采暖期.
d) 采暖期首要污染源為燃煤,其次是機(jī)動(dòng)車尾氣,非采暖期則相反,首要污染源是機(jī)動(dòng)車尾氣,其次是燃煤;兩個(gè)時(shí)段雖然首要污染源有所差異,但在污染過(guò)程中,機(jī)動(dòng)車尾氣源的貢獻(xiàn)比例均高于優(yōu)良時(shí)段,說(shuō)明無(wú)論是采暖期還是非采暖期,除燃煤排放的影響外,機(jī)動(dòng)車尾氣的影響也不可忽視. 建議加強(qiáng)機(jī)動(dòng)車燃油品質(zhì)的升級(jí),使用清潔煤,并在重污染時(shí)段采取相應(yīng)的管控措施. 后續(xù)研究過(guò)程中,將通過(guò)對(duì)太原市各區(qū)域進(jìn)行巡回監(jiān)測(cè),得到更加全面的污染源時(shí)空變化特征,為太原市環(huán)保政策制定和空氣質(zhì)量改善提供支撐.
[1] 武杰,武婷.對(duì)太原市空氣質(zhì)量狀況的思考[J].山西高等學(xué)校社會(huì)科學(xué)學(xué)報(bào),2007,19(6):60- 62. WU Jie,WU Ting.Consideration of the situation of air quality in Taiyuan[J].Social Sciences Journal of Colleges of Shanxi,2007,19(6):60- 62.
[2] 郭麗媛,李偉.“十一五”期間太原市環(huán)境空氣質(zhì)量及影響因素分析研究[J].環(huán)境科學(xué)與管理,2014,39(11):56- 61. GUO Liyuan,LI Wei.Atmospheric environment quality and influential factors during Eleventh Five-year Plan in Taiyuan City[J].Environmental Science and Management,2014,39(11):56- 61.
[3] 余光輝,李玲玲,李振國(guó),等.太原市主要大氣污染物分析與預(yù)測(cè)[J].環(huán)境科學(xué)與管理,2010,35(4):171- 174. YU Guanghui,LI Lingling,LI Zhenguo,etal.Taiyuan main air pollutant appraisal analysis and forecast[J].Environmental Science and Management,2010,35(4):171- 174.
[4] 黃金華,焦燕.太原市PM2.5污染特征及園林規(guī)劃建議[J].山西林業(yè)科技,2015,44(2):38- 40.
[5] 潘海燕.利用SPAMS研究淮安市冬季灰霾空氣污染[J].環(huán)境工程,2015,33(S1):450- 453. PAN Haiyan.Research on haze air pollution in winter using SPAMS[J].Environmental Engineering,2015,33(S1):450- 453.
[6] 劉浪,張文杰,杜世勇,等.利用SPAMS分析北京市硫酸鹽、硝酸鹽和銨鹽季節(jié)變化特征及潛在源區(qū)分布[J].環(huán)境科學(xué),2016,37(5):1609- 1618. LIU Lang,ZHANG Wenjie,DU Shiyong,etal.Seasonal variation characteristics and potential source contribution of sulfate,nitrate and ammonium in Beijing by using single particle aerosol mass spectrometry[J].Environmental Science,2016,37(5):1609- 1618.
[7] LIU Lang,WANG Yanli,DU Shiyong,etal.Characteristics of atmospheric single particles during haze periods in a typical urban area of Beijing:acase study in October,2014[J].Journal of Environmental Sciences,2016,40:145- 153.
[8] 牟瑩瑩,樓晟榮,陳長(zhǎng)虹,等.利用SPAMS研究上海秋季氣溶膠污染過(guò)程中顆粒物的老化與混合狀態(tài)[J].環(huán)境科學(xué),2013,34(6):2071- 2080. MU Yingying,LOU Shengrong,CHEN Changhong,etal.Aging and mixing state of particulate matter during aerosol pollution episode in autumn Shanghai using a single particle aerosol mass spectrometer(SPAMS)[J].Environmental Science,2013,34(6):2071- 2080.
[9] 何俊杰,張國(guó)華,王伯光,等.鶴山灰霾期間大氣單顆粒氣溶膠特征的初步研究[J].環(huán)境科學(xué)學(xué)報(bào),2013,33(8):2098- 2104. HE Junjie,ZHANG Guohua,WNAG Boguang,etal.Analysis of single particle characteristics during haze events in Heshan[J].Acta Scientiae Circumstantiae,2013,33(8):2098- 2104.
[10] 張賀偉,成春雷,陶明輝,等.華北平原灰霾時(shí)段下大氣氣溶膠的單顆粒分析[J].環(huán)境科學(xué)研究,2017,30(1):1- 9. ZHANG Hewei,CHENG Chunlei,TAO Minghui,etal.Analysis of single particle aerosols in the North China Plain during haze periods[J].Research of Environmental Sciences,2017,30(1):1- 9.
[11] 周靜博,任毅斌,洪綱,等.利用SPAMS研究石家莊市冬季連續(xù)灰霾時(shí)段的污染特征及成因[J].環(huán)境科學(xué),2015,36(11):3972- 3980. ZHOU Jingbo,REN Yibin,HONG Gong,etal.Characteristics and formation mechanism of a multi-day haze in the winter of Shijiazhuang City using a single particle aerosol mass spectrometry(SPAMS)[J].Environmental Science,2015,36(11):3972- 3980.
[12] 吳也正.單顆粒氣溶膠質(zhì)譜儀在蘇州市污染過(guò)程分析中的應(yīng)用[J].綠色科技,2016,1(2):84- 87. WU Yezheng.Application of single particle aerosol mass spectrometry in the analysis of atmospheric pollution processesin Suzhou[J].Journal of Green Science and Technology,2016,1(2):84- 87.
[13] LI Lei,HUANG Zhengxu,DONG Junguo,etal.Real time biopolar time-of-flight mass spectrometer for analyzing single aerosol particles[J].International Journal of Mass Spectrometry,2011,303(2):118- 124.
[14] GONG Xianda,ZHANG Ci,CHEN Hong,etal.Size distribution and mixing state of black carbon particles during heavy air pollution episode in Shanghai[J].Atmospheric Chemistry and Physics,2016,16:5399- 5411.
[15] FU Huaiyu,ZHENG Mei,YAN Caiqing,etal.Sources and characteristics of fine particles over the Yellow Sea and Bohai Sea using online single particle aerosol mass spectrometer[J].Journal of Environmental Sciences,2015,29:62- 70.
[16] 陳多宏,李梅,黃渤,等.區(qū)域大氣細(xì)粒子污染特征及快速來(lái)源解析[J].中國(guó)環(huán)境科學(xué),2016,36(3):651- 659. CHEN Duohong,LI Mei,HUANG Bo,etal.The pollution characteristics and source apportionment of regional atmospheric fine particles[J].China Environmental Science,2016,36(3):651- 659.
[17] 陳多宏,何俊杰,張國(guó)華,等.不同氣團(tuán)對(duì)廣東鶴山大氣超級(jí)監(jiān)測(cè)站單顆粒氣溶膠理化特征的影響[J].生態(tài)環(huán)境學(xué)報(bào),2015,24(1):63- 69. CHEN Duohong,HE Junjie,ZHANG Guohua,etal.The influence of different air masses on the single particle aerosol physical and chemical characteristics in Heshan atmospheric supersite of Guangdong[J].Ecology and Environmental Sciences,2015,24(1):63- 69.
[18] 張莉,李梅,李磊,等.基于單顆粒質(zhì)譜信息氣溶膠分類方法的研究進(jìn)展[J].環(huán)境科學(xué)與技術(shù),2013,36(3):190- 195. ZHANG Li,LI Mei,LI Lei,etal.Research progress in aerosol clustering based on single particles mass spectrum information[J].Environmental Science & Technology(China),2013,36(3):190- 195.
[19] CHEN Kui,YIN Yan,KONG Shaofei,etal.Size-resolved chemical composition of atmospheric particles during a straw burning period at Mt.Huang (the Yellow Mountain) of China[J].Atmospheric Environment,2014,84:380- 389.
[20] 焦瑞,張金生,李麗華.大氣中細(xì)顆粒物(PM2.5)中有機(jī)碳的研究進(jìn)展[J].環(huán)境科技,2013,26(2):75- 78. JIAO Rui,ZHANG Jinsheng,LI Lihua.Research progress on the organic carbon of the fine particulate matter(PM2.5) in the atmosphere[J].Environmental Science & Technology(China),2013,26(2):75- 78.
[21] 段二紅,張微微,李璇,等.石家莊市采暖期大氣細(xì)顆粒物中PAHs污染特征[J].環(huán)境科學(xué)研究,2017,30(2):193- 201. DUAN Erhong,ZHANG Weiwei,LI Xuan,etal.Characteristics of PAHs in fine atmospheric particulate matter in Shijiazhuang City in heating season[J].Research of Environmental Sciences,2017,30(2):193- 201.
[22] 周靜博,張濤,李治國(guó),等.利用SPAMS構(gòu)建石家莊市PM2.5固定排放源成分譜庫(kù)[J].河北工業(yè)科技,2015,32(5):443- 450. ZHOU Jingbo,ZHANG Tao,LI Zhiguo,etal.Establishment of stationary source spectral library of PM2.5by SPAMS in Shijiazhuang City[J].Hebei Journal of Industrial Science and Technology,2015,32(5):443- 450.
[23] 李磊,譚國(guó)斌,張莉,等.運(yùn)用單顆粒氣溶膠質(zhì)譜儀分析柴油車排放顆粒物[J].分析化學(xué)研究報(bào)告,2013,41(12):1831- 1836. LI Lei,TAN Guobin,ZHANG Li,etal.Analysis of diesel exhaust particles using single particle aerosol mass spectrometry[J].Chinese Journal of Analytical Chemistry,2013,41(12):1831- 1836.
[24] 杜娟,宋韶華,張志朋,等.桂林市細(xì)顆粒物典型排放源單顆粒質(zhì)譜特征研究[J].環(huán)境科學(xué)學(xué)報(bào),2015,35(5):1556- 1562. DU Juan,SONG Shaohua,ZHANG Zhipeng,etal.Single particle characteristics of fine particulate matter emitted from typical sources of Guilin[J].Acta Scientiae Circumstantiae,2015,35(5):1556- 1562.
[25] 李梅,李磊,黃正旭,等.運(yùn)用單顆粒氣溶膠質(zhì)譜技術(shù)初步研究廣州大氣礦塵污染[J].環(huán)境科學(xué)研究,2011,24(6):632- 636. LI Mei,LI Lei,HUANG Zhengxu,etal.Preliminary study of mineral dust particle pollution using a single particle aerosol mass spectrometer(SPAMS) in Guangzhou[J].Research of Environmental Sciences,2011,24(6):632- 636.
[26] MOFFET R C,DEFOY B,MOLINA L T,etal.Measurement of ambient aerosols in northern Mexico City by single particle mass spectrometry[J].Atmospheric Chemistry and Physics,2008,8(16):4499- 4516.
[27] BI Xinhui,ZHANG Guohua,LI Lei,etal.Mixing state of biomass burning particles by single particle aerosol mass spectrometer in the urban area of PRD,China[J].Atmospheric Environment,2011,45:3447- 3453.
[28] HUDSON P K,MURPHY D M,CZICZO D J,etal.Biomass-burning particle measurements:characteristics composition and chemical processing[J].Journal of Geophysical Research,2004,109(D23):2890- 2898.
[29] FRASER M P,LAKSHMANAN K.Usinglevoglucosan as a molecular marker for the long-range transport of biomass combustion aerosols[J].Environmental Science & Technology,2000,34:4560- 4564.
[30] SIMONEIT B R T.Biomassburning:a review of organic tracers for smoke from incomplete combustion[J].Applied Geochemistry,2002,17(3):129- 162.
[31] 何凌燕,胡敏,黃曉峰,等.北京大氣氣溶膠PM2.5中的有機(jī)示蹤化合物[J].環(huán)境科學(xué)學(xué)報(bào),2005,25(1):23- 29. HE Lingyan,HU Min,HUANG Xiaofeng,etal.Determination of organic molecular tracers in PM2.5in the atmosphere of Beijing[J].Acta Scientiae Circumastantiae,2005,25(1):23- 29.
[32] SIMONEIT B R T,SCHAUER J J,NOLTE C G,etal.Levoglucosan,a tracer for cellulose in biomass burning and atmospheric particles[J].Atmospheric Environment,1999,33:173- 182.
Sources and Components of PM2.5in Ambient Air of a Typical Living Quarter in Taiyuan City before and after Stopping Heating based on Single Particle Aerosol Mass Spectrometry
CAO Liyuan
Taiyuan Environmental Monitoring Center Station, Taiyuan 030002, China
X513
1001- 6929(2017)10- 1524- 09
A
10.13198/j.issn.1001- 6929.2017.03.16
2017-05-13
2017-07-27
國(guó)家自然科學(xué)基金項(xiàng)目(91544226,41375132);國(guó)家環(huán)境保護(hù)公益性行業(yè)科研專項(xiàng)(201409003)
曹力媛(1964-),女,河北元氏人,高級(jí)工程師,學(xué)士,主要從事環(huán)境監(jiān)測(cè)研究工作,zclyuan@163.com.
曹力媛.基于SPAMS的太原市典型生活區(qū)停暖前后PM2.5來(lái)源及組成[J].環(huán)境科學(xué)研究,2017,30(10):1524- 1532.
CAO Liyuan.Sources and components of PM2.5in ambient air of a typical living quarter in Taiyuan City before and after stopping heating based on single particle aerosol mass spectrometry[J].Research of Environmental Sciences,2017,30(10):1524- 1532.