張玉峰,葉坤英,鐘丹
(1河南中醫(yī)藥大學(xué)第二臨床醫(yī)學(xué)院,鄭州450002;2井岡山大學(xué)醫(yī)學(xué)院)
小干擾RNA與反義寡核苷酸技術(shù)抑制肝星狀細(xì)胞RhoA表達(dá)的效果比較
張玉峰1,葉坤英1,鐘丹2
(1河南中醫(yī)藥大學(xué)第二臨床醫(yī)學(xué)院,鄭州450002;2井岡山大學(xué)醫(yī)學(xué)院)
目的對(duì)比觀察小干擾RNA(siRNA)和反義寡核苷酸(ASODN)技術(shù)抑制肝星狀細(xì)胞RhoA表達(dá)的效果。方法將培養(yǎng)的大鼠肝星狀細(xì)胞株HSC-T6隨機(jī)分為siRNA組和ASODN組,兩組又分別分為A、B、C、D各4個(gè)亞組;siRNA組和ASODN組中的A亞組不轉(zhuǎn)染質(zhì)粒, C、D、B亞組分別采用siRNA、ASODN技術(shù)轉(zhuǎn)染大鼠RhoA特異性Rat1 、Rat2質(zhì)粒及HK-A陰性對(duì)照質(zhì)粒。轉(zhuǎn)染48 h取各組細(xì)胞,以RT-PCR技術(shù)檢測(cè)細(xì)胞中的RhoA、Ⅰ型膠原(Col Ⅰ) mRNA,酶聯(lián)免疫吸附法檢測(cè)細(xì)胞上清液中的透明質(zhì)酸(HA)及層粘連蛋白(LN)。結(jié)果siRNA組與ASODN組中RhoA、Col Ⅰ mRNA均以C亞組表達(dá)量最低,組內(nèi)A、C亞組比較差異有統(tǒng)計(jì)學(xué)意義(P均<0.05),組內(nèi)其余亞組間比較差異無(wú)統(tǒng)計(jì)學(xué)意義(P均>0.05);siRNA組C亞組RhoA、Col Ⅰ mRNA相對(duì)表達(dá)量低于ASODN組(P均<0.05),兩組A、B、D同亞組間比較差異無(wú)統(tǒng)計(jì)學(xué)意義(P均>0.05)。siRNA組與ASODN組細(xì)胞上清液HA、LN水平均以C亞組最低,組內(nèi)A、C亞組比較差異有統(tǒng)計(jì)學(xué)意義(P均<0.05),組內(nèi)其余亞組間比較差異無(wú)統(tǒng)計(jì)學(xué)意義(P均>0.05);siRNA組C亞組細(xì)胞上清液HA、LN水平低于ASODN組(P均<0.05),兩組A、B、D同亞組間比較差異無(wú)統(tǒng)計(jì)學(xué)意義(P均>0.05)。結(jié)論siRNA和ASODN均可抑制大鼠HSC-T6細(xì)胞的RhoA表達(dá),但siRNA下Rat1質(zhì)粒所介導(dǎo)的 RNA干擾技術(shù)相對(duì)于ASODN能更有效抑制HSC-T6細(xì)胞外基質(zhì)HA、Col Ⅰ、LN的生成。
小干擾RNA;反義寡核苷酸;RhoA;透明質(zhì)酸;Ⅰ型膠原;層粘連蛋白;肝星狀細(xì)胞
肝纖維化是肝臟疾病慢性發(fā)展的一個(gè)重要病理特征,也是肝硬化發(fā)生的中間環(huán)節(jié)。研究[1~4]發(fā)現(xiàn),肝星狀細(xì)胞(HSC)在肝纖維化過(guò)程中明顯存在增殖活化,增殖活化的HSC可產(chǎn)生大量的細(xì)胞外基質(zhì),如透明質(zhì)酸(HA)、Ⅰ型膠原(Col Ⅰ)及層粘連蛋白(LN)等,這些物質(zhì)沉淀最終可導(dǎo)致肝纖維化。Rho家族蛋白能參與多種信號(hào)通路,調(diào)節(jié)細(xì)胞功能。有研究[5~8]顯示,Rho參與了多種器官組織的纖維化。因此,理論上認(rèn)為抑制Rho信號(hào)傳導(dǎo)途徑可阻止肝纖維化的進(jìn)程。小干擾RNA(siRNA)和反義寡核苷酸(ASODN)是目前常用的端粒酶抑制劑,常用于基因的靶向治療。2015年6月~2016年6月,我們對(duì)比觀察了這兩種靶向技術(shù)對(duì)大鼠HSC中Rho表達(dá)的抑制效果,為肝纖維化的基因治療提供一定參考依據(jù)?,F(xiàn)報(bào)告如下。
1.1 材料 大鼠HSC-T6細(xì)胞購(gòu)自上海中醫(yī)藥大學(xué),表達(dá)綠色熒光蛋白(EGFP)的大鼠RhoA特異性Rat1及Rat2質(zhì)粒、HK-A陰性對(duì)照質(zhì)粒由上海中醫(yī)藥大學(xué)合成;DMEM高糖培養(yǎng)基、新生牛血清(Gibco公司),TaqDNA聚合酶及M-MLV逆轉(zhuǎn)錄酶、Rnasin核酸酶抑制劑(Promega公司);大鼠HA、Col Ⅰ及LN聯(lián)免疫吸附法檢測(cè)試劑盒(上海生物科技有限公司)。離心機(jī)(BECKMAN公司),恒溫培養(yǎng)箱(Thermo Forma公司),PCR擴(kuò)增儀(MJ Research公司),酶聯(lián)免疫檢測(cè)儀(Thermo Labsysterm公司),紫外分光光度儀(Bechman公司)。
1.2 實(shí)驗(yàn)方法
1.2.1 細(xì)胞培養(yǎng) 取DMEM高糖培養(yǎng)基與新生牛血清,配制成含10%新生牛血清培養(yǎng)液;將HSC-T6細(xì)胞在5%CO2、飽和濕度、37 ℃下培養(yǎng),細(xì)胞生長(zhǎng)80%~90%融合時(shí)進(jìn)行傳代;傳代過(guò)程中以10%新生牛血清培養(yǎng)基終止消化,獲取實(shí)驗(yàn)所需的HSC-T6細(xì)胞。
1.2.2 細(xì)胞分組與轉(zhuǎn)染 將HSC-T6細(xì)胞隨機(jī)分為siRNA組和ASODN組,兩組又分別分為A、B、C、D各4個(gè)亞組,均接種于6孔板,每組接種2孔(0.5×106/孔),同時(shí)每組另設(shè)6個(gè)復(fù)孔為對(duì)照。siRNA組和ASODN組中的A亞組不轉(zhuǎn)染質(zhì)粒, C、D、B亞組分別采用siRNA、ASODN技術(shù)轉(zhuǎn)染大鼠RhoA特異性Rat1 、Rat2質(zhì)粒及HK-A陰性對(duì)照質(zhì)粒。24 h后熒光倒置顯微鏡下觀察細(xì)胞熒光,轉(zhuǎn)染48 h后收集細(xì)胞和上清。兩組中A亞組細(xì)胞生長(zhǎng)良好,形態(tài)輪廓清楚;B、C、D組細(xì)胞中均見(jiàn)綠色熒光,細(xì)胞生長(zhǎng)狀態(tài)較差,細(xì)胞轉(zhuǎn)染成功。
1.2.3 細(xì)胞中RhoA、Col Ⅰ mRNA檢測(cè) 采用RT-PCR技術(shù)。取各組細(xì)胞,經(jīng)RNA的提取、mRNA逆轉(zhuǎn)錄為cDNA、PCR反應(yīng)、電泳等步驟,電泳產(chǎn)物最終在圖像分析儀中進(jìn)行灰度掃描;用圖像分析儀采集圖像,以擴(kuò)增目的片段與β-actin的灰度比值表示所擴(kuò)增的目的基因片段相對(duì)表達(dá)水平。RhoA上游引物為5′-GTAGAGTTGGCTTTATGGG-3′,下游引物為5′-CTCACTCCGTCTTTGGTC-3′,擴(kuò)增的片段長(zhǎng)度為347 bp。擴(kuò)增條件:94 ℃預(yù)變性3 min;94 ℃變性1 min,53 ℃退火50 s,72 ℃延伸40 s,32個(gè)循環(huán);最后72 ℃延伸8 min。Col Ⅰ上游引物為5′-TGGCGTTCGTGGCTCTCAGGGTAG-3′,下游引物為5′-GCATGTGCGGGCAGGGTTCTTTC-3′,擴(kuò)增的片段長(zhǎng)度為259 bp;擴(kuò)增條件:95 ℃預(yù)變性5 min;95 ℃變性1 min,5 ℃退火50 s,72 ℃延伸40 s,32個(gè)循環(huán);最后72 ℃延伸8 min。
1.2.4 細(xì)胞上清液中HA、LN檢測(cè) 采用酶聯(lián)免疫吸附法。經(jīng)前述細(xì)胞培養(yǎng)、分組及轉(zhuǎn)染,以3 000 r/min,4 ℃離心10 min,取上清液,檢測(cè)細(xì)胞上清液中HA、LN。檢測(cè)過(guò)程包括建立標(biāo)準(zhǔn)孔及對(duì)照孔、各孔加待測(cè)液及一抗、酶標(biāo)抗體工作液、底物抗體工作液、終止液等步驟,最終產(chǎn)物以紫外分光光度儀在492 nm處測(cè)定吸光值,計(jì)算出HA及LA含量。
2.1 各組細(xì)胞中RhoA、Col Ⅰ mRNA相對(duì)表達(dá)量比較 siRNA組與ASODN組中RhoA、Col Ⅰ mRNA均以C亞組表達(dá)量最低,組內(nèi)A、C亞組比較差異有統(tǒng)計(jì)學(xué)意義(P均<0.05),組內(nèi)其余亞組間比較差異無(wú)統(tǒng)計(jì)學(xué)意義(P均>0.05);siRNA組C亞組RhoA、Col Ⅰ mRNA相對(duì)表達(dá)量低于ASODN組(P<0.05),兩組A、B、D同亞組間比較差異無(wú)統(tǒng)計(jì)學(xué)意義(P均>0.05)。見(jiàn)表1。
表1 各組細(xì)胞中RhoA、Col Ⅰ mRNA相對(duì)表達(dá)量
注:與同組內(nèi)A亞組比較,*P<0.05;與ASODN組同亞組比較,#P<0.05。
2.2 各組細(xì)胞上清液HA、LN水平比較 siRNA組與ASODN組細(xì)胞上清液HA、LN水平均以C亞組最低,組內(nèi)A、C亞組比較差異有統(tǒng)計(jì)學(xué)意義(P均<0.05),組內(nèi)其余亞組間比較差異無(wú)統(tǒng)計(jì)學(xué)意義(P均>0.05);siRNA組C亞組細(xì)胞上清液HA、LN水平低于ASODN組(P均<0.05),兩組A、B、D同亞組間比較差異無(wú)統(tǒng)計(jì)學(xué)意義(P均>0.05)。見(jiàn)表2。
表2 各組細(xì)胞上清液HA、LN水平比較
注:與同組內(nèi)A亞組比較,*P<0.05;與ASODN組同亞組比較,#P<0.05。
HSC被認(rèn)為是肝纖維化過(guò)程中的關(guān)鍵細(xì)胞,也是導(dǎo)致肝細(xì)胞發(fā)生纖維化及膠原產(chǎn)生的主要原因。HSC被激活后可分泌腫瘤壞死因子、血小板源性生長(zhǎng)因子等細(xì)胞因子,從而引起細(xì)胞外基質(zhì)在肝內(nèi)沉積,導(dǎo)致肝纖維化發(fā)生。Col Ⅰ、HA及LN是細(xì)胞外基質(zhì)的主要成分,臨床研究也顯示在肝纖維化時(shí)Col Ⅰ、HA及LN的表達(dá)均明顯升高[9~11]。在肝細(xì)胞受損時(shí),內(nèi)皮細(xì)胞對(duì)HA的降解能力下降,因此在細(xì)胞及血清中HA升高。Col Ⅰ則為細(xì)胞基底膜的組成成分,在肝內(nèi)合成及代謝。肝細(xì)胞受損可引起Col Ⅰ破壞,LA主要參與肝竇毛細(xì)血管化形成。因此,以上指標(biāo)往往作為判斷有無(wú)纖維化及纖維化嚴(yán)重程度的指標(biāo)被臨床應(yīng)用。
Rho家族蛋白已經(jīng)臨床證實(shí)參與了多種器官組織的纖維化進(jìn)程,其介導(dǎo)的信號(hào)通路一直是臨床纖維化研究中的新靶點(diǎn)。有研究[5~8]顯示,RhoA是重要的促纖維化因子,采用RNA干擾技術(shù)對(duì)HSC-T6細(xì)胞進(jìn)行轉(zhuǎn)染能抑制RhoA基因的表達(dá),同時(shí)阻斷RhoA對(duì)HSC激活,降低Col Ⅰ、HA及LN等細(xì)胞外基質(zhì)的生成,起到阻斷纖維化過(guò)程。反義技術(shù)是根據(jù)核酸間堿基配對(duì)結(jié)合原理從基因水平上干擾核酸向蛋白質(zhì)的傳遞,siRNA和ASODN兩組技術(shù)均屬于反義技術(shù)[12~16],以mRNA為靶點(diǎn),對(duì)靶基因表達(dá)進(jìn)行調(diào)節(jié)。本研究采用以上兩種方法抑制HSC-T6細(xì)胞中的RhoA表達(dá),結(jié)果顯示兩種方法均能抑制RhoA的表達(dá),證實(shí)抑制HSC-T6細(xì)胞中的RhoA表達(dá)采用以上技術(shù)是可行的。觀察兩種方法下Col Ⅰ、HA及LN的表達(dá),均表現(xiàn)為以上細(xì)胞外基質(zhì)指標(biāo)的下調(diào);但是,進(jìn)一步比較兩種技術(shù)下具體下調(diào)效果,siRNA相對(duì)于ASODN對(duì)細(xì)胞外基質(zhì)的下調(diào)效果更為明顯,說(shuō)明以上兩種技術(shù)可能有不同的反義作用機(jī)制。一般認(rèn)為,ASODN主要是通過(guò)與細(xì)胞核內(nèi)的mRNA前體相互作用形成雙鏈DNA最終阻斷蛋白質(zhì)的翻譯,siRNA與ASODN存在差別可能在于mRNA前體和成熟mRNA一級(jí)結(jié)構(gòu),因此導(dǎo)致最終抑制效應(yīng)也存在不同。但是,由于ASODN在研究過(guò)程中更為穩(wěn)定,并且研究較為成熟,這也是臨床尚未放棄研究ASODN機(jī)制的原因。但是,siRNA也已經(jīng)成為臨床新的研究熱點(diǎn),值得進(jìn)一步深入研究其機(jī)制。
綜上所述,siRNA和ASODN均可抑制HSC-T6細(xì)胞中RhoA的表達(dá),siRNA下Rat1質(zhì)粒所介導(dǎo)的 RNA干擾技術(shù)相對(duì)于ASODN能更有效抑制HSC-T6細(xì)胞外基質(zhì)HA、Col Ⅰ、LN的生成,為肝纖維化的基因治療提供了方向。
[1] Pradere JP, Kluwe J, Minicis S, et al. Hepatic macrophages but not dendritic cells contribute to liver fibrosis by promoting the survival of activated hepatic stellate cells in mice[J]. Hepatology, 2013,58(4):1461-1473.
[2] Tan Z, Qian X, Jiang R, et al. IL-17A plays a critical role in the pathogenesis of liver fibrosis through hepatic stellate cell activation[J]. J Immunol, 2013,191(4):1835-1844.
[3] Kong X, Feng D, Wang H, et al. Interleukin-22 induces hepatic stellate cell senescence and restricts liver fibrosis in mice[J]. Hepatology, 2012,56(3):1150-1159.
[4] Troeger JS, Mederacke I, Gwak GY, et al. Deactivation of hepatic stellate cells during liver fibrosis resolution in mice[J]. Gastroenterology, 2012,143(4):1073-1083.
[5] Knipe RS, Tager AM, Liao JK. The Rho kinases: critical mediators of multiple profibrotic processes and rational targets for new therapies for pulmonary fibrosis[J]. Pharmacol Rev, 2015,67(1):103-117.
[6] Riches DWH, Backos DS, Redente EF. ROCK and Rho: promising therapeutic targets to ameliorate pulmonary fibrosis[J]. Am J Pathol, 2015,185(4):909-912.
[7] Tsou PS, Haak AJ, Khanna D, et al. Cellular mechanisms of tissue fibrosis. 8. Current and future drug targets in fibrosis: focus on Rho GTPase-regulated gene transcription[J]. Am J Physiol Cell Physiol, 2014,307(1):2-13.
[8] Satoh K, Suzuki K, Sunamura S, et al. Crucial roles of rho-kinase, cyclophilin a and its receptor, basigin, for cardiac hypertrophy, fibrosis and failure-novel therapeutic targets[J]. J Card Fail, 2015,21(10):158.
[9] Iredale JP, Thompson A, Henderson NC. Extracellular matrix degradation in liver fibrosis: Biochemistry and regulation[J]. Biochim Biophys Acta, 2013,1832(7):876-883.
[10] Leeming DJ, Byrjalsen I, Jimenez W, et al. Protein fingerprinting of the extracellular matrix remodelling in a rat model of liver fibrosis-a serological evaluation[J]. Liver Int, 2013,33(3):439-447.
[11] Zhang Z, Guo Y, Zhang S, et al. Curcumin modulates cannabinoid receptors in liver fibrosis in vivo and inhibits extracellular matrix expression in hepatic stellate cells by suppressing cannabinoid receptor type-1 in vitro[J]. Eur J Pharmacol,2013,721(1):133-140.
[12] Wagner A, Bock CT, Fechner H, et al. Application of modified antisense oligonucleotides and siRNAs as antiviral drugs[J]. Future Med Chem, 2015,7(13):1637-1642.
[13] Prakash TP, Lima WF, Murray HM, et al. Lipid nanoparticles improve activity of single-stranded siRNA and gapmer antisense oligonucleotides in animals[J]. ACS Chem Biol, 2013,8(7):1402-1406.
[14] Bolduc V, Zou Y, Lindow M, et al. GP 216: Allele-specific silencing of a dominant-negative mutation using siRNA or LNA antisense oligonucleotides alleviates the phenotype of a cellular model of Ullrich congenital muscular dystrophy[J]. Neurom Dis,2014,24(9):881-882.
[15] Lima WF, De Hoyos CL, Liang X, et al. RNA cleavage products generated by antisense oligonucleotides and siRNAs are processed by the RNA surveillance machinery[J]. Nucleic Acids Res, 2016,44(7):3351-3363.
[16] Jarver P, Coursindel T, Andaloussi SEL, et al. Peptide-mediated cell and in vivo delivery of antisense oligonucleotides and siRNA[J]. Mol Ther Nucleic Acids, 2012,1(6):e27.
Effect comparison of small interfering RNA and antisense oligonucleotide in inhibition of RhoA expression of rat hepatic stellate cells
ZHANGYufeng1,YEKunying,ZHONGDan
(1TheSecondClinicalMedicalCollegeofHenanUniversityofTraditionalChineseMedicine,Zhengzhou450002,China)
ObjectiveTo compare the effects of small interfering RNA (siRNA) and antisense oligonucleotide (ASODN) in inhibition of RhoA expression of rat hepatic stellate cells.MethodsRat hepatic stellate cell line HSC-T6 was divided into the siRNA group and ASODN group, respectively, and then each group was separately divided into subgroups A, B, C, and D. Cells in the subgroup A of the siRNA group and ASODN group were cultured normally, subgroup B was transfected with HK-A negative control plasmid, subgroup C with Rat1, and subgroup D with Rat2. After transfection for 48 h, the mRNA expression of RhoA and ColⅠin HSC-T6 cells of each group was detected by reverse-transcription polymerase chain reaction (RT-PCR), respectively; the content of hyaluronic acid (HA) and laminin (LN) in culture serum was measured by specific ELISA.ResultsThe expression of RhoA mRNA and Col I mRNA in the subgroup C of siRNA group and ASODN group was the lowest, and significant difference was found between subgroup A and subgroup C (bothP<0.05), but no significant difference was found between the rest of subgroups (allP>0.05). The mRNA expression of RhoA and Col Ⅰ in the subgroup C of the siRNA group was lower than that in the ASODN group (P<0.05). There was no significant difference in the subgroups A, B, and D between the siRNA group and ASODN group (allP>0.05). The levels of HA and LN in the supernate of subgroup C of the siRNA group and ASODN group were the lowest, and significant difference was found between subgroup A and subgroup C (bothP<0.05), but no significant difference was found between the rest of subgroups (allP>0.05). The levels of HA and LN in the supernate of subgroup C of the siRNA group were lower than those in the ASODN group (bothP<0.05). There was no significant difference in the subgroups A, B, and D between the siRNA group and ASODN group (allP>0.05).ConclusionBoth siRNA and ASODN can inhibit RhoA expression of rat HSC-T6 cells, and RNA interference mediated by Rat1 plasmids targeting RhoA can more effectively inhibit the formation of extracellular matrix HA, Col Ⅰ, and LN than that of ASODN.
small interfering RNA; antisense oligonucleotide; RhoA; hyaluronic acid; collagenⅠ; laminin; hepatic stellate cells
10.3969/j.issn.1002-266X.2017.34.002
R365;Q522
A
1002-266X(2017)34-0005-04
2017-01-03)
河南省中醫(yī)藥科學(xué)研究專項(xiàng)課題(2014ZY02027)。
張玉峰(1969-),男,碩士,副教授,副主任醫(yī)師,主要研究方向?yàn)橄到y(tǒng)疾病的中西醫(yī)治療。E-mail: zhouyihb@163.com