朱永偉,薛曉輝,惠弘毅
(陜西鐵路工程職業(yè)技術(shù)學(xué)院鐵道工程系, 陜西渭南 714099)
頂管法施工對(duì)地鐵隧道的影響分析
——以深圳某區(qū)間隧道施工為例
朱永偉,薛曉輝,惠弘毅
(陜西鐵路工程職業(yè)技術(shù)學(xué)院鐵道工程系, 陜西渭南 714099)
為研究大直徑頂管上跨施工對(duì)地鐵運(yùn)營(yíng)隧道的影響預(yù)測(cè)問(wèn)題,以深圳地區(qū)1.8 m大直徑頂管上跨地鐵1號(hào)線某區(qū)間隧道施工為例,采用MIDAS/GTS三維有限元軟件建立三維數(shù)值模型,對(duì)頂管施工引起的地表隆沉、地鐵隧道豎向位移和橫向收斂變形、頂管隧道本身豎向位移進(jìn)行數(shù)值模擬分析。分析結(jié)果表明,頂管施工過(guò)程中,由于土體開(kāi)挖卸載引起下部土體向上回彈,導(dǎo)致地面會(huì)發(fā)生一定的隆起,最大隆起發(fā)生在頂管隧道兩端,中部隆起位移較??;地鐵隧道水平位移很小,豎向發(fā)生向上位移,并伴隨橫向收斂變形,導(dǎo)致地鐵隧道發(fā)生豎橢圓變形,但其位移均在地鐵保護(hù)的允許范圍內(nèi);頂管隧道本身會(huì)發(fā)生豎向向上位移,易導(dǎo)致頂管隧道前端產(chǎn)生偏移。該結(jié)論可為類似工程施工項(xiàng)目提供參考。
城市給水排水工程;頂管施工;地鐵隧道;位移變形;監(jiān)測(cè);MIDAS/GTS
航城大道接駁管在下穿寶安大道時(shí)上跨深圳地鐵1號(hào)線固戍站—后瑞站區(qū)間隧道,在航城大道與寶安大道的十字路口處,有沿寶安大道方向的深圳地鐵1號(hào)線,要施工的航城大道接駁管與地鐵1號(hào)線在平面上呈十字交叉。航城大道固戍污水處理廠配套干管采用鋼筋混凝土管,每節(jié)管長(zhǎng)度為2.5 m,管壁厚度為18 cm,接口采用F型鋼套環(huán)承口橡膠圈連接,橡膠圈采用耐酸堿腐蝕、耐老化設(shè)計(jì)。
接駁管內(nèi)徑為1.8 m,地鐵隧道直徑為6.3 m,地鐵隧道與接駁管的凈距約為3 m。接駁管頂部埋深約為5.4 m,地鐵隧道頂部埋深約為10.2 m,地鐵隧道的中心間距約為20.4 m。地鐵隧道主要位于砂質(zhì)粉質(zhì)黏土層,要施工的污水處理廠配套干管位于淤泥土層與雜填土層。
因接駁管頂部為地面交通要道,鑒于采用頂管法施工時(shí)施工工藝簡(jiǎn)單、施工方便,不需破除原有路面,對(duì)交通的干擾小,不阻斷交通,對(duì)施工區(qū)域周?chē)h(huán)境的影響很小,施工噪音和振動(dòng)都很小等,因此本次接駁管下穿寶安大道同時(shí)上跨地鐵1號(hào)線隧道時(shí)采用了頂管法施工。
因本次頂管法施工上跨地鐵隧道,而地鐵隧道為運(yùn)營(yíng)使用隧道,在頂管法施工期不得中斷運(yùn)營(yíng),因此施工過(guò)程中對(duì)地鐵隧道的影響控制是本次頂管法施工的難點(diǎn),此外頂管法施工中對(duì)地表道路的影響也應(yīng)引起重視。為了分析頂管施工對(duì)地鐵隧道產(chǎn)生的影響,以及時(shí)做出防護(hù)預(yù)案,利用邁達(dá)斯軟件對(duì)該項(xiàng)目頂管施工進(jìn)行了數(shù)值模擬,以便指導(dǎo)施工。
2.1結(jié)構(gòu)材料本構(gòu)模型
1)隧道襯砌
隧道襯砌采用板單元模擬,隧道結(jié)構(gòu)僅考慮二次襯砌。因地鐵隧道采用管片拼裝而成,各管片間采用螺栓連接,因此在模型建立時(shí)將其強(qiáng)度乘以0.7的系數(shù)。頂管施工隧道每節(jié)長(zhǎng)度為2.5 m,隧道內(nèi)徑為1.8 m,管壁厚度為18 cm,考慮到兩節(jié)管之間連接對(duì)其整體性有影響,因此在模型建立時(shí)將其強(qiáng)度乘以0.95的系數(shù)。
具體材料參數(shù)選取詳見(jiàn)表1。
表1 地鐵結(jié)構(gòu)材料參數(shù)
2)巖土材料
頂管施工過(guò)程中變形與應(yīng)力很有可能超過(guò)巖土材料的比例極限(線彈性)而達(dá)到塑性狀態(tài),所以對(duì)于巖土材料本文采用MIDAS/GTS提供的Mohr-Coulomb彈塑性本構(gòu)模型。各層土體的材料參數(shù)見(jiàn)表2。
表2 土層主要參數(shù)
2.2計(jì)算模型
計(jì)算模型的長(zhǎng)、寬、高分別為80 m,30 m和40 m。盾構(gòu)隧道與頂管施工隧道的尺寸按實(shí)際尺寸取值,先建盾構(gòu)隧道,如圖1與圖3所示,最后再建頂管施工隧道,如圖2與圖3所示。
圖1 盾構(gòu)隧道模型Fig.1 Shield tunneling model
圖2 頂管施工隧道模型Fig.2 Pipe jacking construction tunneling model
圖3 地鐵盾構(gòu)隧道與頂管施工隧道模型Fig.3 Subway shield tunneling and pipe jacking construction tunnel model
2.3頂管施工對(duì)地鐵隧道的影響分析
圖4 頂管完成施工后土體的豎向位移云圖Fig.4 Vertical displacement nephogram of soil after completion of pipe jacking
圖4為完成頂管施工后土體的豎向位移云圖。從圖4可以看出,因頂管施工過(guò)程中土體開(kāi)挖卸載,導(dǎo)致下部土體向上回彈,最終導(dǎo)致地面也發(fā)生了一定的隆起。
圖5為完成頂管施工后地鐵隧道的豎向位移云圖。從圖5可以看出,因頂管施工過(guò)程中土體開(kāi)挖卸載,地鐵隧道向上發(fā)生了位移。
圖5 頂管完成施工后盾構(gòu)隧道的豎向位移云圖Fig.5 Vertical displacement nephogram of shield tunnel after completion of pipe jacking
圖6 頂管完成施工后土體沿X方向的水平位移云圖Fig.6 Horizontal displacement nephogram of soil at X direction after completion of pipe jacking
圖6為完成頂管施工后土體沿X方向的水平位移云圖。從計(jì)算結(jié)果看,完成頂管施工后,地鐵隧道的水平位移都在0.1 mm內(nèi),即頂管隧道施工對(duì)地鐵隧道的水平位移影響很小。
圖7 頂管完成施工后盾構(gòu)隧道沿Y方向的水平位移云圖Fig.7 Horizontal displacement nephogram of shield tunnel at Y direction after completion of pipe jacking
圖7為完成頂管施工后盾構(gòu)隧道沿Y方向的水平位移云圖。從計(jì)算結(jié)果看,在頂管隧道正下方,地鐵隧道沿Y方向的水平位移為0,其他部位沿Y方向的水平位移都在0.1 mm以內(nèi)。從云圖可以看出,在頂管隧道兩側(cè)地鐵隧道沿Y方向呈明顯的對(duì)稱,地鐵隧道沿Y方向的水平位移主要是受隧道向上發(fā)生位移影響。
圖8為地鐵隧道頂部向上發(fā)生位移的結(jié)果。從云圖可知,地鐵隧道最大向上位移約為2.3 mm,隧道的豎向位移在地鐵保護(hù)的允許范圍內(nèi)。在地鐵隧道向上發(fā)生位移過(guò)程中,隧道橫向收斂變形為-1.8 mm,即地鐵隧道發(fā)生豎橢圓變形。
圖8 頂管完成施工后盾構(gòu)隧道的豎向位移Fig.8 Vertical displacement of shield tunnel after completion of pipe jacking
2.4頂管施工過(guò)程中頂管隧道位移分析
圖9 頂管隧道豎向位移云圖Fig.9 Vertical displacement nephogram of the pipe jacking tunnel
從圖9可以看,因下部地鐵隧道的存在,頂管隧道豎向位移有所減小,其主要原因與盾構(gòu)隧道縱向剛度對(duì)土體豎向位移有一定的限制作用有關(guān)。
圖10為頂管完成施工后頂管隧道的豎向位移。從圖10可知,在頂管施工開(kāi)挖卸載過(guò)程中,頂管隧道的最大豎向位移為5.25 mm。對(duì)頂管隧道豎向位移并沒(méi)有規(guī)定,但施工過(guò)程中對(duì)隧道最前端的向上偏移量應(yīng)該引起重視,當(dāng)頂隧道前端偏移量達(dá)到一定程度時(shí)應(yīng)該適時(shí)地進(jìn)行糾偏。
圖10 頂管隧道豎向位移Fig.10 Vertical displacement of the pipe jacking tunnel
2.5頂管施工對(duì)地表隆沉影響分析
從圖11中可知,地表最大隆起量為1.58 mm,發(fā)生在模型頂管隧道兩端,中部隆起位移較小,主要與盾構(gòu)隧道存在有關(guān)。
圖11 頂管完成施工后頂管隧道正上方地表隆沉位移Fig.11 Vertical displacement above the surface of the pipe jacking tunnel after the completion of the pipe jacking
圖12、圖13為2個(gè)斷面地表的隆沉位移情況。從圖12可以看出,在頂管隧道正上方隆起量最大,其隆起量為1.58 mm,結(jié)果與圖11是相同的。
圖12 地表沉降斷面選擇示意圖Fig.12 Surface subsidence section selection diagram
圖13 頂管完成施工后地頂管隧道地表橫向隆沉位移Fig.13 Lateral vertical displacement of the pipe jacking tunnel surface after the completion of the pipe jacking
1)頂管隧道施工的有限元分析表明,因頂管施工過(guò)程中開(kāi)挖卸載,頂管隧道施工對(duì)地鐵隧道橫向位移影響很小,對(duì)豎向位移會(huì)產(chǎn)生一定影響。地鐵隧道由于發(fā)生豎向向上的位移及橫向收斂變形,易導(dǎo)致地鐵隧道發(fā)生橢圓變形,可通過(guò)加強(qiáng)動(dòng)態(tài)監(jiān)測(cè)并采取相應(yīng)的保護(hù)措施,豎向位移與橫向收斂變形都可控制在地鐵保護(hù)的允許范圍(5 mm)內(nèi),最大限度地消除安全隱患,確保施工的順利進(jìn)行。
2)在頂管隧道開(kāi)挖卸載過(guò)程中,頂管施工隧道在豎向會(huì)發(fā)生較大位移,雖然一般對(duì)施工隧道其豎向位移無(wú)明確規(guī)定,但施工過(guò)程中對(duì)隧道最前端的向上偏移量應(yīng)該引起重視,應(yīng)加強(qiáng)頂管隧道的測(cè)量,并適時(shí)適量地進(jìn)行糾編。施工完成后頂管隧道雖會(huì)產(chǎn)生一定的彎曲,但其縱向與橫向的位移均很小,幾乎可以不考慮。
3)在不考慮頂管施工過(guò)程中地層損失的情況下,頂管隧道施工完成后,地表會(huì)發(fā)生一定的隆起,最大隆起量發(fā)生在模型頂管隧道兩端,頂管隧道正上方隆起量最大,中部由于地鐵隧道的存在,隆起位移較小?,F(xiàn)場(chǎng)施工時(shí)應(yīng)加強(qiáng)對(duì)地表隆沉位移的監(jiān)測(cè),同時(shí)通過(guò)對(duì)地表隆沉位移的監(jiān)測(cè)結(jié)果來(lái)分析頂管施工中的控制情況。
/
:
[1] 侯琴.向家崗站后明挖基坑施工方案研究[J].山西建筑,2015,41(8):92-94. HOU Qin. Study on construction of pit of open cutting to Xiangjiagang station[J].Shanxi Architecture,2015,41(8):92-94.
[2] 陳亮,馬潔.地鐵明挖車(chē)站模板施工方案優(yōu)化設(shè)計(jì)[J].國(guó)防交通工程與技術(shù),2013(2):77-80. CHEN Liang,MA Jie. On the optimized design of the construction scheme for the shuttering operation of the open-cut foundation pits for the subway station[J].Traffic Engineering and Technology for National Defence,2013(2):77-80.
[3] 趙京.地鐵區(qū)間施工方法及造價(jià)分析[J].鐵道工程造價(jià)管理,2004(1):27-30. ZHAO Jing. Construction method and engineering cost analysis of metro sections[J].Railway Engineering Cost Management,2004(1):27-30.
[4] 肖廣智.北京地鐵天安門(mén)西站設(shè)計(jì)施工方案比選及優(yōu)化[J].世界隧道,2000(2):23-27. XIAO Guangzhi. Design and construction scheme comparison and optimization of Tiananmen west station of Beijing metro[J].Tunnel Construction,2000(2):23-27.
[5] 凌玉華.深圳科學(xué)館地鐵車(chē)站施工方案的綜合技術(shù)經(jīng)濟(jì)比選研究[D].成都:西南交通大學(xué),2004. LING Yuhua. Comprehensive Technical and Economic Comparison Study on Metro Station Construction Scheme of Shenzhen Science Museum[D]. Chengdu: Southwest Jiaotong University,2004.
[6] 高海賓.地鐵車(chē)站明挖施工技術(shù)分析[J].中國(guó)高新技術(shù)企業(yè),2014(6):144-145. GAO Haibin. Analysis of open cut construction technology for metro station[J]. China High Technology Enterprises,2014(6):144-145.
[7] 李劍鋒,鄭永偉,李彬,等. 地鐵車(chē)站施工方案優(yōu)選決策模型[J].西安科技大學(xué)學(xué)報(bào),2009,29(2):159-164. LI Jianfeng, ZHENG Yongwei, LI Bin, et al. Optimal decision-making model analysis of subway station construction scheme[J]. Journal of Xi’an University of Science and Technology,2009,29(2):159-164.
[8] 魏綱,余振翼,徐日慶.頂管施工中相鄰垂直交叉地下管線變形的三維有限元分析[J]. 巖土力學(xué)與工程學(xué)報(bào),2004,23(15):2523-2527. WEI Gang, YU Zhenyi, XU Riqing. 3D fem analysis on deformation of perpendicularly crossing buried pipeline in pipe jacking [J]. Chinese Journal of Rock Mechanics and Engineering,2004,23(15):2523-2527.
[9] 馮海寧,龔曉南,徐日慶. 頂管施工環(huán)境影響的有限元計(jì)算分析[J]. 巖石力學(xué)與工程學(xué)報(bào),2004,23(7):1158-1162. FENG Haining,GONG Xiaonan,XU Riqing. Finite element analysis and calculation of environmental impact of pipe jacking construction [J]. Chinese Journal of Rock Mechanics and Engineering,2004,23(7):1158-1162.
[10] 張楊,林本海.管道頂管法施工對(duì)既有盾構(gòu)隧道的影響分析[J].廣州建筑,2015,43(5):34-39. ZHANG Yang,LIN Benhai. Analysis on the impact of existing subway tunnels induced by pipe jacking construction [J]. Guangzhou Architecture,2015,43(5):34-39.
[11] 陳璟璟,馮琪敏,林本海. 基于流固耦合的頂管法施工對(duì)已建隧道安全性的影響分析[J].建筑監(jiān)督檢測(cè)與造價(jià),2016(1):19-24. CHEN Jingjing,FENG qimin, LIN Benhai. Analysis on the influences of pipe jacking construction on the safety of existing tunnel based on the fluid-solid coupling[J]. Supervision Test and Cost of Construction,2016(1):19-24.
[12] 閔輝,張明. 運(yùn)營(yíng)期的地鐵隧道影響評(píng)估方法[J].山西建筑,2015(8):192-194. MIN Hui,ZHANG Ming. The effect evaluation method of subway tunnel in operation period[J]. Shanxi Architecture,2015(8):192-194.
[13] 佘曉琳,施成華. 鄰近基坑施工對(duì)既有地鐵結(jié)構(gòu)影響的分析[J].巖土工程技術(shù),2010,24(4):202-206. SHE Xiaolin,SHI Chenghua. Analysis of influence of foundation pit excavation on adjacent existing subway structure [J]. Geotechnical Engineering Technique,2010,24(4):202-206.
[14] 何慶萍. 頂管上穿施工對(duì)已有區(qū)間隧道影響性分析[J].工業(yè)建筑,2011(sup1):821-823. HE Qingping. Analysis of influence due to pipe jacking traversing subway tunnel [J]. Industrial Construction,2011(sup1):821-823.
[15] 黃斌. 矩形頂管穿越既有地鐵隧道的施工技術(shù)研究[J].建筑施工,2013,38(8):1129-1131. HUANG Bin. Technical study on rectangular pipe jacking construction underneath passing existing metro tunnel [J]. Building Construction,2013,38(8):1129-1131.
[16] 楊友元. 高速鐵路隧道施工中監(jiān)控量測(cè)探析[J]. 河北工業(yè)科技, 2009, 26(4):273-276. YANG Youyuan. The monitoring and analysis of the construction of high-speed railway tunnel [J]. Hebei Journal of Industrial Science and Technology, 2009, 26(4):273-276.
[17] 蘇龍海, 王芳, 張春會(huì),等. 基于數(shù)字圖像的頂管施工土層移動(dòng)模型試驗(yàn)[J]. 河北工業(yè)科技, 2016, 33(3):235-239. SU Longhai, WANG Fang, ZHANG Chunhui,et al. The experiment of soil layer moving model based on digital image roof construction [J]. Hebei Journal of Industrial Science and Technology, 2016, 33(3):235-239.
Analysis of the impact of pipe jacking construction on subway tunnels: Taking a certain section of metro in Shenzhen as example
ZHU Yongwei, XUE Xiaohui, HUI Hongyi
(Department of Railway Engineering, Shaanxi Railway Institute, Weinan, Shaanxi 714099, China)
In order to study the impact of large diameter pipe jacking construction on the tunnel of metro, taking the 1.8 m large diameter pipe jacking across a certain section of metro Line 1 in Shenzhen as example, the three-dimensional finite element software MIDAS/GTS is used to establish a three-dimensional numerical model, then the earth surface upheaval, the vertical displacement, horizontal convergence deformation of subway tunnel and vertical displacement of pipe jacking tunnels caused by pipe jacking construction are numerically simulated. The results show that due to the soil excavation and unloading , the lower soil rebounds upwards, causing a certain uplift on the ground, the maximum uplift occurs at both ends of the pipe jacking tunnel and central uplift displacement is smaller. The horizontal displacement of metro tunnel is very small, upward displacement in the vertical direction and transverse convergence deformation lead to vertical elliptical deformation of subway tunnel, however, the displacement is in the allowable range of subway protection. The vertical displacement of the pipe jacking tunnel will lead to the excursion at the front of the pipe jacking tunnel. The conclusion could provide reference for similar engineering construction projects.
city water supply and drainage engineering;pipe jacking construction; subway tunnel;displacement deformation;monitoring; MIDAS/GTS
1008-1534(2017)05-0328-06
2017-05-06;
2017-08-01;責(zé)任編輯:馮 民
陜西鐵路工程職業(yè)技術(shù)學(xué)院科研基金計(jì)劃(KY2016-12)
朱永偉(1984-),男,甘肅平?jīng)鋈?,講師,碩士,主要從事鐵路施工與維護(hù)方面的教學(xué)與研究。
E-mail:110458578@qq.com
TU990.3
:Adoi: 10.7535/hbgykj.2017yx05004
朱永偉,薛曉輝,惠弘毅.頂管法施工對(duì)地鐵隧道的影響分析——以深圳某區(qū)間隧道施工為例[J].河北工業(yè)科技,2017,34(5):328-333. ZHU Yongwei, XUE Xiaohui, HUI Hongyi.Analysis of the impact of pipe jacking construction on subway tunnels:Taking a certain section of metro in Shenzhen as example[J].Hebei Journal of Industrial Science and Technology,2017,34(5):328-333.