• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    碳載金屬單原子催化劑

    2018-03-15 10:49:21章海霞閆曉麗許并社郭俊杰
    新型炭材料 2018年1期
    關(guān)鍵詞:俊杰理工大學(xué)太原

    李 海, 章海霞, 閆曉麗, 許并社, 郭俊杰

    (新材料界面科學(xué)與工程教育部重點(diǎn)實(shí)驗(yàn)室,太原理工大學(xué),山西 太原030024)

    1 Introduction

    In heterogeneous catalysis system, supported metal catalysts are widely used in many important industrial catalytic reactions. It has long been recognized that downsizing the metal particles is a key process to improve the performance of the supported metal catalysts (shown in Fig. 1)[1].

    Fig. 1 Specific activity of catalysts as a function of metal loadings and sizes[1].

    Extensive investigations have revealed that sub-nanometer clusters have a better catalytic activity or selectivity than larger particles[2-4]and, in particular, Qiao et al.[5]first prepared a well dispersed Pt single atom catalysts (SACs) supported on iron oxide with an improved catalytic activity and stability in the CO selective oxidation reaction. Isolating metal atoms greatly improved the utilization efficiency of the metal catalyst, and the adsorption/desorption selectivity of the active species on the different molecules can be changed, which affected the reaction kinetics[6]. Accordingly, metal SACs have recently attracted much attention owing to their incredible catalytic behaviors and the potential to explore new catalytic mechanism[7].

    Nevertheless, reducing the size of metal particles to single atom level can result in extremely the high surface free energy[1]. Their high reactivity would lead to serious aggregation and catalyst deactivation in the preparation and catalysis process, which is an enormous challenge in the industrial applications of SACs. Adopting a high-surface-area support material that strongly interacts with the metal atoms could prevent their aggregation, creating finely dispersed stable metal SACs. Till now, in most single atom catalyst systems, the isolated metal atoms are uniformly anchored to supports such as metal surfaces, metal oxides and carbon materials. Recently graphene-based carbon materials have been adopted to disperse nanoparticles or single atoms for novel catalyst[8]owing to their large specific surface area (high catalyst loading), high electrical conductivity (facilitated electron transfer), and potential low manufacturing cost.

    Herein, we introduce recent advances in the selection of carbon substrate, preparation methods, and the anchoring mechanism of metal SACs. Based on the understanding of single atom catalytic activity, we discuss the development trend and application prospect of this research field.

    2 Selection of substrates

    The improvement of catalyst substrate cannot be avoided in designing the catalyst system because the catalytic behavior of the catalyst can be greatly influenced by the properties of the support material. The effects of the substrate on catalysis include decorative effect, electronic effect, new alloy phase formation and generation of new interface sites[6]. When SACs are mentioned, their high mobility would result in serious aggregation and coarsening, interfering with the density of active sites and limiting the catalytic durability and efficiency[9, 10]. Accordingly, it is necessary to screen out suitable carriers to anchor metal single atoms to avoid the catalyst deactivation due to agglomeration.

    Some metals, for example Cu, Au and Pd, have been used as substrates of SACs and exhibit improved catalytic performances[11-15], in which the single atoms interact with the host metal substrate to form monatomic alloys[16]. Various metal oxide, such as iron oxides, hydroxides[17], and oxide of anionic clusters[18], hollandite-type manganese oxide (HMO)[19], aluminum and cluster anions[20], cerium, titanium and zinc oxides, have also been proven to be good substrate candidates for SACs. It is found that surface defects of metal oxide could serve as anchoring sites for metal clusters or even single atoms[21-23]. In addition, molecular sieves[24, 25]have the advantage superior to metal oxides, providing highly homogeneous sites for the attachment of metal active components. Covalent triazine frameworks (CTFs)[26]and CTFs hybridized with carbon nanoparticles[27], silicon oxide[28]and silicate[29]have been used to load SACs. Recently, metal-organic frameworks (MOFs)[30]have also been widely considered as the substrates for SACs, which have great application prospects. However, the above mentioned SAC supports are of disadvantages including low loading density, instability, or poor tolerance, which could be conquered by using carbon materials instead.

    Table 1 Loadings of different metal single atoms on different carriers

    Graphene, a unique structure of two-dimensional (2D) carbon sheet with one-atomic layer thick[47], is considered to be the building block of many carbon materials such as carbon nanotubes, carbon nanoonions[48]and nanoporous carbon[49]. It is expected that graphene-based materials with unique electric and microstructural characteristics will offer a new type of carbon-metal nanocomposite for the next generation of catalysts[50-53]. Sun et al.[54]observed the Pt single atoms and sub-nanometer clusters on graphene nanosheet (GNS) by high-angle annular dark field (HAADF) scanning transmission electron microscopy (STEM) (Fig. 2). The Pt/GNS sample prepared by atomic layer deposition (ALD) for 50 cycles exhibited a peak current density of 22.9 mA·cm-2, which was 9.5 times higher than Pt/C catalyst (2.41 mA·cm-2). And the CO oxidation peak for 50 ALD Pt/GNS could not be observed until an exposure time of 2 min, indicating the better CO tolerance.

    Fig. 2 (a, b, c) HAADF-STEM images of Pt/GNS samples with 50, 100, and 150 ALD cycles, respectively; (d) CVs of methanol oxidation on Pt/GNS samples; (e) CO stripping voltammogram as a function of CO poisoning time for the sample with 50 ALD cycles[55].

    Yan et al.[56]atomically dispersed Pd on graphene, which showed excellent catalytic performance in selective hydrogenation of 1,3-butadiene (Fig. 3). More importantly, metal atom aggregation was not observed by HAADF-STEM after either 100 h reaction, or annealing at 400 ℃ in Ar for 1 h.

    Fig. 3 HAADF-STEM images of Pd/graphene at (a) low and (b) high magnifications; Catalytic performances of prepared samples in selective hydrogenation of 1,3-butadiene; (c) Butenes selectivity as a function of conversion by changing the reaction temperatures; (d) the distribution of butenes at 95% conversion; (e) Propene conversion and (f) the distribution of butenes at 98% 1,3-butadiene conversion in hydrogenation of 1,3-butadiene in the presence of propene[56].

    Fig. 4 HAADF-STEM images of the Co-N-C: (a)[57], (b)[58], (c)[59]

    On the other hand, a lot of efforts have been focused on searching for the substitutes for noble metal-based catalysts. Cobalt single atoms on nitrogen-doped graphene (Co-NG)[57]was found to work as extraordinary catalysts towards hydrogen evolution reaction (HER) in both acidic and basic water. Yin et al.[58]achieved stable Co single atoms on nitrogen-doped porous carbon, which exhibited a superior oxygen reduction reaction (ORR) performance with a half-wave potential (0.881 V) to commercial Pt/C. Liu et al.[59]proposed the Co-N4structure in graphene, in which the single Co atom was strongly coordinated with four pyridinic nitrogen atoms within graphitic layers. Such a unique structure exhibited an excellent activity, chemoselectivity and stability for the synthesis of aromatic azo compounds through hydrogenative coupling of nitroarenes.

    Single Fe sites confined in a graphene matrix also showed an excellent catalytic performance for the four-electron reduction of dioxygen to water[60]and oxidation of benzene[61]. The similar structure of FeN4with a Fe atom center and four surrounding N atoms was embedded into the graphene matrix. Qiu et al.[62]synthesized single-atom nickel dopants anchored to three-dimensional nanoporous graphene, which could be used as catalysts of HER in acidic solution. They observed by STEM that the Ni atoms were physically adsorbed onto the hollow centers of the graphene lattice.

    Recently Guo et al. reported the one-step synthesis of Nb SACs[63]and W SACs[64]trapped in onion-like carbon shells as catalysts for the ORR. The atomic scale observation by STEM indicated that metal single atoms incorporated in graphite layers were the active sites responsible for high catalytic ORR performance. This structure effectively ensured the electrochemical stability of catalytically active single atom sites. In addition, high density of defects in carbon shells allowed easy O2penetration and reaction at single metal atom sites. The chronoamperometric curves recorded at -0.40V and a rotation rate of 1 600 rpm in an O2-saturated 0.1 mol/L KOH solution have been used to evaluate the durability of the Nb-in-C complex. The residual current after 30 000 s still remained at 92% of the original value, which indicated that the Nb single atoms were stabilized in graphitic layers (Fig. 5b).

    Fig. 5 ADF images of a single atom (a) Nb-in-C[63] and (c) W-in-C[64]; Chronoamperometric response curve of (b) Nb-in-C complex and (d) WC@C complex in 0.1 mol/L KOH solution with and without the addition of 1 mol/L methanol (CH3OH), at a scan rate of 100 mV·s-1.

    MetalSubstrateMethodLoadingReactionPt[54]GrapheneALD1.52wt%MethanoloxidationPd[55]GrapheneALD0.25wt%Selectivehydrogenationof1,3?butadieneCo[56]N?grapheneImpregnationmethod2.48wt%HERCo[57]N?porouscarbonPyrolysisprocess4wt%ORRCo[58]N?graphiticlayersSupport?sacrificedapproach3.6wt%HydrogenativecouplingofnitroarenesCo[59]GraphiticcarbonNitrideImpregnationmethod?OER/ORRFe[65]N?grapheneWetimpregnation0.5wt%ORRFe[61]N?grapheneBallmillingsynthesis2.7wt%OxidationofbenzeneNi[62]NanoporousgrapheneChemicallyexfoliated0.38at.%HydrogenProductionNb[63]Onion?likecarbonshellArc?discharge?ORRW[64]GraphiticlayersArc?discharge?ORR

    3 Preparation methods

    3.1 Mass-selected soft-landing technique

    The mass-selected soft-landing technique is a powerful method to deposit metal single atoms and nanoparticles on supports. In this method, the metal is gasified by a high frequency laser. Abbet et al.[66]studied the cyclotrimerization of acetylene on size-selected Pdncluster (1≤n≤30) supported on thin MgO(100) films, in which the single Pd atom had a very high activity at low temperature (300 K). However, the ultrahigh vacuum and low production yield had limited its industrial application[1].

    3.2 Impregnation method

    The traditional impregnation method is widely used to prepare heterogeneous catalysts, in which the carrier is impregnated in a precursor solution. The active substance is gradually adsorbed on the surface of the substrate. Fei et al[57]. reported the first achievement of Co SACs on graphene oxide (GO) using CoCl2·6H2O as precursor solution. Catalytically active Pt single atoms onθ-alumina[36, 67]or TiN nanoparticles[68]had also been achieved by this method.

    3.3 Co-precipitation method

    Co-precipitation method is widely used to synthesize the nano-metal catalyst[69-71]by mixing the metal precursor and the carrier, followed by filtering and drying processes. After the Pt single atoms were uniformly dispersed on a FeOxsupport by co-precipitation method[5], Zhang et al. achieved precipitation of different precious metals (Ir[34], Au[40]et al.) on iron oxide. Recently, they synthesized highly active, selective, and extremely stable CeO2-supported Au SACs (Au1/CeO2) for preferential oxidation of CO in H2-rich stream.

    3.4 Atomic layer deposition

    Atomic layer deposition (ALD)[72-74], a process that provides atomic level control of thin film growth using sequential, self-limiting surface reactions, has been widely used to prepare nanomaterials. Yan et al[54]. reported a practical synthesis for isolated single Pt atoms anchored to graphene nanosheet using the ALD technique. The prepared catalyst showed a much higher activity for methanol oxidation and better CO tolerance than the conventional Pt/C catalyst. Lu et al[56]. reported that atomically dispersed Pd on graphene could be fabricated by ALD technique. The single-atom Pd/graphene catalyst showed a selectivity of about 100% for butenes at a 95% conversion under a mild reaction condition.

    3.5 Solid phase melting method

    Guo et al[75]. reported the Fe?SiO2catalyst prepared by solid phase melting method, which showed a good reactivity after a 60 h test. Single iron sites embedded in the silica matrix could directly convert methane to ethylene and aromatics. They had found that the absence of adjacent iron sites activated the first C—H bond of methane and prevented catalytic C—C coupling.

    3.6 Successive reduction method

    The successive reduction method, also known as the seed mediated growth method, is effective in the size-controlled synthesis of transition metal nanoparticles[76-78]. Zhang et al.[14]synthesized colloidal Au/Pd SACs by a facile successive reduction method, which exhibited a significantly improved catalytic activity (up to 17 times) for glucose oxidation over that of Au nanoclusters (NCs).

    3.7 Arc discharge method

    The traditional carbon arc discharge method was originally used by Iijima[79]to produce multi-walled carbon nanotubes. The direct current arc operates between two graphite electrodes installed in a water-cooled chamber filled with helium gas at subatmospheric pressure. It is a very simple technique and is capable of massive production of carbon/metal nanocomposites[80, 81]. Guo et al.[63]prepared carbon nanoonion-supported Nb SACs by arc discharge between a Nb (99.9%) anode and a carbon cathode. The Nb rod was evaporated by arc-discharging and the product deposited on the chamber wall. They found that single Nb atoms were incorporated into onion-like carbon shells and played a key role in improving ORR catalytic performance.

    4 Anchoring mechanism of carbon supported metal SACs

    Although it is found that stabilizing metal SACs onto the surface of the substrate is effective to avoid their agglomeration and inactivation, the anchoring mechanism of metal single atoms remains unclear. The anchoring mechanism differs from the choice of substrate. For example, the metal single atoms interact with metal substrate by forming monatomic alloys[11-13]. The surface defects could serve as anchoring sites when the metal oxide is used as the substrate[5, 34, 82]. As carbon material is mentioned, some mechanisms have been proposed based on atomic resolution microscopy observations. Metal single-atom is confirmed to anchor to graphene lattice by direct bonding or with an intermediate bridge (shown in Fig. 6).

    Fig. 6 Anchoring types of single metal atoms on graphene.

    Atomic-resolution microscopy investigation by Guo et al.[83]on graphene-based nanoporous carbons demonstrated that they comprise isotropic, three-dimensional networks of wrinkled one-atom-thick graphene sheets(shown in Fig. 7). In each graphene plane, topological defects induced localized rippling of graphene sheets, which interfered with their graphitic stacking, forming nanopores to enhance adsorptions of molecules or metal atoms.

    In the Nb SAC sample, single niobium atoms were observed by STEM, uniformly dispersed and stabilized in the highly defective graphitic shells (shown in Fig. 8). Based on the simulation, it was found that the single niobium atoms occupied substitutional sites of the carbon planes (Type I in Fig. 6). It was indicated that the most favorable substitution sites for single niobium atoms were the triple vacancy of graphene, which was consistent with the experimental observation. This Nb-in-carbon onion structure not only enhanced the overall conductivity for accelerating the exchange of ions and electrons in ORR, but also suppressed the agglomeration of metal single atom in the process of chemical/thermal reaction. The same anchored mechanism of metal single atoms was confirmed in the metal single atom tungsten catalysts stabilized in graphitic layers[64].

    Qiu et al.[62]observed that Ni single atoms occupied carbon sites in the graphene lattices (Type II in Fig. 6) by STEM. The partial density of states projected to the Ni atom and the three surrounding C atoms, together with their overlapping, indicating strong C-Ni binding (shown in Fig. 9).

    Fig. 7 Atomic-resolution ADF-STEM images of graphene-based nanoporous carbons[83].

    Fig. 8 Direct observation of single niobium atoms trapped in carbon onion structure. The schematic diagram of the most energetically advantageous configuration of single niobium atoms incorporated into defects of single-layer carbon plane[64].

    Fig. 9 HAADF-STEM image of Ni-doped graphene. Inset: Enlarged HAADF-STEM image (white circle), which shows a substitutional Ni atom (bright orange spot) occupying a carbon site in the graphene lattice (white lines)[62].

    On the other hand, nitrogen-doped graphene has been used to stabilize Co[58]or Fe[61]atoms and a unique structure with a metal atom center and four surrounding N atoms embedded into graphene lattice (Type III in Fig. 6) has been suggested (shown in Fig. 10). Recently, this hypothesized structure was directly observed by Lin[84]using gentle STEM. They suggested that the structure tended to trap a series of transition metal atoms (Mg, Al, Ca, Ti, Cr, Mn, and Fe) as individual atoms.

    In addition, Sun and Lu et al. prepared Pt[55], Pd[56]metal single atom by ALD and suggested that metal single atoms were connected to oxygen containing function groups on the surface of graphene (Type IV in Fig. 6). This hypothesis had been proved by the STEM observation of oxygen atoms in oxidized graphene. Guo et al.[85]found that the oxygen atoms constructed stable crown ether configurations within the graphene lattice. It was indicated that the crown ether in graphene tended to selectively bind various metal atoms depending on their ring size (Fig. 11). So their discovery could introduce a new wave of investigations and applications of chemically functionalized graphene.

    Fig. 10 Scheme of a proposed mechanism for synthesis of FeN4/GN via a facile ball milling method[61].

    Fig. 11 Atomic structures of oxygen atoms incorporated in graphene multivacancies[85].

    5 Conclusions and prospects

    The maximum utilization of metal catalyst can be realized by downsizing the metal particles to isolated single atoms. Nevertheless, practical supported metal SACs are normally inhomogeneous and usually consist of a mixture of different sizes from nanoparticles to subnanometer clusters, which limits the accurate test of catalytic behaviors of SACs. Furthermore, most of the current metal SACs are limited by the extremely low metal loading and density of single active sites. The multi-layer of defective graphitic layers are rich in anchoring sites of single atoms, thus increasing the metal loading and catalytic efficiency[58, 59].

    Now, the synthesis and characterization of well dispersed metal single atoms, as well as the test of reaction on single active site have been achieved. The catalytic mechanism may be significantly changed due to the low-coordination environment, quantum size effect, and the improved metal-support interactions. The better understanding of the metal-substrate reaction and single active site catalytic mechanism is necessary for designing new single-atom catalyst.

    In the near future, we could make a significant progress in understanding the fundamental properties of supported metal SACs and realize the ultimate goal of manipulating individual atoms by innovative synthesis method, advanced characterization and theoretical calculation. It is believed that the superior catalytic performance and potential cost advantages will attract increasing attention in the related research fields.

    [1] Yang X F, Wang A Q, Qiao B T, et al. Single-atom catalysts: A new frontier in heterogeneous catalysis[J]. Accounts of Chemical Research, 2012, 46(8): 1740-1748.

    [2] Turner M, Golovko V B, Vaughan O P, et al. Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters[J]. Nature, 2008, 454(7207): 981-983.

    [3] Lei Y, Mehmood F, Lee S, et al. Increased silver activity for direct propylene epoxidation via subnanometer size effects[J]. Science, 2010, 328(5975): 224-228.

    [4] Qiao B T, Wang A Q, Li L, et al. Ferric oxide-supported Pt subnano clusters for preferential oxidation of CO in H2-rich gas at room temperature[J]. ACS Catalysis, 2014, 4(7): 2113-2117.

    [5] Qiao B T, Wang A Q, Yang X F, et al. Single-atom catalysis of CO oxidation using Pt1/FeOx[J]. Nature Chemistry, 2011, 3(8): 634-641.

    [6] Poh C K, Lim S H, Lin J Y, et al. Tungsten carbide supports for single-atom platinum-based fuel-cell catalysts: First-principles study on the metal-support interactions and O2dissociation on WxC low-index surfaces[J]. The Journal of Physical Chemistry C, 2014, 118(25): 13525-13538.

    [7] Liu P X, Zhao Y, Qin R X, et al. Photochemical route for synthesizing atomically dispersed palladium catalysts[J]. Science, 2016, 352(6287): 797-801.

    [8] Tang L, Wang Y, Li Y, et al. Preparation, structure, and electrochemical properties of reduced graphene sheet films[J]. Advanced Functional Materials, 2009, 19(17): 2782-2789.

    [9] Uzun A, Ortalan V, Hao Y, et al. Nanoclusters of gold on a high-area support: Almost uniform nanoclusters imaged by scanning transmission electron microscopy[J]. ACS Nano, 2009, 3(11): 3691-3695.

    [10] Uzun A, Ortalan V, Browning N D, et al. A site-isolated mononuclear iridium complex catalyst supported on MgO: Characterization by spectroscopy and aberration-corrected scanning transmission electron microscopy[J]. Journal of Catalysis, 2010, 269(2): 318-328.

    [11] Kyriakou G, Boucher M B, Jewell A D, et al. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations[J]. Science, 2012, 335(6073): 1209-1212.

    [12] Lucci F R, Liu J, Marcinkowski M D, et al. Selective hydrogenation of 1,3-butadiene on platinum-copper alloys at the single-atom limit[J]. Nature Communications, 2015, 6: 8550.

    [13] Zhang L L, Wang A Q, Miller J T, et al. Efficient and durable Au alloyed Pd single-atom catalyst for the ullmann reaction of aryl chlorides in water[J]. ACS Catalysis, 2014, 4(5): 1546-1553.

    [14] Zhang H J, Kawashima K, Okumurac M, et al. Colloidal Au single-atom catalysts embedded on Pd nanoclusters[J]. Journal of Materials Chemistry A, 2014, 2(33): 13498-13508.

    [15] Ge J, He D S, Chen W, et al. Atomically dispersed Ru on ultrathin Pd nanoribbons[J]. Journal of the American Chemical Society, 2016.

    [16] Wang Z T, Matthew T D, Andrew J T, et al. Preparation, structure, and surface chemistry of Ni-Au single atom alloys[J]. The Journal of Physical Chemistry C, 2016, 120(25): 13574-13580.

    [17] Lin J, Qiao B T, Liu J Y, et al. Design of a highly active Ir/Fe(OH)xcatalyst: Versatile application of Pt-group metals for the preferential oxidation of carbon monoxide[J]. Angewandte Chemie, 2012, 51(12): 2920-2924.

    [18] Yuan Z, Li X N, and He S G. CO oxidation promoted by gold atoms loosely attached in AuFeO3- cluster anions[J]. The Journal of Physical Chemistry Letters, 2014, 5(9): 1585-1590.

    [19] Hu P P, Amghouz Z, Huang Z W, et al. Surface-confined atomic silver centers catalyzing formaldehyde oxidation[J]. Environmental Science & Technology, 2015, 49(4): 2384-2390.

    [20] Zhao Y X, Li Z Y, Yuan Z, et al. Thermal methane conversion to formaldehyde promoted by single platinum atoms in PtAl2O4- cluster anions[J]. Angewandte Chemie, 2014, 53(36): 9482-9486.

    [21] Chen M S, Goodman D W. The structure of catalytically active gold on titania[J]. Science, 2004, 306(5694): 252-255.

    [22] Matthey D, Wang J G, Wendt S, et al. Enhanced bonding of gold nanoparticles on oxidized TiO2(110)[J]. Science, 2007, 315(5819): 1692-1696.

    [23] Kwak J H, Hu J Z, Mei D H, et al. Coordinatively unsaturated Al3+centers as binding sites for active catalyst phases of platinum on g-Al2O3[J]. Science, 2009, 325(5948): 1670-1673.

    [24] Lu J, Aydin C, Browning N D, et al. Imaging isolated gold atom catalytic sites in zeolite NaY[J]. Angewandte Chemie, 2012, 51(24): 5842-5846.

    [25] Kistler J, Chotigkrai N, Xu P H, et al. A single-site platinum CO oxidation catalyst in zeolite KLTL: Microscopic and spectroscopic determination of the locations of the platinum atoms[J]. Angewandte Chemie, 2014, 53(34): 8904-8907.

    [26] Kamai R, Kamiya K, Hashimoto K, et al. Oxygen-tolerant electrodes with platinum-loaded covalent triazine frameworks for the hydrogen oxidation reaction[J]. Angewandte Chemie, 2016, 55(42): 13184-13188.

    [27] Kamiya K, Kamai R, Hashimoto K, et al. Platinum-modified covalent triazine frameworks hybridized with carbon nanoparticles as methanol-tolerant oxygen reduction electrocatalysts[J]. Nature Communications, 2014, 5: 5040.

    [28] Pei G X, Liu X Y, Wang A Q, et al. Ag alloyed Pd single-atom catalysts for efficient selective hydrogenation of acetylene to ethylene in excess ethylene[J]. ACS Catalysis, 2015, 5(6): 3717-3725.

    [29] Huang W X, Zhang S R, Tang Y, et al. Low-temperature transformation of methane to methanol on Pd1O4single sites anchored on the internal surface of microporous silicate[J]. Angewandte Chemie, 2016, 55: 1-6.

    [30] Zhang H B, Jing W, Dong J C, et al. Efficient visible-light-driven carbon dioxide reduction by a single-atom implanted metal-organic framework[J]. Angewandte Chemie, 2016, 55(46): 14310-14314.

    [31] Kyriakou G, Boucher M B, Jewell A D, et al. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations[J]. Science, 2012, 335(6073): 1209-1212.

    [32] Wei H S, Liu X Y, Wang A Q, et al. FeOx-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes[J]. Nature Communications, 2014, 5: 5634.

    [33] Shi Y T, Zhao C Y, Wei H S, et al. Single-atom catalysis in mesoporous photovoltaics: the principle of utility maximization[J]. Advanced Materials, 2014, 26(48): 8147-8153.

    [34] Lin J, Wang A Q, Qiao B T, et al. Remarkable performance of Ir1/FeOxsingle-atom catalyst in water gas shift reaction[J]. Journal of the American Chemical Society, 2013, 135(41): 15314-15317.

    [35] He Q, Freakley S J, Edwards J K, et al. Population and hierarchy of active species in gold iron oxide catalysts for carbon monoxide oxidation[J]. Nature Communications, 2016, 7: 12905.

    [36] Moses-DeBusk M, Yoon M, Allard L F, et al. CO oxidation on supported single Pt atoms: experimental and ab initio density functional studies of CO interaction with Pt atom on theta-Al2O3(010) surface[J]. Journal of the American Chemical Society, 2013, 135(34): 12634-12645.

    [37] Ghosh T K, Nair N N. Rh1/γ-Al2O3single-atom catalysis of O2activation and CO oxidation: mechanism, effects of hydration, oxidation state, and cluster size[J]. ChemCatChem, 2013, 5(7): 1811-1821.

    [38] Li Z Y, Yuan Z, Li X N, et al. CO oxidation catalyzed by single gold atoms supported on aluminum oxide clusters[J]. Journal of the American Chemical Society, 2014, 136(40): 14307-14313.

    [39] Song W Y, Hensen E J M. Structure sensitivity in CO oxidation by a single Au atom supported on ceria[J]. The Journal of Physical Chemistry C, 2013, 117(15): 7721-7726.

    [40] Qiao B T, Liu J X, Wang Y G, et al. Highly efficient catalysis of preferential oxidation of CO in H2-rich stream by gold single-atom catalysts[J]. ACS Catalysis, 2015, 5(11): 6249-6254.

    [41] Guo L W, Du P P, Fu X P, et al. Contributions of distinct gold species to catalytic reactivity for carbon monoxide oxidation[J]. Nature Communications, 2016, 7: 13481.

    [42] Gao D W, Zhang X, Yang Y, et al. Supported single Au(III) ion catalysts for high performance in the reactions of 1,3-dicarbonyls with alcohols[J]. Nano Research, 2016, 9(4): 985-995.

    [43] Jones J, Xiong H F, DeLaRiva A T, et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping[J]. Science, 2016, 353(6295): 150-154.

    [44] Wang L, Zhang S R, Zhu Y, et al. Catalysis and in situ studies of Rh1/Co3O4nanorods in reduction of NO with H2[J]. ACS Catalysis, 2013, 3(5): 1011-1019.

    [45] Li X N, Yuan Z, and He S G. CO oxidation promoted by gold atoms supported on titanium oxide cluster anions[J]. Journal of the American Chemical Society, 2014, 136(9): 3617-3623.

    [46] Xie X W, Li Y, Liu Z Q, et al. Low-temperature oxidation of CO catalysed by Co3O4nanorods[J]. Nature, 2009, 458(7239): 746-749.

    [47] Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials, 2007, 6(3): 183-191.

    [48] Guo J J, Wang X M, Yao Y L, et al. Structure of nanocarbons prepared by arc discharge in water[J]. Materials Chemistry and Physics, 2007, 105(2-3): 175-178.

    [49] Guo J J, Morris J R, Ihm Y, et al. Topological defects: Origin of nanopores and enhanced adsorption performance in nanoporous carbon[J]. Small, 2012, 8(21): 3283-3288.

    [50] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.

    [51] Scheuermann G M, Rumi L, Steurer P, et al. Palladium nanoparticles on graphite oxide and its functionalized graphene derivatives as highly active catalysts for the suzuki-miyaura coupling reaction[J]. Journal of the American Chemical Society, 2009, 131(23): 8262-8270

    [52] Yin H J, Tang H J, Wang D, et al. Facile synthesis of surfactant-free Au cluster/graphene hybrids for high-performance oxygen reduction reaction[J]. ACS Nano, 2012, 6(9): 8288-8297.

    [53] Machado B F, Serp P. Graphene-based materials for catalysis[J]. Catal Sci Technol, 2012, 2(1): 54-75.

    [54] Sun S, Zhang G, Gauquelin N, et al. Single-atom catalysis using Pt/graphene achieved through atomic layer deposition[J]. Scientific Reports, 2013, 3.

    [55] Sun S H, Zhang G X, Gauquelin N, et al. Single-atom catalysis using Pt/graphene achieved through atomic layer deposition[J]. Scientific Reports, 2013, 3.

    [56] Yan H, Cheng H, Yi H, et al. Single-atom Pd1/graphene catalyst achieved by atomic layer deposition: remarkable performance in selective hydrogenation of 1,3-butadiene[J]. Journal of the American Chemical Society, 2015, 137(33): 10484-10487.

    [57] Fei H L, Dong J C, Arellano-Jime M J, et al. Atomic cobalt on nitrogen-doped graphene for hydrogen generation[J]. Nature Communications, 2015, 6: 8668.

    [58] Yin P Q, Yao T, Wu Y, et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts[J]. Angewandte Chemie, 2016, 55(36): 10800-10805.

    [59] Liu W G, Zhang L L, Yan W S, et al. Single-atom dispersed Co-N-C catalyst: Structure identification and performance for hydrogenative coupling of nitroarenes[J]. Chem. Sci., 2016, 7(9): 5758-5764.

    [60] Zitolo A, Goellner V, Armel V, et al. Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials[J]. Nature Materials, 2015, 14(9): 937-942.

    [61] Deng D H, Chen X Q, Yu L, et al. A single iron site confined in a graphene matrix for the catalytic oxidation of benzene at room temperature[J]. Science Advances, 2015, 1(11): 1-9.

    [62] Qiu H J, Ito Y, Cong W T, et al. Nanoporous graphene with single-atom nickel dopants: An efficient and stable catalyst for electrochemical hydrogen production[J]. Angewandte Chemie, 2015, 54(47): 14031-14035.

    [63] Zhang X F, Guo J J, Guan P F, et al. Catalytically active single-atom niobium in graphitic layers[J]. Nature Communications, 2013, 4: 1924.

    [64] Guo J J, Mao Z, Yan X L, et al. Ultrasmall tungsten carbide catalysts stabilized in graphitic layers for high-performance oxygen reduction reaction[J]. Nano Energy, 2016, 28: 261-268.

    [65] Zitolo A, Goellner V, Armel V, et al. Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials[J]. Nature Materials, 2015, 14(9): 937-942.

    [66] Abbet S, Sanchez A, Heiz U, et al. Acetylene cyclotrimerization on supported size-selected Pdn clusters (1≤n≤ 30): one atom is enough![J]. Journal of the American Chemical Society, 2000, 122: 3453-3457.

    [67] Narula C K, Allard L F, Stocks G M, et al. Remarkable NO oxidation on single supported platinum atoms[J]. Scientific Reports, 2014, 4: 7238.

    [68] Yang S, Kim J, Tak Y J, et al. Single-atom catalyst of platinum supported on titanium nitride for selective electrochemical reactions[J]. Angewandte Chemie, 2016, 55(6): 2058-2062.

    [69] Haruta M. Size- and support-dependency in the catalysis of gold[J]. Catalysis Today, 1997, 36(1): 153-166.

    [70] Akolekar D B, Foranb G, and Bhargava S K. X-ray absorption spectroscopic studies on gold nanoparticles in mesoporous and microporous materials[J]. Journal of Synchrotron Radiation, 2004, 11(3): 284-290.

    [71] Akolekar D B, Bhargava S K, Foran G, et al. Studies on gold nanoparticles supported on iron, cobalt, manganese, and cerium oxide catalytic materials[J]. J Mol Catal Chem, 2005, 238(1-2): 78-87.

    [72] Leskela M, Ritala M. Atomic layer deposition chemistry: recent developments and future challenges[J]. Angewandte Chemie, 2003, 42(45): 5548-5554.

    [73] King J S, Wittstock A, Biener J, et al. Ultralow loading Pt nanocatalysts prepared by atomic layer deposition on carbon aerogels[J]. Nano Letters, 2008, 8(8): 2405-2409.

    [74] Liu C, Wang C C, Kei C C, et al. Atomic layer deposition of platinum nanoparticles on carbon nanotubes for application in proton-exchange membrane fuel cells[J]. Small, 2009, 5(13): 1535-1538.

    [75] Guo X G, Fang G Z, Li G, et al. Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen[J]. Science, 2014, 344(6184): 616-619.

    [76] Jana N R, Gearheart L, Murphy C J. Seeding growth for size control of 5-40 nm diameter gold nanoparticles[J]. Langmuir, 2001, 17: 6782-6786.

    [77] Gole A, Murphy C J. Seed-mediated synthesis of gold nanorods: role of the size and nature of the seed[J]. Chem Mater, 2004, 16: 3633-3640.

    [78] Zhou W J, Yang L J. Highly active core-shell Au@Pd catalyst for formic acid electrooxidation[J]. Electrochemistry Communications, 2007, 9(7): 1725-1729.

    [79] Iijima S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354(6348): 56.

    [80] Hisn Y L, Hwang K C, Chen F R, et al. Production and insitu metal filling of carbon nanotubes in water[J]. Advanced Materials, 2001, 13: 830-835.

    [81] Alekseyev N I, Dyuzhev G A. Fullerene formation in an arc discharge[J]. Carbon, 2003, 41(7): 1343-1348.

    [82] Liang J X, Lin J, Yang X F, et al. Theoretical and experimental investigations on single-atom catalysis: Ir1/FeOxfor CO oxidation[J]. The Journal of Physical Chemistry C, 2014, 118(38): 21945-21951.

    [83] Guo J, Morris J R, Contescu C I, et al. Atomic-scale imaging of graphene-based nanoporous carbon[J]. Microscopy and Microanalysis, 2012, 18(S2): 1528-1529.

    [84] Lin Y C, Teng P Y, Yeh C H, et al. Structural and chemical dynamics of pyridinic-nitrogen defects in graphene[J]. Nano Lett, 2015, 15(11): 7408-7413.

    [85] Guo J J, Lee J, Contescu C I, et al. Crown ethers in graphene[J]. Nature Communications, 2014, 5: 5389.

    猜你喜歡
    俊杰理工大學(xué)太原
    昆明理工大學(xué)
    太原清廉地圖
    除夜太原寒甚
    俊杰印象
    海峽姐妹(2019年11期)2019-12-23 08:42:18
    昆明理工大學(xué)
    昆明理工大學(xué)
    浙江理工大學(xué)
    表演大師
    我的同桌
    我給桌子“洗臉”
    国产精品福利在线免费观看| 日日干狠狠操夜夜爽| 久久久久久国产a免费观看| 成人无遮挡网站| 婷婷丁香在线五月| 欧美不卡视频在线免费观看| 午夜a级毛片| 午夜亚洲福利在线播放| 一级av片app| 少妇的逼水好多| 在线天堂最新版资源| 色哟哟哟哟哟哟| 在线免费观看的www视频| 91久久精品国产一区二区成人| 很黄的视频免费| 最近最新中文字幕大全电影3| 国产白丝娇喘喷水9色精品| 无遮挡黄片免费观看| 成人特级av手机在线观看| 成年人黄色毛片网站| 中文字幕人妻熟人妻熟丝袜美| 黄色配什么色好看| 搡女人真爽免费视频火全软件 | 国产av不卡久久| 春色校园在线视频观看| 亚洲av成人精品一区久久| 在线a可以看的网站| 少妇丰满av| 天美传媒精品一区二区| 桃色一区二区三区在线观看| 少妇的逼水好多| 亚洲最大成人中文| 午夜免费成人在线视频| 亚洲av.av天堂| 国产一区二区激情短视频| 男人和女人高潮做爰伦理| av在线老鸭窝| 欧美三级亚洲精品| 亚洲国产欧洲综合997久久,| 日韩亚洲欧美综合| 少妇的逼水好多| 97碰自拍视频| 欧美性猛交黑人性爽| 99精品久久久久人妻精品| 级片在线观看| 在线a可以看的网站| 久久精品国产亚洲av香蕉五月| 亚洲欧美日韩卡通动漫| 欧美成人免费av一区二区三区| 搞女人的毛片| 一级a爱片免费观看的视频| 免费看美女性在线毛片视频| 欧美极品一区二区三区四区| 国产精品亚洲一级av第二区| 欧美精品国产亚洲| 三级毛片av免费| 天堂av国产一区二区熟女人妻| av在线蜜桃| 波多野结衣高清作品| 国内精品宾馆在线| 波多野结衣巨乳人妻| 中文字幕av成人在线电影| 国产精品一区二区三区四区久久| 日韩 亚洲 欧美在线| 国产av麻豆久久久久久久| 国产高潮美女av| 亚洲内射少妇av| 麻豆国产av国片精品| 黄色欧美视频在线观看| 中文字幕av成人在线电影| 亚洲av日韩精品久久久久久密| 午夜激情福利司机影院| 人妻制服诱惑在线中文字幕| 成人国产麻豆网| 亚洲精品影视一区二区三区av| 亚洲美女搞黄在线观看 | 久久99热这里只有精品18| 中国美女看黄片| 在线播放国产精品三级| av在线蜜桃| 国产一区二区亚洲精品在线观看| 干丝袜人妻中文字幕| 成人永久免费在线观看视频| 久久婷婷人人爽人人干人人爱| 国产精品久久视频播放| 99精品在免费线老司机午夜| 亚洲美女黄片视频| 午夜福利在线观看吧| 一本精品99久久精品77| 老熟妇仑乱视频hdxx| 欧美一区二区国产精品久久精品| 亚洲精品456在线播放app | 久久国内精品自在自线图片| 午夜视频国产福利| 婷婷色综合大香蕉| 一本久久中文字幕| 欧美日本视频| 美女免费视频网站| 禁无遮挡网站| 老师上课跳d突然被开到最大视频| 久久久久久久久久成人| 成人亚洲精品av一区二区| 久久久久久久久久黄片| 亚洲18禁久久av| 香蕉av资源在线| 国产成人福利小说| 在线观看美女被高潮喷水网站| 淫秽高清视频在线观看| 亚洲av成人av| 欧美一级a爱片免费观看看| 亚洲人与动物交配视频| 国产日本99.免费观看| 97超级碰碰碰精品色视频在线观看| 1024手机看黄色片| 校园春色视频在线观看| 联通29元200g的流量卡| 欧美日本视频| 午夜影院日韩av| 天堂动漫精品| 99热网站在线观看| 久久久久久久亚洲中文字幕| 精品人妻视频免费看| 欧美激情国产日韩精品一区| 国产精品亚洲美女久久久| 亚洲精华国产精华液的使用体验 | 女生性感内裤真人,穿戴方法视频| 日本免费a在线| 国产精品久久视频播放| 成人二区视频| 亚洲欧美日韩卡通动漫| 成人国产麻豆网| 国产av在哪里看| 久久精品夜夜夜夜夜久久蜜豆| 精品一区二区免费观看| 成人午夜高清在线视频| 日韩大尺度精品在线看网址| 日本五十路高清| 岛国在线免费视频观看| 国产精品永久免费网站| 久久久久免费精品人妻一区二区| 国产成人a区在线观看| 国产成人a区在线观看| 国产白丝娇喘喷水9色精品| 91麻豆精品激情在线观看国产| 久久九九热精品免费| 少妇的逼水好多| 婷婷色综合大香蕉| 能在线免费观看的黄片| 欧美激情久久久久久爽电影| 床上黄色一级片| 99热6这里只有精品| 日本熟妇午夜| 国产精品免费一区二区三区在线| 欧美中文日本在线观看视频| 欧美日韩黄片免| 九九热线精品视视频播放| 又爽又黄无遮挡网站| h日本视频在线播放| 国产成年人精品一区二区| 无人区码免费观看不卡| 网址你懂的国产日韩在线| 99久久中文字幕三级久久日本| 久久久国产成人免费| 欧美日韩国产亚洲二区| 一区福利在线观看| 一进一出抽搐动态| 免费av不卡在线播放| 国产亚洲91精品色在线| 欧美成人免费av一区二区三区| av.在线天堂| a级毛片a级免费在线| 成熟少妇高潮喷水视频| 日本黄大片高清| 91久久精品国产一区二区三区| 校园春色视频在线观看| 男人舔奶头视频| 欧美成人性av电影在线观看| 99精品在免费线老司机午夜| 久久久成人免费电影| av女优亚洲男人天堂| 国产成人一区二区在线| 国产精品免费一区二区三区在线| 亚洲精品456在线播放app | 亚洲精品影视一区二区三区av| 国产探花在线观看一区二区| 国产伦精品一区二区三区视频9| 国产淫片久久久久久久久| 久久久久免费精品人妻一区二区| 91麻豆精品激情在线观看国产| 午夜激情福利司机影院| 日本-黄色视频高清免费观看| 九九热线精品视视频播放| 蜜桃久久精品国产亚洲av| 麻豆久久精品国产亚洲av| 午夜亚洲福利在线播放| 国产精品野战在线观看| 99热网站在线观看| 97超级碰碰碰精品色视频在线观看| 三级男女做爰猛烈吃奶摸视频| 国产一区二区亚洲精品在线观看| 老师上课跳d突然被开到最大视频| 人人妻,人人澡人人爽秒播| 少妇猛男粗大的猛烈进出视频 | 老女人水多毛片| 男人舔奶头视频| 午夜福利在线观看吧| 在线国产一区二区在线| 国产私拍福利视频在线观看| 中出人妻视频一区二区| 日本免费一区二区三区高清不卡| 日韩欧美精品免费久久| 内射极品少妇av片p| 亚洲自偷自拍三级| 九九爱精品视频在线观看| 精品人妻偷拍中文字幕| 桃红色精品国产亚洲av| 国产毛片a区久久久久| 久久人人爽人人爽人人片va| 日本在线视频免费播放| 精品久久久久久,| 久久国内精品自在自线图片| 亚洲av二区三区四区| 噜噜噜噜噜久久久久久91| 久久精品国产鲁丝片午夜精品 | 久久久久久久久久久丰满 | 亚洲av免费高清在线观看| 日本熟妇午夜| 成人特级av手机在线观看| 国产av一区在线观看免费| 日本五十路高清| 高清毛片免费观看视频网站| 网址你懂的国产日韩在线| 香蕉av资源在线| 国产一区二区三区在线臀色熟女| av天堂在线播放| 日本 av在线| 综合色av麻豆| 禁无遮挡网站| 亚洲天堂国产精品一区在线| 亚洲电影在线观看av| 一级毛片久久久久久久久女| av专区在线播放| 久久久成人免费电影| 日本撒尿小便嘘嘘汇集6| 亚洲人成网站在线播放欧美日韩| 99国产精品一区二区蜜桃av| 搡老熟女国产l中国老女人| 亚洲av美国av| 亚洲人成网站在线播| 亚洲 国产 在线| 一边摸一边抽搐一进一小说| 欧美日韩瑟瑟在线播放| www.色视频.com| 国产成人影院久久av| 一区二区三区四区激情视频 | 国产av一区在线观看免费| 亚洲第一区二区三区不卡| 欧美日韩乱码在线| 亚洲精华国产精华液的使用体验 | 一区福利在线观看| 中出人妻视频一区二区| 在线观看av片永久免费下载| 久久九九热精品免费| 国产伦在线观看视频一区| 欧美精品国产亚洲| 精品久久久久久久久久免费视频| 久久久成人免费电影| 久久久国产成人精品二区| 成人毛片a级毛片在线播放| 一边摸一边抽搐一进一小说| h日本视频在线播放| 偷拍熟女少妇极品色| 国内精品久久久久精免费| 少妇被粗大猛烈的视频| 成人鲁丝片一二三区免费| 我的老师免费观看完整版| 一区二区三区免费毛片| 欧美日韩国产亚洲二区| 亚洲性夜色夜夜综合| 亚洲欧美日韩高清在线视频| 亚洲av.av天堂| 女的被弄到高潮叫床怎么办 | 欧美另类亚洲清纯唯美| 美女大奶头视频| 乱系列少妇在线播放| 亚洲成人免费电影在线观看| 毛片一级片免费看久久久久 | 91久久精品国产一区二区三区| 亚洲av成人精品一区久久| 久久精品夜夜夜夜夜久久蜜豆| 啦啦啦啦在线视频资源| 神马国产精品三级电影在线观看| 国产人妻一区二区三区在| 在线观看66精品国产| 搡老妇女老女人老熟妇| 天堂av国产一区二区熟女人妻| 亚洲av美国av| 中文在线观看免费www的网站| 少妇丰满av| 女人被狂操c到高潮| 精品福利观看| 色哟哟哟哟哟哟| 伦理电影大哥的女人| 亚洲精品一区av在线观看| 国产精品自产拍在线观看55亚洲| 免费在线观看成人毛片| 国产午夜精品论理片| 日韩欧美一区二区三区在线观看| 天天躁日日操中文字幕| 日本一本二区三区精品| 国产黄片美女视频| 色哟哟·www| 老师上课跳d突然被开到最大视频| 日本免费一区二区三区高清不卡| 久久精品影院6| 国产精品伦人一区二区| 黄色日韩在线| 欧美一区二区国产精品久久精品| 国产又黄又爽又无遮挡在线| 精品人妻1区二区| 久久天躁狠狠躁夜夜2o2o| 日韩大尺度精品在线看网址| av在线观看视频网站免费| 久久亚洲真实| 尾随美女入室| 深夜精品福利| 亚洲av电影不卡..在线观看| 22中文网久久字幕| 男插女下体视频免费在线播放| 人妻制服诱惑在线中文字幕| 亚洲综合色惰| 国产精品久久视频播放| 18+在线观看网站| 99热网站在线观看| 亚洲人成伊人成综合网2020| 中文亚洲av片在线观看爽| 亚洲精品国产成人久久av| 女人被狂操c到高潮| 12—13女人毛片做爰片一| 中国美女看黄片| 在线播放无遮挡| 亚洲内射少妇av| 国产又黄又爽又无遮挡在线| 日韩欧美精品v在线| 午夜爱爱视频在线播放| 成人特级黄色片久久久久久久| 99九九线精品视频在线观看视频| 国产久久久一区二区三区| 日本五十路高清| 麻豆成人午夜福利视频| 欧美日韩瑟瑟在线播放| 综合色av麻豆| 国产综合懂色| 又粗又爽又猛毛片免费看| 免费人成视频x8x8入口观看| 18+在线观看网站| 国产精品一区二区三区四区久久| 国内久久婷婷六月综合欲色啪| 亚洲成人精品中文字幕电影| 1024手机看黄色片| 熟女电影av网| 日韩欧美免费精品| 内地一区二区视频在线| 少妇人妻一区二区三区视频| 成人无遮挡网站| 黄色配什么色好看| 免费大片18禁| 久久久久久久久中文| 五月玫瑰六月丁香| 成人亚洲精品av一区二区| 中文字幕av成人在线电影| 亚洲欧美日韩卡通动漫| 99精品在免费线老司机午夜| 99久久中文字幕三级久久日本| 成年免费大片在线观看| 三级男女做爰猛烈吃奶摸视频| 琪琪午夜伦伦电影理论片6080| 午夜激情福利司机影院| 国产白丝娇喘喷水9色精品| 美女xxoo啪啪120秒动态图| 赤兔流量卡办理| 日本精品一区二区三区蜜桃| 蜜桃久久精品国产亚洲av| av国产免费在线观看| 久久国内精品自在自线图片| 欧美绝顶高潮抽搐喷水| 日韩中字成人| 国内精品宾馆在线| 国产精品一区二区三区四区免费观看 | 精品国内亚洲2022精品成人| 日日撸夜夜添| 成人av在线播放网站| 国产 一区 欧美 日韩| 亚洲人成伊人成综合网2020| 亚洲中文日韩欧美视频| eeuss影院久久| www.www免费av| 中文资源天堂在线| 美女高潮喷水抽搐中文字幕| 成人亚洲精品av一区二区| 又粗又爽又猛毛片免费看| 一本久久中文字幕| 又黄又爽又免费观看的视频| 亚洲av成人av| 波多野结衣巨乳人妻| 久久人人爽人人爽人人片va| 亚洲第一电影网av| 日本黄色视频三级网站网址| 国产精品亚洲一级av第二区| www.色视频.com| 久99久视频精品免费| 全区人妻精品视频| 国产亚洲欧美98| 国产三级中文精品| 美女高潮的动态| 深夜a级毛片| 精品久久久久久成人av| 久久久久久久久久黄片| 可以在线观看毛片的网站| 欧美一区二区国产精品久久精品| 国产精品99久久久久久久久| 99久久无色码亚洲精品果冻| 国产熟女欧美一区二区| 久99久视频精品免费| 成人毛片a级毛片在线播放| 美女 人体艺术 gogo| 精品人妻1区二区| 91精品国产九色| 最新中文字幕久久久久| 日本在线视频免费播放| 久久人人爽人人爽人人片va| 尾随美女入室| 日韩av在线大香蕉| 国产熟女欧美一区二区| 一进一出抽搐动态| 亚洲精品成人久久久久久| 亚洲久久久久久中文字幕| 国产精品久久久久久精品电影| 亚洲av成人精品一区久久| 国产精品日韩av在线免费观看| 免费av观看视频| 亚洲av第一区精品v没综合| 国产免费男女视频| 最后的刺客免费高清国语| 国产免费一级a男人的天堂| 欧美xxxx性猛交bbbb| 国产真实伦视频高清在线观看 | 一级a爱片免费观看的视频| 日本三级黄在线观看| 在线免费观看的www视频| 免费一级毛片在线播放高清视频| 我要搜黄色片| 精品不卡国产一区二区三区| 能在线免费观看的黄片| 男人狂女人下面高潮的视频| 午夜福利欧美成人| 精品久久久久久久久久免费视频| 欧美日韩中文字幕国产精品一区二区三区| 午夜日韩欧美国产| 91久久精品国产一区二区三区| 日日夜夜操网爽| 一级毛片久久久久久久久女| 又黄又爽又免费观看的视频| 女人十人毛片免费观看3o分钟| 成人永久免费在线观看视频| 日韩欧美精品免费久久| 欧美+亚洲+日韩+国产| 国产精品久久久久久久久免| 亚洲av美国av| 尾随美女入室| 成人无遮挡网站| 国内少妇人妻偷人精品xxx网站| 麻豆av噜噜一区二区三区| 久久精品国产自在天天线| 天堂影院成人在线观看| 亚洲av日韩精品久久久久久密| 欧美激情国产日韩精品一区| 性色avwww在线观看| 12—13女人毛片做爰片一| 欧美丝袜亚洲另类 | 成人综合一区亚洲| 日本免费a在线| 女同久久另类99精品国产91| 精品人妻熟女av久视频| 色噜噜av男人的天堂激情| 国产成人a区在线观看| 亚洲狠狠婷婷综合久久图片| 亚洲av五月六月丁香网| 别揉我奶头~嗯~啊~动态视频| 无遮挡黄片免费观看| 国产在视频线在精品| 女生性感内裤真人,穿戴方法视频| 国产探花极品一区二区| 男插女下体视频免费在线播放| 日韩欧美国产一区二区入口| 欧美国产日韩亚洲一区| 麻豆国产97在线/欧美| 日本熟妇午夜| 国产精品嫩草影院av在线观看 | 国产人妻一区二区三区在| 国产 一区精品| 真实男女啪啪啪动态图| 欧美一区二区亚洲| 亚洲中文字幕日韩| 日本黄色片子视频| 亚洲一级一片aⅴ在线观看| netflix在线观看网站| 亚洲国产精品成人综合色| 国产精品一区二区性色av| 久久精品国产99精品国产亚洲性色| 91麻豆精品激情在线观看国产| 午夜免费男女啪啪视频观看 | 乱码一卡2卡4卡精品| 淫秽高清视频在线观看| 欧美最新免费一区二区三区| 日韩 亚洲 欧美在线| 一区福利在线观看| 看片在线看免费视频| 久久久久久久精品吃奶| 1000部很黄的大片| 亚洲av电影不卡..在线观看| 少妇的逼好多水| 亚洲最大成人中文| 麻豆成人午夜福利视频| 男人舔女人下体高潮全视频| 99热精品在线国产| 少妇猛男粗大的猛烈进出视频 | 国产午夜福利久久久久久| 免费看av在线观看网站| 国产高清视频在线观看网站| 亚洲,欧美,日韩| 春色校园在线视频观看| 精品久久久久久,| 亚洲在线自拍视频| 日本免费a在线| 国产午夜福利久久久久久| 男人狂女人下面高潮的视频| 免费高清视频大片| 黄色配什么色好看| 一进一出抽搐动态| 日韩欧美一区二区三区在线观看| 日韩在线高清观看一区二区三区 | 欧美激情久久久久久爽电影| 能在线免费观看的黄片| 婷婷六月久久综合丁香| 亚洲成av人片在线播放无| 精品久久久久久久末码| 97碰自拍视频| 中文在线观看免费www的网站| 欧美性感艳星| 不卡一级毛片| 国产v大片淫在线免费观看| 99在线人妻在线中文字幕| 色综合色国产| 国产美女午夜福利| 99热网站在线观看| 国产精品99久久久久久久久| 精品一区二区三区视频在线| 精品国产三级普通话版| 成人精品一区二区免费| 国产成人影院久久av| 亚洲欧美日韩无卡精品| 免费人成在线观看视频色| 免费人成视频x8x8入口观看| 日韩欧美国产一区二区入口| 九色国产91popny在线| 国产精品女同一区二区软件 | 成年免费大片在线观看| 亚洲国产欧洲综合997久久,| 婷婷亚洲欧美| bbb黄色大片| 一进一出好大好爽视频| 欧美激情国产日韩精品一区| 麻豆成人午夜福利视频| 99久久精品热视频| 国产伦一二天堂av在线观看| 欧美色视频一区免费| 成人国产麻豆网| 91在线观看av| 禁无遮挡网站| 男女下面进入的视频免费午夜| 久久久久久久久中文| 日本一二三区视频观看| 3wmmmm亚洲av在线观看| 色综合婷婷激情| 久久九九热精品免费| 最新中文字幕久久久久| 91在线观看av| 亚洲欧美日韩高清专用| 久久婷婷人人爽人人干人人爱| 色5月婷婷丁香| 男人和女人高潮做爰伦理| 成人国产麻豆网| 尾随美女入室| 午夜精品久久久久久毛片777| 国产伦精品一区二区三区视频9| 亚洲无线观看免费| 在现免费观看毛片| 男女做爰动态图高潮gif福利片| 国产亚洲精品av在线| 亚洲欧美日韩高清专用| 黄色女人牲交| 久久精品国产亚洲av涩爱 | 久久九九热精品免费| 午夜a级毛片| 亚洲无线观看免费| 别揉我奶头~嗯~啊~动态视频| 他把我摸到了高潮在线观看| 伊人久久精品亚洲午夜| 国产人妻一区二区三区在| 国产私拍福利视频在线观看| 黄色配什么色好看| 国产日本99.免费观看| 国产av不卡久久| 九九在线视频观看精品|