• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An analyzing and experimental method based on the resultant motion signals for SCARA manipulator joints①

    2017-09-25 12:53:32XuFengyu徐豐羽YangZhongJiangGuoping
    High Technology Letters 2017年3期

    Xu Fengyu (徐豐羽), Yang Zhong, Jiang Guoping

    (College of Automation, Nanjing University of Posts and Telecommunications, Nanjing 210003, P.R.China)

    An analyzing and experimental method based on the resultant motion signals for SCARA manipulator joints①

    Xu Fengyu (徐豐羽)②, Yang Zhong, Jiang Guoping

    (College of Automation, Nanjing University of Posts and Telecommunications, Nanjing 210003, P.R.China)

    Acceleration reflects vibration of a robot, and the vibration signal can reflect the operation state of the robot. Generally, detection of robot mechanical arm failure requires installing sensors on each joint. This study proposes a method to diagnose the fault by single acceleration sensor only, which is installed at the end of the robot. The operation state of the robot is evaluated by analyzing vibration characteristics of its acceleration. First, a data acquisition function of a programmable multi-axis controller is applied to extract practical motion signals of the robot joints during operation, and practical motion signals are analyzed. Second, synthetic methods to determine acceleration of the end joints of SCARA robots in a Cartesian space is used based on the theory of the Jacobian matrix and the frequency domain of final acceleration is investigated. The relationship between end- and joint-vibration frequencies under given speeds is determined. Then, the method is verified by comparing characteristic frequencies of joint acceleration and synthetic acceleration in Cartesian coordinate system at different speeds. Finally, some faults can be diagnosed by comparing the acceleration vibration frequency extracted by a single acceleration sensor installed at the end of robot with the normal running state. Thus, this method can be used to monitor the signal variation of each joint without installing sensors on each robot joint.

    SCARA robot, motion signal, Jacobian matrix

    0 Introduction

    SCARA robots have been widely used by enterprises since they reduce production costs and improve automatic level effectively. Reliability and safety are critical to SCARA robots, thus, a monitoring system or a fault diagnosis method must be developed to enhance these factors and monitor operation status. In line with this objective, fault diagnosis is significant to the use of such robots.

    Researchers have recently recognized the importance of increasing redundancy in SCARA robots. Various sensors have been installed in their actuators and joints to monitor relative motion signals. If a manipulator is kinematically redundant, its end can still complete the tasks with the help of other joints. Similarly, a system operates normally even if a single sensor fails because of redundant sensors. The typical methods for diagnosis are as follows.

    Installation of sensors in the joints. A robot is presumably faulty if the motion signal measured by the sensors deviates strongly from the theoretical system value. In addition, the faultiness of a robot can be judged through a simple threshold. However, this threshold is difficult to be determined because of the erroneous robot model of the sensor[1-3].

    Fault diagnosis method based on moment residuals. This method mainly utilizes the kinetic equation of the entire nonlinear manipulator, which is obtained by estimating the moment of filtering rather than measuring acceleration[4].

    Fault diagnosis method based on parameter separation. This method principally considers the linearization property of the kinetic equation of a robot and constructs displacement or speed observers to monitor dynamic systems[5].

    Regardless of the method used, the analysis of motion signals is highly important. Some researchers have either measured or analyzed motion signals or developed estimated models to predict kinematic errors. Wu[6]analyzed output signals and proposed an anti-interference processing method for force and torque sensors using various signal-processing methods to stabilize control of the ankle of the humanoid robot. To verify the feasibility of this method, he experimented on the dynamic walking motion of the humanoid robot platform. Cheein[7]presented the probability-based workspace scan modes of a robot manipulator, which is governed by a brain-computer interface; users can control the manipulator and reach any specific position in the workspace of the robot through joint signals.

    Motion signal-extraction methods have also been proposed to diagnose the signals of wheeled and other field robots. For instance, Liu[8]integrated Kalman filters and an expert system to diagnose several fault modes in corresponding movement states. Hoang[9]presented a fault diagnosis scheme for wheeled mobile robots. Ferreira[10]proposed a brain-computer interface to control manipulators and to reach any position within its workspace. Fourlas[11]introduced a theoretical approach to diagnose model-based faults in a four-wheel skid-steering mobile robot.

    In addition, Gao[12]designed an unknown input observer (UIO) for the augmented system by decoupling the partial disturbances and attenuating the disturbances. The proposed technique is finally illustrated by the simulation studies of a single-link flexible joint robot. Stavrou[13]took a model-based approach for detecting and identifying actuator faults on differential-drive mobile robots in an indoor environment. Zhao[14]proposed a dual closed-loop trajectory tracking control algorithm on the basis of the Lyapunov stability theory. The failure of actuator is estimated through the proposed decentralized sliding mode observer (DSMO). Zhang[15]proposed a new scheme for estimating the fault for Lipschitz nonlinear systems with unstructured uncertainties using the sliding mode observer (SMO) technique. She[16]analyzed and compared the manipulation capability of SSRMS-type manipulators with joints locked at arbitrary positions, and proposed efficient path planning via a fault-tolerant control method. This proposed method is useful for designing the optimal configuration of a redundant manipulator.

    Acceleration generally reflects the vibration degree of a robot. Vibration signals are usually extracted to determine the working state of a system in scientific research and engineering applications. Variations in working state are all reflected by vibration signals under different loads. Thus, the current study mainly analyzes displacement signals, speed, and acceleration in the joint and Cartesian spaces of a SCARA robot. The signals are used to analyze time and frequency domains extracted by a single acceleration sensor installed at the end of this robot (Fig.1). Furthermore, the characteristics of these acceleration signals are identified. The acceleration signals are also compared with various typical fault signals to determine the operation state of a robot.

    Especially this paper applys a method to determine the motion signs of the end joint of a selective compliance assembly robot arm (SCARA) by a single acceleration sensor which is organized as follows. Section 1 presents a structure and control system of the SCARA robot. Section 2 analyzes the method of collecting actual motion data regarding the robot. Section 3 presents a method to analyze the resultant motion of the end joints of the SCARA robot. Section 4 introduces the lab experiments on the resultant motion curve of these joints. Section 5 concludes the paper and lists recommendations for future work.

    1 Introduction of the experimental platform

    A SCARA robot is mainly composed of a base, big arm (Joint 1), small arm (Joint 2), and ball screw (Joints 3 and 4). It is driven by a 4-AC servo motor. SCARA exhibits four degrees of freedom, as shown in Fig.1(a).

    Fig.1 SCARA manipulator

    The control system consists of a personal computer (PC), programmable multi-axis controller (PMAC) motion controller, input/output (I/O) board, alternating current (AC) servo motor, and sensors (Fig.1(b)). The PC is designed for man-machine interaction, parameter settings, and inverse kinematics. The PMAC controls the linkage of the servo motor, and the sensor collects various signals in the robot operation and sends them to the PC through the I/O board.

    Under this system by using Cartesian coordinate system position control the point-to-point straight line interpolation and continuous interpolation and arc interpolation can be realized. Specific control process is as follows: first, choosing interpolation type via PC, and then according to different type of interpolation the relevant point is calculated, and through the inverse kinematics solution required for each joint rotation angle, the angle will be converted into pulse number via a serial port to be sent to PMAC, PAMC in a specific movement patterns is driven by servo motor to complete the corresponding action.

    2 Analysis of the motion signals of robot

    2.1 Robot motion data acquisition

    The data acquisition function of PMAC is classified into two main approaches, namely, standard and real-time data acquisition through random-access memory (RAM). The obtained robot motion data can be sent directly to the PC or illustrated as motion curves using the Pmac Plot32 Pro in PMAC for further analysis. Fig.2(a) presents the main interface window of the Pmac Plot32 Pro, and its data analysis window is displayed in Fig.2(b). Thus, displacement, speed, and acceleration are determined through data acquisition.

    2.2 Acquisition of actual joint-motion data

    Fig.3 displays the reference coordinate system of the path planning for a SCARA robot where {O} refers to the absolute coordinate system and {e} is a relative coordinate system. For convenient comparison and analysis, the relative coordinate system is adopted primarily to collect the motion signals of a SCARA robot from point P1(0, 0, 0) to P2(300, 200, -100) at the speeds of 100, 130. In this study, command speed is the rated speed percentage of the robot. The rated speed of each axis is as follows: axis A (Joint 1)is 1.5rad/s, axis B(Joint 2) is 2.0rad/s, axis W(Joint 3) is 3.0rad/s, and axis Z(Joint 4) is 2.4rad/s. The speed of the entire system is controlled by specifying a feed axis during point-to-point movement. If the robot moves from point P1 to point P2, axis Z can act as a feed axis. The command speed of 100 specifies that the operation speed of the robot is ω1=2.4×100%=2.4rad/s. Once the speed of the axis Z is preset, the speeds of the remaining axes can be calculated based on the distance of the corresponding axis and the running time of axis Z. Thus, the four axes arrive at the designated site simultaneously.

    Fig.2 Main interface window of the Pmac Plot32 Pro

    Fig.3 Reference coordinate system of a SCARA robot

    Actual robot motion signals can be obtained by directly receiving the feedback of the incremental encoder through PMAC. Fig.4~Fig.7 display the curves of the actual displacements, speeds, and accelerations of Joints 1 and 2.

    Fig.4 Actual motion curves of Joint 1(ω1=2.4rad/s)

    Fig.5 Actual motion curves of Joint 2 (ω1=2.4rad/s)

    Fig.6 Actual motion curves of Joint 1(ω2=3.12rad/s)

    Fig.7 Actual motion curves of Joint 2(ω2=3.12rad/s)

    2.3 Analysis of joint vibration

    The acceleration curves in Fig.4~Fig.7 are Fourier-transformed to analyze the vibration frequency of joint acceleration at disparate operation speeds. Fig.8 and Fig.9 depict the acceleration spectra of Joints 1 and 2 at operation speeds of v1=2.4rad/s, v2=3.12rad/s. The vibration frequency of Joint 1 basically increases in a fixed ratio with the increase in running speed. As shown in Fig.8(a), (b), Fig.9(a), (b), follow the same law. Moreover, Fig.8 and Fig.9 indicate that the vibration frequencies of Joints 1 and 2 are identical.

    Fig.8 Acceleration spectra of Joint 1

    Fig.9 Acceleration spectra of Joint 2

    Fig.4~Fig.7 suggest that actual acceleration vibration is mainly induced by speed fluctuation.

    3 Analysis of the resultant motion of the end joints of a SCARA robot

    3.1 Jacobian matrix

    The Jacobian matrix denotes the coefficient matrix used to study the relationship between the speed of the Cartesian space and the torsion angular velocity of each robot joint. The kinematic equation of the SCARA robot is

    x=x(q)

    (1)

    Eq.(1) displays the functional relationship of the spatial coordinate and joint vectors of the SCARA robot. x refers to the six-order vector that describes the position and pose of the end joint and q is a joint vector determined by the degrees of freedom of the robot. By considering the time derivatives on both sides of Eq.(1), Eq.(2) can be obtained:

    (2)

    3.2 Analysis of Jacobian matrix of the SCARA

    The Jacobian matrix of the SCARA robot can be solved using the vector product method. Fig.10 shows the coordinate system and joint parameters of the SCARA robot, and Table 1 lists its joint parameters.

    Fig.10 Coordinate system of a SCARA robot

    LinkVariableαad1θ10002θ20l10300l2d34θ4000

    where l1=0.35m, l2=0.25m

    Given that Joints 1, 2, and 4 of the robot are rotational and that Joint 3 is dynamic, the following expression can be generated using the vector product method.

    Fig.10 indicates that:

    The Jacobian matrix of the SCARA robot is

    (3)

    The resultant speed and acceleration of a SCARA robot can be determined using the actual motion displacement, speed, and acceleration of the robot joint. By substituting l1and l1into Eq.(3), the Jacobian matrix J is rewritten as

    (4)

    By substituting Eq.(4) into Eq.(2), the following is obtained:

    (5)

    For convenient analysis, this study merely explores the displacement, speed, and acceleration of the end joint of the robot in the x and y directions. Therefore, Eq.(5) is simplified as follows:

    (6)

    4 Experiments on the resultant motion curve of the end joint of the robot

    4.1 Resultant speed curve

    Eq.(6) describes the relationship of the speeds in the joint and Cartesian spaces of the robot. It can determine the linear speeds of the robot in the Cartesian space at different operation speeds in the x and y directions. Fig.11 and Fig.12 illustrate the resultant speed curves of the end joints in the x and y directions at operation speeds of ω1=2.4rad/s, ω2=3.12rad/s.

    Fig.11 Final resultant speed of the robot in the x direction

    Fig.12 Final resultant speed of the robot in the y direction

    4.2 Resultant acceleration curve

    Given the time derivate of Eq.(6), the relationships of final acceleration with joint displacement, speed, and acceleration in the Cartesian space can be determined:

    (7)

    The data regarding the motion of the right joint in Eq.(7) can be attained. Hence, the linear acceleration of the robot in the x and y directions can be identified in the Cartesian space. Fig.13 and Fig.14 display the actual final acceleration curves of the robot in the x and y directions at operation speeds of ω1=2.4rad/s, ω2=3.12rad/s.

    Fig.13 Final resultant acceleration of the robot in the x direction

    Fig.14 Final resultant acceleration of the robot in the y direction

    By Fourier-transforming the resultant acceleration, the corresponding spectra in the x and y directions can be obtained as shown in Fig.15 and Fig.16. The characteristic frequencies of the end joint of the robot are basically identical in the x and y directions at a constant operation speed based on a comparison of both figures. Moreover, the characteristic frequency of the resultant acceleration vibration of the end joint of the robot generally agrees with the acceleration vibration frequencies of joint 1 and joint 2. Thus, the final vibration frequency of the robot remains constant in the x and y directions during operation and increases linearly with operation speed.

    5 Conclusion

    This study proposes a method to diagnose fault by a single acceleration sensor and designs a synthetic method for the end joints of a SCARA robot in a Cartesian space based on the theory of the Jacobian matrix. The acceleration signals of the end joint of the robot are collected under different operating conditions by simply using an acceleration sensor installed at the end. By comparing the characteristic frequency of acceleration of joint 1 and joint 2 with synthetic acceleration to illustrate the accuracy of the method. The acceleration vibration signals of robot joints during actual operation are analyzed, and the characteristic frequency of joint acceleration signals is linearly related to a specified speed. Accordingly, the speed and acceleration of the end joint of the robot are deduced in the x, y directions in the Cartesian space. By comparing the results of frequency spectrum analysis on the final acceleration signals and normal running state of robot, the real operation status can be determined.

    Fig.15 Resultant acceleration spectra of the end joint of the robot in the x direction

    Fig.16 Resultant acceleration spectra of the end joint of the robot in the y direction

    Reference

    [ 1] Shin J H, Lee J J. Fault detection and robust fault recovery control for robot manipulators with actuator failures. In: Proceedings of the IEEE International Conference on Robotics and Automation, Detroit, USA, 1999. 861-866

    [ 2] Ting Y, Tosunoglu S, Tesar D. A control structure for fault tolerant operation of robotic manipulators. In: Proceedings of the IEEE International Conference on Robotics and Automation, Atlanta, USA, 1993. 684-690

    [ 3] Wu E C, Hwang J C, Chladek J T. Fault tolerant joint development for the space shuttle remote manipulator system: Analysis and development. IEEE Transactions on Robotics and Automation, 1993, 9(5): 675-684

    [ 4] Zanaty F. Consistency checking techniques for the space shuttle remote manipulator system. SPAR Journal of Engineering Technology, 1993, 2(1): 40-49

    [ 5] Visinsky M L, Cavallaro J R, Walker I D. Dynamic sensor-based fault detection for robots. In: Proceedings of the 1993 SPIE Conference on Telemanipulator Technology and Space Robotics,Boston, USA, 1993. 385-396

    [ 6] Wu B Y, Yan Q Q, Luo J F, et al. Signal processing and application of six-axis force/torque sensor integrated in humanoid robot foot. Journal of Signal Processing Systems for Signal Image and Video Technology, 2014, 74(2): 263-271

    [ 7] Cheein F A A, Sciascio F, Carelli R, et al. Probabilistic workspace scan modes of a robot manipulator commanded by EEG signals. In: Proceedings of the 1st International Conference on Biomedical Electronics and Devices, Funchal, Portugal, 2008, 2:3-8

    [ 8] Liu Y T, Chen J A. Integrated fault diagnosis method of mobile robot. In: Proceedings of the 2nd International Conference on Theoretical and Mathematical Foundations of Computer Science (ICTMF 2011), Singapore, 2011,164: 372-379

    [ 9] Hoang N B, Kang H J. A model-based fault diagnosis scheme for wheeled mobile robots. International Journal of Control Automation and Systems, 2014, 12(3): 637-651

    [10] Ferreira A, Bastos T F, Sarcinelli M, et al. Teleoperation of an industrial manipulator through a TCP/IP channel using EEG signals. In: Proceedings of the IEEE International Symposium on Industrial Electronics, Montreal, Canada, 2006. 3066-3071

    [11] Fourlas G K. Theoretical approach of model based fault diagnosis for a 4-wheel skid steering mobile robot. In: Proceeding of the 21st Mediterranean Conference on Control and Automation, Platanias, Greece, 2013. 597-602

    [12] Gao Z W, Liu X X, Chen Michael Z Q. Unknown input observer-based robust fault estimation for systems corrupted by partially decoupled disturbances. IEEE Transactions on Industrial Electronics, 2016, 63(4): 2537-2547

    [13] Stavrou D, Eliades D G. Fault detection for service mobile robots using model-based method. Autonomous Robots, 2016,40(2): 383-394

    [14] Zhao B, Li C H, Liu D R. Decentralized sliding mode observer based dual closed-loop fault tolerant control for reconfigurable manipulator against actuator failure. PLOS One, 2015, 10(7): e0129315

    [15] Zhang J, Swain A K, Nguang S K. Robust sliding mode observer based fault estimation for certain class of uncertain nonlinear systems. Asian Journal of Control, 2015,17(4):1296-1309

    [16] She Y, Xu W F, Su H J. Fault-tolerant analysis and control of SSRMS-type manipulators with single-joint failure. Acta Astronautica, 2016,120:270-286

    the Ph.D. degree from Southeast University in 2009 and his M.S. degree from Hefei University of Technology in 2005. He was an associate professor of the Automation Engineering of Nanjing University of Posts and Telecommunications. His current research interests include robotics and dynamics.

    10.3772/j.issn.1006-6748.2017.03.008

    Supported by the National Natural Science Foundation of China (No. 51775284), Natural Science Foundation of Jiangsu Province(BK20151505), and Joint Research Fund for Overseas Chinese, Hong Kong and Macao Young Scholars (61728302).

    To whom correspondence should be addressed. E-mail: xufengyu598@163.com

    on May 6, 2016

    亚洲欧洲日产国产| 99久久人妻综合| 99热这里只有是精品50| 天天一区二区日本电影三级| 天堂网av新在线| 91精品一卡2卡3卡4卡| 搞女人的毛片| 国产成人精品久久久久久| 亚洲真实伦在线观看| 3wmmmm亚洲av在线观看| 一级毛片电影观看 | 婷婷色av中文字幕| 十八禁国产超污无遮挡网站| 国产午夜精品一二区理论片| 亚洲欧美精品自产自拍| 中文精品一卡2卡3卡4更新| a级毛片a级免费在线| 一区二区三区四区激情视频 | 少妇高潮的动态图| 亚洲精品日韩在线中文字幕 | 给我免费播放毛片高清在线观看| 久久精品国产99精品国产亚洲性色| 啦啦啦啦在线视频资源| 国产av麻豆久久久久久久| 两性午夜刺激爽爽歪歪视频在线观看| 在线观看av片永久免费下载| 国产精品免费一区二区三区在线| 综合色丁香网| 精品一区二区三区视频在线| 高清在线视频一区二区三区 | 午夜精品在线福利| 99久久成人亚洲精品观看| 国产午夜精品一二区理论片| 免费无遮挡裸体视频| 人人妻人人澡人人爽人人夜夜 | 国产免费男女视频| 欧美日本亚洲视频在线播放| 国产视频首页在线观看| 久久人人爽人人片av| 国产欧美日韩精品一区二区| 不卡一级毛片| 男女边吃奶边做爰视频| 成人av在线播放网站| 欧美一级a爱片免费观看看| 99视频精品全部免费 在线| 亚洲欧洲国产日韩| 亚洲五月天丁香| 一级av片app| 久久亚洲国产成人精品v| 久久久午夜欧美精品| 精品人妻视频免费看| 国产高清视频在线观看网站| 天美传媒精品一区二区| 国产美女午夜福利| 在线国产一区二区在线| 欧美日本亚洲视频在线播放| 99国产精品一区二区蜜桃av| 精品人妻一区二区三区麻豆| 插逼视频在线观看| 长腿黑丝高跟| 一级黄片播放器| 在线国产一区二区在线| 3wmmmm亚洲av在线观看| 一个人观看的视频www高清免费观看| 成熟少妇高潮喷水视频| 黄色日韩在线| 国产亚洲91精品色在线| 国产亚洲av嫩草精品影院| 国产av一区在线观看免费| 国产精品一区二区在线观看99 | 国产探花极品一区二区| 久久久成人免费电影| 少妇猛男粗大的猛烈进出视频 | 国产私拍福利视频在线观看| 男插女下体视频免费在线播放| 午夜久久久久精精品| 国产高清不卡午夜福利| 久久久久久久久久黄片| 99久国产av精品国产电影| 亚洲在线自拍视频| 国产午夜福利久久久久久| 国产精品人妻久久久影院| 99久国产av精品国产电影| 99热精品在线国产| 人人妻人人澡欧美一区二区| 卡戴珊不雅视频在线播放| 校园春色视频在线观看| av.在线天堂| 亚洲精品色激情综合| 国产精品嫩草影院av在线观看| 国产成人精品一,二区 | 午夜福利成人在线免费观看| 夫妻性生交免费视频一级片| 一边亲一边摸免费视频| 久久精品国产亚洲网站| 婷婷亚洲欧美| 亚洲av成人av| 男人狂女人下面高潮的视频| 在线观看免费视频日本深夜| 国产一区二区激情短视频| 国产美女午夜福利| 九草在线视频观看| 亚洲一级一片aⅴ在线观看| 一本久久中文字幕| 国产成人午夜福利电影在线观看| 午夜福利在线在线| 欧美性猛交╳xxx乱大交人| 亚洲成a人片在线一区二区| 国产成人一区二区在线| 精华霜和精华液先用哪个| 欧美成人a在线观看| 直男gayav资源| 在线天堂最新版资源| 五月玫瑰六月丁香| 色视频www国产| 久久久久国产网址| 久久久成人免费电影| 春色校园在线视频观看| 国产精品电影一区二区三区| 五月伊人婷婷丁香| 日韩亚洲欧美综合| 赤兔流量卡办理| 波多野结衣高清无吗| 免费观看人在逋| 老司机福利观看| 国产老妇女一区| 波多野结衣高清作品| 可以在线观看的亚洲视频| 欧美高清成人免费视频www| 欧美日本亚洲视频在线播放| 国产精品久久久久久av不卡| 联通29元200g的流量卡| 欧美+亚洲+日韩+国产| 色综合站精品国产| 99热这里只有精品一区| 99久久久亚洲精品蜜臀av| 国国产精品蜜臀av免费| 精品无人区乱码1区二区| 久久亚洲国产成人精品v| 日韩中字成人| 欧美色视频一区免费| 亚洲在线观看片| 欧美日韩一区二区视频在线观看视频在线 | 黑人高潮一二区| 99在线视频只有这里精品首页| 成人午夜精彩视频在线观看| avwww免费| 久久九九热精品免费| 18+在线观看网站| 哪个播放器可以免费观看大片| 色播亚洲综合网| 国产大屁股一区二区在线视频| 国产精品一区二区性色av| 九九热线精品视视频播放| 如何舔出高潮| 亚洲人成网站在线播放欧美日韩| 久久久精品欧美日韩精品| 午夜福利成人在线免费观看| 日本-黄色视频高清免费观看| 有码 亚洲区| 女人被狂操c到高潮| 人人妻人人澡人人爽人人夜夜 | 成人毛片a级毛片在线播放| 狂野欧美激情性xxxx在线观看| 亚洲精品456在线播放app| 国产老妇女一区| 国产一区二区激情短视频| 亚洲精品456在线播放app| 在线观看免费视频日本深夜| 97在线视频观看| 晚上一个人看的免费电影| 日本黄色视频三级网站网址| 免费看美女性在线毛片视频| 精品久久久久久久久久免费视频| 日本色播在线视频| 给我免费播放毛片高清在线观看| 日韩,欧美,国产一区二区三区 | 美女cb高潮喷水在线观看| 日韩一区二区视频免费看| 日韩欧美精品v在线| 性色avwww在线观看| 日韩成人伦理影院| 色吧在线观看| 99热全是精品| 人人妻人人澡人人爽人人夜夜 | 中文字幕av成人在线电影| 69人妻影院| 国产色爽女视频免费观看| 2022亚洲国产成人精品| 禁无遮挡网站| 大香蕉久久网| 国产视频首页在线观看| 十八禁国产超污无遮挡网站| www日本黄色视频网| 亚洲精品影视一区二区三区av| 日韩大尺度精品在线看网址| 国内揄拍国产精品人妻在线| 精品无人区乱码1区二区| 黄色日韩在线| 在线观看美女被高潮喷水网站| 级片在线观看| 精品人妻视频免费看| 春色校园在线视频观看| 国产精品一区二区三区四区免费观看| 久久久久久国产a免费观看| 国产精品蜜桃在线观看 | 激情 狠狠 欧美| 精品久久久久久成人av| 日韩人妻高清精品专区| 毛片一级片免费看久久久久| 免费一级毛片在线播放高清视频| 菩萨蛮人人尽说江南好唐韦庄 | 精品99又大又爽又粗少妇毛片| 身体一侧抽搐| 亚洲五月天丁香| 人人妻人人看人人澡| 久久精品国产亚洲av香蕉五月| 亚洲成人久久爱视频| 色综合色国产| 精品久久国产蜜桃| 级片在线观看| 国产不卡一卡二| 国产精品一区www在线观看| 亚洲欧美日韩东京热| av又黄又爽大尺度在线免费看 | 国产亚洲av片在线观看秒播厂 | 国产精品不卡视频一区二区| av又黄又爽大尺度在线免费看 | 国产高清三级在线| 国产一区二区在线观看日韩| 能在线免费观看的黄片| 日本成人三级电影网站| 激情 狠狠 欧美| 中文在线观看免费www的网站| 自拍偷自拍亚洲精品老妇| 久久久久九九精品影院| 不卡视频在线观看欧美| 国产一区二区亚洲精品在线观看| 观看免费一级毛片| 在线观看一区二区三区| 一级黄片播放器| 全区人妻精品视频| 少妇猛男粗大的猛烈进出视频 | 日日摸夜夜添夜夜爱| 一级毛片aaaaaa免费看小| avwww免费| 国产中年淑女户外野战色| av福利片在线观看| а√天堂www在线а√下载| 国产精品电影一区二区三区| 久久久久久久久久黄片| 国产精品永久免费网站| 久久精品国产自在天天线| 狂野欧美白嫩少妇大欣赏| av天堂中文字幕网| av视频在线观看入口| 成人午夜精彩视频在线观看| 欧美精品国产亚洲| 国产精品久久电影中文字幕| 欧美日韩在线观看h| 1024手机看黄色片| 亚洲最大成人中文| 99久久精品热视频| 国产亚洲精品久久久com| 亚洲人成网站在线观看播放| eeuss影院久久| 国产淫片久久久久久久久| 成人永久免费在线观看视频| 久久精品久久久久久噜噜老黄 | 欧美丝袜亚洲另类| 99久久九九国产精品国产免费| av又黄又爽大尺度在线免费看 | 好男人视频免费观看在线| 国产日韩欧美在线精品| 国产av在哪里看| 丝袜美腿在线中文| 天堂影院成人在线观看| 日本免费一区二区三区高清不卡| 国产一区二区三区在线臀色熟女| 又爽又黄a免费视频| 永久网站在线| 淫秽高清视频在线观看| 国产精品永久免费网站| 在线观看av片永久免费下载| 亚洲av第一区精品v没综合| 老司机福利观看| 寂寞人妻少妇视频99o| 乱人视频在线观看| 99热这里只有精品一区| 不卡一级毛片| 偷拍熟女少妇极品色| 日本在线视频免费播放| 国内少妇人妻偷人精品xxx网站| 欧美性感艳星| 又爽又黄a免费视频| 国产亚洲5aaaaa淫片| 国模一区二区三区四区视频| 亚洲欧美成人精品一区二区| 午夜a级毛片| 99久国产av精品国产电影| 国产av麻豆久久久久久久| 国产亚洲5aaaaa淫片| 亚洲国产精品成人综合色| 中文字幕人妻熟人妻熟丝袜美| 亚洲一区二区三区色噜噜| 色综合站精品国产| 晚上一个人看的免费电影| 欧美又色又爽又黄视频| 美女 人体艺术 gogo| 人妻夜夜爽99麻豆av| 在线观看午夜福利视频| 日本成人三级电影网站| 夜夜爽天天搞| 白带黄色成豆腐渣| 丝袜美腿在线中文| 熟妇人妻久久中文字幕3abv| 午夜亚洲福利在线播放| 国产精品野战在线观看| 精品久久久久久久久av| 一级毛片aaaaaa免费看小| 99久久中文字幕三级久久日本| 亚洲美女搞黄在线观看| 久久婷婷人人爽人人干人人爱| 一级av片app| 成人毛片a级毛片在线播放| 午夜福利视频1000在线观看| 夜夜看夜夜爽夜夜摸| 好男人视频免费观看在线| 大香蕉久久网| 天天躁日日操中文字幕| 国产白丝娇喘喷水9色精品| 搡老妇女老女人老熟妇| 一个人看视频在线观看www免费| 不卡一级毛片| 老司机影院成人| h日本视频在线播放| 天美传媒精品一区二区| 天天一区二区日本电影三级| 亚洲av熟女| 国产精品99久久久久久久久| 国产黄色小视频在线观看| 亚洲精华国产精华液的使用体验 | 国产高清三级在线| 深夜精品福利| 久久久精品大字幕| 亚洲自偷自拍三级| 欧美一级a爱片免费观看看| 国产精品免费一区二区三区在线| 亚洲人成网站高清观看| 亚洲av成人av| 国产伦精品一区二区三区四那| 又粗又硬又长又爽又黄的视频 | 18禁黄网站禁片免费观看直播| 人妻系列 视频| 日韩人妻高清精品专区| 三级毛片av免费| 夜夜看夜夜爽夜夜摸| 亚洲精品久久国产高清桃花| 日本黄色视频三级网站网址| 1024手机看黄色片| 在线观看av片永久免费下载| 99热全是精品| 深夜a级毛片| 欧美色欧美亚洲另类二区| 波多野结衣高清无吗| 中文字幕精品亚洲无线码一区| 国产高潮美女av| 亚洲国产色片| 日韩一本色道免费dvd| 成人av在线播放网站| 国产女主播在线喷水免费视频网站 | 亚洲综合色惰| 十八禁国产超污无遮挡网站| 久久人人爽人人爽人人片va| 国产欧美日韩精品一区二区| or卡值多少钱| 在线播放无遮挡| or卡值多少钱| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲aⅴ乱码一区二区在线播放| 日韩,欧美,国产一区二区三区 | 99热这里只有精品一区| 热99在线观看视频| 国产亚洲av片在线观看秒播厂 | 日本-黄色视频高清免费观看| 日本一二三区视频观看| 边亲边吃奶的免费视频| 99热全是精品| 免费观看a级毛片全部| 特大巨黑吊av在线直播| 国内揄拍国产精品人妻在线| 一本精品99久久精品77| 天堂√8在线中文| 联通29元200g的流量卡| 亚洲最大成人av| 国产成人午夜福利电影在线观看| 少妇裸体淫交视频免费看高清| 免费看光身美女| 亚洲aⅴ乱码一区二区在线播放| 国产白丝娇喘喷水9色精品| 亚洲婷婷狠狠爱综合网| 国产成人精品久久久久久| 亚洲国产色片| 国产av在哪里看| 性欧美人与动物交配| 美女大奶头视频| 亚洲av电影不卡..在线观看| 亚洲av.av天堂| 国产大屁股一区二区在线视频| 亚洲精品色激情综合| 国内精品久久久久精免费| 99在线人妻在线中文字幕| 午夜视频国产福利| 国产黄色小视频在线观看| 少妇高潮的动态图| 午夜免费激情av| 三级国产精品欧美在线观看| 久久人人爽人人片av| 亚洲欧美精品专区久久| 免费黄网站久久成人精品| 美女国产视频在线观看| 啦啦啦观看免费观看视频高清| 国产成人福利小说| 欧美日韩国产亚洲二区| 国产黄片视频在线免费观看| 精品不卡国产一区二区三区| 国产真实乱freesex| 又粗又爽又猛毛片免费看| 久久人人爽人人片av| 国产 一区精品| 国产精品久久电影中文字幕| 亚洲av免费在线观看| av专区在线播放| 中国国产av一级| 天天一区二区日本电影三级| 在线观看午夜福利视频| 一进一出抽搐gif免费好疼| 精品无人区乱码1区二区| 亚洲欧美日韩无卡精品| 99久久成人亚洲精品观看| 国产高清视频在线观看网站| 亚洲欧美成人精品一区二区| 91久久精品国产一区二区成人| 亚洲经典国产精华液单| 国产老妇伦熟女老妇高清| 久久欧美精品欧美久久欧美| 国产v大片淫在线免费观看| 99久久精品热视频| 免费观看精品视频网站| 免费大片18禁| 变态另类成人亚洲欧美熟女| 国产真实乱freesex| 只有这里有精品99| 高清毛片免费看| 亚洲自偷自拍三级| 亚洲欧美成人精品一区二区| 91麻豆精品激情在线观看国产| 国产色爽女视频免费观看| 麻豆国产97在线/欧美| 看黄色毛片网站| 我要搜黄色片| .国产精品久久| 精品欧美国产一区二区三| 天天躁夜夜躁狠狠久久av| 又爽又黄无遮挡网站| 九九久久精品国产亚洲av麻豆| 亚洲在线观看片| 日韩强制内射视频| 成年版毛片免费区| 久久午夜亚洲精品久久| av天堂在线播放| 亚洲人成网站在线播| 丰满人妻一区二区三区视频av| 可以在线观看毛片的网站| 久久综合国产亚洲精品| 亚洲成人av在线免费| 国产真实乱freesex| 亚洲自拍偷在线| 久久精品国产鲁丝片午夜精品| 亚洲国产欧洲综合997久久,| 欧美日韩国产亚洲二区| 一区二区三区免费毛片| 99久久久亚洲精品蜜臀av| 欧美丝袜亚洲另类| 精品一区二区免费观看| 亚洲av中文字字幕乱码综合| 欧美激情在线99| 国产午夜福利久久久久久| 人妻系列 视频| 搡女人真爽免费视频火全软件| 亚洲人成网站高清观看| 欧美性感艳星| 三级男女做爰猛烈吃奶摸视频| 国产老妇伦熟女老妇高清| 中文欧美无线码| 又爽又黄a免费视频| 男女边吃奶边做爰视频| 岛国毛片在线播放| 久久久久网色| 精华霜和精华液先用哪个| 十八禁国产超污无遮挡网站| 黄色视频,在线免费观看| 99久久九九国产精品国产免费| 男人和女人高潮做爰伦理| 久久99蜜桃精品久久| 国产久久久一区二区三区| 精品久久久久久久久av| 欧美激情久久久久久爽电影| 精品一区二区三区视频在线| 婷婷色综合大香蕉| 国产成人a区在线观看| 偷拍熟女少妇极品色| 一级黄色大片毛片| 国产中年淑女户外野战色| 久久亚洲精品不卡| 国产激情偷乱视频一区二区| 两个人视频免费观看高清| 亚洲中文字幕一区二区三区有码在线看| 少妇熟女欧美另类| 日韩制服骚丝袜av| 在线国产一区二区在线| 午夜福利在线观看吧| 又粗又爽又猛毛片免费看| 免费黄网站久久成人精品| 亚洲内射少妇av| 黄色配什么色好看| av女优亚洲男人天堂| 欧美日韩精品成人综合77777| 亚洲在线自拍视频| 欧美日韩乱码在线| 亚洲中文字幕一区二区三区有码在线看| 美女高潮的动态| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久精品国产清高在天天线| 国产亚洲精品av在线| 亚洲婷婷狠狠爱综合网| 神马国产精品三级电影在线观看| 亚洲图色成人| 综合色av麻豆| 美女脱内裤让男人舔精品视频 | 成人毛片60女人毛片免费| 91精品国产九色| 又粗又硬又长又爽又黄的视频 | 舔av片在线| 在线观看66精品国产| 美女 人体艺术 gogo| 菩萨蛮人人尽说江南好唐韦庄 | 黄色日韩在线| 韩国av在线不卡| 91麻豆精品激情在线观看国产| 亚洲国产日韩欧美精品在线观看| 能在线免费看毛片的网站| 亚洲精品久久久久久婷婷小说 | 波多野结衣巨乳人妻| 精品久久久久久久末码| av天堂在线播放| 最近最新中文字幕大全电影3| 免费看美女性在线毛片视频| 日本黄大片高清| 极品教师在线视频| 精品久久国产蜜桃| 国产精品1区2区在线观看.| 99热全是精品| 99热只有精品国产| 免费看光身美女| 亚洲欧美中文字幕日韩二区| 日韩精品有码人妻一区| 久久久欧美国产精品| 日韩欧美精品免费久久| 亚洲自拍偷在线| 中文字幕久久专区| 男女视频在线观看网站免费| 久久久午夜欧美精品| 真实男女啪啪啪动态图| 舔av片在线| 天堂中文最新版在线下载 | 欧美又色又爽又黄视频| 老女人水多毛片| 日本av手机在线免费观看| 一区二区三区高清视频在线| 高清毛片免费看| 精品人妻视频免费看| 啦啦啦韩国在线观看视频| 亚洲五月天丁香| 国产三级在线视频| 日韩视频在线欧美| 欧美成人a在线观看| 国产亚洲5aaaaa淫片| 天堂网av新在线| 久久韩国三级中文字幕| 久久99精品国语久久久| 国产成人a区在线观看| 亚洲aⅴ乱码一区二区在线播放| 波多野结衣高清无吗| 又黄又爽又刺激的免费视频.| 成人午夜高清在线视频| 日韩av不卡免费在线播放| 国产亚洲av片在线观看秒播厂 | www日本黄色视频网| 少妇的逼水好多| 禁无遮挡网站| 男女下面进入的视频免费午夜| 欧美高清成人免费视频www| 久久九九热精品免费| 久久精品夜夜夜夜夜久久蜜豆| 国产精品人妻久久久久久| 日本欧美国产在线视频| 少妇丰满av| 亚洲精华国产精华液的使用体验 | 国产午夜精品久久久久久一区二区三区| 免费观看精品视频网站| 欧美xxxx黑人xx丫x性爽| 美女大奶头视频| 赤兔流量卡办理| 99久国产av精品国产电影|