彭晶蓉,賀拴海,李 堯
1) 長安大學(xué)公路學(xué)院,陜西西安710064;2)中交第一公路勘察設(shè)計研究院有限公司,陜西西安710064
【土木建筑工程/ArchitectureandCivilEngineering】
基于索梁活載比的部分斜拉橋布索形式比較
彭晶蓉1,賀拴海1,李 堯2
1) 長安大學(xué)公路學(xué)院,陜西西安710064;2)中交第一公路勘察設(shè)計研究院有限公司,陜西西安710064
推導(dǎo)部分斜拉橋剛構(gòu)體系索梁活載比簡化計算公式,對不同的布索方式提出了用索量的概念.部分斜拉橋結(jié)構(gòu)的斜拉索與主梁夾角越大(≤54.74°)時,斜拉索分擔(dān)的豎向荷載較大,故輻射形布索方式的索梁活載比最大,扇形次之,豎琴形布置最??;而對應(yīng)的斜拉索的總長度輻射形最長,扇形次之,豎琴形最短.可推斷,在結(jié)構(gòu)設(shè)計尺寸初步確定的情況下,以用索量為目標(biāo)可挑選出最為經(jīng)濟(jì)的布索方式.以某部分斜拉橋為工程背景,建立3種布索形式的有限元計算模型,結(jié)果表明,為達(dá)到預(yù)期的索梁活載比,輻射形布索方式用索量最少;扇形次之,比輻射形多25%;豎琴形最多,比輻射形多81%.有限元結(jié)果與簡化計算公式結(jié)果規(guī)律一致,數(shù)值僅差8%.
橋梁工程;部分斜拉橋;布索方式;輻射形;扇形;豎琴形;索梁活載比;用索量
部分斜拉橋起源于瑞士,近年來,在世界各地得到廣泛的應(yīng)用.目前國外已建及在建部分斜拉橋已有百余座[1-3].中國起步較晚,2000年建成的蕪湖長江大橋(180m+312m+l80m)是目前為止世界上跨度最大的部分斜拉橋[4].作為剛構(gòu)橋與斜拉橋的組合結(jié)構(gòu),部分斜拉橋的力學(xué)行為介于兩者之間,由梁的受彎、受壓以及索的受拉共同承受豎向荷載.其剛?cè)嵯酀?jì)、經(jīng)濟(jì)美觀及施工方便等特點使得部分斜拉橋近年來迅速發(fā)展[5-7].
部分斜拉橋的拉索是其重要組成部分,拉索的布置形式也是影響結(jié)構(gòu)性能的重要參數(shù),不同的布索形式在主梁上的分布區(qū)域不同,斜拉索與主梁、主塔的夾角也不同,使得結(jié)構(gòu)的受力行為也相差甚遠(yuǎn)[8-10].文獻(xiàn)[11]介紹了部分斜拉橋是介于連續(xù)梁橋與斜拉橋之間的新型橋梁,它的力學(xué)行為介于兩者之間;通過調(diào)整斜拉索的布置形式,計算了荷載作用下主梁的彎矩和軸力在塔根附近彎矩值的變化,結(jié)果表明:部分斜拉橋的布索方式將直接影響主梁的受力,且密索布置優(yōu)于稀疏索布置,但其優(yōu)勢不明顯,從布索方式上看,輻射式明顯優(yōu)于豎琴式和扇形.文獻(xiàn)[12]分析各種斜拉索布索形式下曲線矮塔斜拉橋動力性能研究,通過比較扇形與豎琴形兩種布索形式的頻率結(jié)果,表明豎琴形布索受索力方向的影響,使全橋剛度略微下降.
本研究基于部分斜拉橋索、梁共同承擔(dān)活荷載的受力特點,在推導(dǎo)設(shè)計參數(shù)索梁活載比簡化計算公式的基礎(chǔ)上,提出了用索量,在結(jié)構(gòu)的初步設(shè)計尺寸確定的情況下,比較不同的布索方式的優(yōu)劣.
常規(guī)斜拉橋設(shè)計中最為常見的索面布置分為輻射形、扇形和豎琴形3種,如圖1.輻射形布置是塔上錨固集中于塔頂一點,主梁錨固點等距布置.這種布索方式斜拉索與主梁夾角較大,塔上僅設(shè)一個索鞍.塔頂與斜拉索的錨固位置為全封閉整體節(jié)點,節(jié)點處所有附連件都在節(jié)點處焊連,使得該處焊縫密集,縱橫交叉,受力復(fù)雜,且在維修、養(yǎng)護(hù)上比較困難.豎琴形布置的斜拉索與主梁的夾角相同,簡潔美觀;塔上各錨固點的間距大,對索塔的受力有利;且各錨點結(jié)構(gòu)形式相同,方便施工.而扇形布置介于輻射形和豎琴形之間,塔上各錨固點的間距適中[13-15].
圖1 斜拉橋索面立面布置形式Fig.1 Different layouts of cables for cable stayed bridge
根據(jù)目前統(tǒng)計的國內(nèi)外部分斜拉橋資料可見,部分斜拉橋的索面立面布置形式主要為扇形和豎琴形[12,16-20].鑒于部分斜拉橋各種布索方式的拉索傾角變化是結(jié)構(gòu)受力的主要因素,本研究結(jié)合經(jīng)濟(jì)指標(biāo)與索梁活載比對布索方式進(jìn)行研究.
2.1索梁活載比
所謂部分斜拉橋,是因為它外觀上既有塔又有斜拉索,外形類似斜拉橋,但在結(jié)構(gòu)性能上,斜拉索僅分擔(dān)部分荷載,還有相當(dāng)部分的荷載由梁的受彎、受剪來承擔(dān).根據(jù)文獻(xiàn)[20-24]提出的部分斜拉橋索梁活載比η的概念,認(rèn)為部分斜拉橋在活荷載作用下,斜拉索和主梁各自承擔(dān)活載的比值定義為索梁活載比.索梁活載比取決于結(jié)構(gòu)參數(shù),即橋梁結(jié)構(gòu)的幾何尺寸、物理材料性質(zhì)等,故一座橋梁結(jié)構(gòu)存在唯一的索梁活載比與之對應(yīng).
按照比擬梁的思想,遵循結(jié)構(gòu)力學(xué)的基本假設(shè),以一座三跨剛構(gòu)體系的部分斜拉橋為例,推導(dǎo)索梁活載比的計算公式.簡化示意圖如圖2.
圖2 部分斜拉橋示意圖Fig.2 Diagram of extra-dosed bridge
(1)
假設(shè)拉索i在主梁上錨固點的撓度為ω(xi), 根據(jù)材料力學(xué)公式ΔTi/(EciAci)=Δli/Lci, 可得主梁上施加集度為q′的均布荷載時,結(jié)構(gòu)索梁活載比為
(2)
其中,Eci、Aci、Lci、 Δli、αi和xi分別為第i根索的彈性模量、拉索橫截面面積、拉索長度、拉索變形量、拉索與主梁的夾角(銳角)、拉索主梁錨固點與塔底的距離.一般橋梁設(shè)計中拉索材料及拉索面積相同,則式(2)可簡化為
(3)
2.2全橋用索量
對于橋梁結(jié)構(gòu)幾何尺寸及拉索材料均確定的情況,由式(2)可知其索梁活載比η與拉索傾角α有直接關(guān)系.為比較部分斜拉橋的3種布索方式對結(jié)構(gòu)性能的影響,假定條件如下:一是結(jié)構(gòu)的跨徑布置相同,且拉索在主梁上的錨固點相同;二是主塔塔高相同,且尾索在主塔上的錨固點相同.僅通過改變其它索在主塔上的錨固位置以達(dá)到不同的布索形式,如圖3.
圖3 布索方式示意圖Fig.3 Diagram of different cable layouts
鑒于部分斜拉橋的3種拉索布置方式對應(yīng)不同的斜拉索長度,現(xiàn)提出拉索用索量的概念Vc以對不同的布索方式進(jìn)行評價.用索量Vc可表示為
(4)
其中,Vc為斜拉索的體積用量.由于Li=xi/cosαi,當(dāng)每根斜拉索在主梁上的錨固點(xi)確定時,顯然輻射形的斜拉索總長度最長、扇形其次、豎琴形最短.但由于索梁活載比η與拉索角度α相關(guān),故需聯(lián)立式(3)、(4),才可得出拉索橫斷面面積Aci從而得到對應(yīng)布索方式的用索量Vc.
3.1工程概況
選取某部分斜拉橋為背景工程,該橋跨徑為(108+208+108)m,主梁斷面為變高度單箱雙室直腹板箱梁,箱梁梁體中心線梁高3.8~6.0m(梁高按二次拋物線變化).主梁上塔根無索區(qū)長25m,邊支座無索區(qū)長12m,跨中無索區(qū)長30m,每一側(cè)索面共布置9根拉索,則梁上錨固間距為8.0m,主塔塔頂錨固點距橋面28m.全橋示意圖如圖4,斜拉索為扇形布置時塔上錨固點間距為1.0m,對應(yīng)的輻射形及豎琴形索面布置如圖5.
圖4 某部分斜拉橋扇形索面示意圖(單位:m)Fig.4 Fan-shaped cables for an extra-dosed bridge (unit:m)
圖5 輻射形及豎琴形索面示意圖(單位:m)Fig.5 Radiation-shaped and harp-shaped cables for an extra-dosed bridge (unit: m)
當(dāng)結(jié)構(gòu)截面尺寸及跨徑確定后,由式(3)可知主梁變形中間函數(shù)ω′(x)可根據(jù)索梁錨固點確定具體數(shù)值,已知主跨跨徑l為208m,邊跨跨徑kl為108m,計算結(jié)果如表1.
3.2三種索面對比分析
表1 邊、中跨主梁變形參數(shù)ω′(x)計算結(jié)果
表2 三種索面布置斜拉索傾角參數(shù)
表3 三種索面布置斜拉索長度參數(shù)
3.3有限元模型計算驗證
以依托工程為背景建立有限元分析模型,模型主梁、主塔和橋墩均采用梁單元,斜拉索采用Ernst公式修正彈性模量的只受拉桁架單元.模型中結(jié)構(gòu)的施工順序及截面尺寸均保持一致,僅修改斜拉索索面的布置形式.
本研究推導(dǎo)簡化計算公式,并以一座工程實例進(jìn)行驗算,得出以下結(jié)論:
1)根據(jù)部分斜拉橋的索梁活載比η的計算公式可知,斜拉索與主梁共同承擔(dān)結(jié)構(gòu)的活荷載,如若結(jié)構(gòu)的尺寸初步確定,斜拉索的布置形式是該值的唯一影響因素.
2)依托工程計算結(jié)果表明,在跨徑、塔高和截面形式等基本參數(shù)確定的情況下,輻射形布索方式的索梁活載比最大、扇形次之、豎琴形布置最小,其主要原因為斜拉索與主梁夾角較大時,分擔(dān)的豎向荷載較多.但該結(jié)論并不絕對,對本研究中式(2)求偏導(dǎo),可知最大的索梁活載比η對應(yīng)的夾角α=54.74°. 因此,具體工程具體分析.
3)通過引入用索量Vc的概念,在初設(shè)階段,可對3種布索方式的經(jīng)濟(jì)性、美觀性、適用性以及施工難易程度等因素綜合對比分析,對設(shè)計者而言有一定的參考價值.
4)由于部分斜拉橋的塔高較低,相比常規(guī)斜拉橋而言主塔截面尺寸較小.輻射形索面在施工時所有拉索均需錨固于塔頂,施工難度大,對錨固區(qū)要求高,本結(jié)論雖表明輻射形用索量最少,但缺少施工難度、 局部受力等綜合因素的分析, 有待完善.
/
:
[1] 朱 剛.矮塔斜拉橋方案設(shè)計及分析研究[D].杭州:浙江大學(xué),2008. Zhu Gang. Project design and analysis research of extra-dosed cable-stayed bridge [D].Hangzhou:Zhejiang University,2008.(in Chinese)
[2] 王 靜,吳 慶,周亞運. 矮塔斜拉橋臨時固結(jié)體系模擬方案研究[J].南京工程學(xué)院學(xué)報,2016,2(14):23-28. Wang Jing, Wu Qing, Zhou Yayun. Simulation research into temporary consolidation of extra-dosed cable-stayed bridges[J]. Journal of Nanjing Institute of Technology.2016,2(14):23-28.(in Chinese)
[3] 劉 昀,顏東煌.部分預(yù)應(yīng)力混凝土斜拉橋設(shè)計的合理性分析[J].中外公路,2015,35(2):83-86. Liu Yun,Yan Donghuang. Rationality analysis of partial prestressed concrete cable stayed bridge[J]. Journal of China and Foreign Highway,2015,35(2):83-86.(in Chinese)
[4] 方秦漢.蕪湖長江大橋[J].華中科技大學(xué)學(xué)報城市科學(xué)版,2002,19(1):1-3. Fang Qinhan. Wuhu Yangtze river bridge[J].Journal of Huazhong University of Science and Technology Urban Science Edition,2002,19(1):1-3.(in Chinese)
[5] 吳節(jié)松.寬幅矮塔斜拉橋的部分關(guān)鍵技術(shù)研究[D].合肥:合肥工業(yè)大學(xué),2014. Wu Jiesong. Research on the key technology of the wide extra-dosed cable-stayed bridge[D].Hefei:Hefei Polytechnic University,2014.(in Chinese)
[6] 肖汝誠,衛(wèi) 璞,孫 斌,等.大跨度部分地錨斜拉橋力學(xué)分析與參數(shù)研究[J].東南大學(xué)學(xué)報自然科學(xué)版,2013,43(5):1097-1103. Xiao Rucheng,Wei Pu,Sun Bing,et al. Mechanical analysis and parametric study of long-span partially earth-anchored cable-stayed bridge[J].Journal of Southeast University Natural Science Edition,2013,43(5):1097-1103.(in Chinese)
[7] 賀拴海.橋梁結(jié)構(gòu)理論與計算方法[M].北京:人民交通出版社,2003. He Shuanhai. Theoretical and computational methods of bridge structure[M]. Beijing: China Communications Press,2003. (in Chinese)
[8] 王凌波,彭晶蓉,賀拴海. 預(yù)應(yīng)力混凝土部分斜拉橋拉索與預(yù)應(yīng)力筋分配比研究[J].中外公路,2016,36(5):110-114. Wang Lingbo,Peng Jingrong, He Shuanhai. Research on distribution ratio of cable and pre-stressing steel wire in pre-stressed concrete extra-dosed cable stayed bridges[J]. Journal of China and Foreign Highway,2016,36(5):100-104.(in Chinese)
[9] 彭晶蓉,賀拴海,王凌波. 基于模型試驗的曲線部分斜拉橋施工過程模擬分析[J].鐵道科學(xué)與工程學(xué)報,2016,13(11):2190-2197. Peng Jingrong, He Shuanhai,Wang Lingbo. Simulation and analysis of the curved extra-dosed bridge construction based on model test[J]. Journal of Railway Science and Engineering,2016,13(11):2190-2197.(in Chinese)
[10] 孫淑紅.外傾索面PC箱梁部分斜拉橋受力性能研究[D].重慶:重慶交通大學(xué),2012. Sun Shuhong. Behaviors of Pre-stressed concrete box girder for partially cable-stayed bridges with double outwardly inclined cable planes[D].Chongqing:Chongqing Jiaotong University,2012.(in Chinese)
[11] 楊慶國.矮塔斜拉橋布索方式計算研究[J].交通標(biāo)準(zhǔn)化,2009,9(19):63-67. Yang Qingguo. Disposition of cable in extra-dossed cable-stayed bridge[J]. Transport Standardization,2009,9(19):63-67.(in Chinese)
[12] 劉昊蘇.不同布索形式下曲線矮塔斜拉橋靜動力性能研究[D].北京:北京建筑大學(xué),2013. Liu Haosu.The Investigation ion the static and dynamic behaviors of the curved extra-dosed cable-stayed bridges with different cable-styles[D].Beijing:Beijing Architecture University,2013.(in Chinese)
[13] 張力文,夏睿杰,肖汝誠,等.部分地錨式斜拉橋合理成橋狀態(tài)二階段確定法[J].深圳大學(xué)學(xué)報理工版,2012,29(1):51-55. Zhang Liwen,Xia Ruijie, Xiao Rucheng, et al.The two-stage method to determine the reasonable completed status of partially earth-anchored cable-stayed bridge[J]. Journal of Shenzhen University Science and Engineering,2012,29(1)51-55.(in Chinese)
[14] 趙曉晉,賀拴海,白鷺濤. 雙塔斜拉-連續(xù)梁組合體系的力學(xué)行為分析[J].深圳大學(xué)學(xué)報理工版,2016,33(5):492-500. Zhao Xiaojin,He Shuanhai,Bai Lutao.Mechnical behavior analysis of double-pylon cable-stayed-continuous beam combination system [J].Journal of Shenzhen University Science and Engineering,2016,33(5):492-500.(in Chinese)
[15] 楊 飛.山區(qū)曲線部分斜拉橋結(jié)構(gòu)體系與結(jié)構(gòu)性能研究[D].西安:長安大學(xué),2011. Yang Fei.Study for structure system and structure performance of curve extra-dosed cable-stayed bridges in the mouritairis[D].Xi’an:Chang’an University,2011.(in Chinese)
[16] 趙曉晉,賀拴海,李 源,等.斜拉橋前支點掛籃施工過程模擬分析[J].深圳大學(xué)學(xué)報理工版,2017,34(2):138-146. Zhao Xiaojin, He Shuanhai, Li Yuan, et al. Process simulation of fore fulcra form traveller construction for cable-stayed bridge[J]. Joumal of Shenzhen University Science and Engineering,2017,34(2):138-146.(in Chinese)
[17] 黃汪勝.大跨預(yù)應(yīng)力連續(xù)箱梁橋矮塔斜拉加固布索方式.研究[D].南京:南京航空航天大學(xué),2011. Huang Wangsheng. Research on cable arrangements of long-span pre-stressed continuous box girder bridge with low tower cable-stayed reinforcement[D].Nanjing: Nanjing University of Aeronautics and Astronautics.(in Chinese)
[18] 陳愛軍,邵旭東,李立峰,等.無背索豎琴式斜拉橋拉索索力敏感性分析[J].華東公路,2008,31(4):3-6. Chen Aijun, Shao Xudong, Li Lifeng, et al. Cable force sensitivity analysis of cable stayed bridge without back cable[J]. East China Highway,2008,31(4):3-6.(in Chinese)
[19] 蘭 彬.背索布索方式對獨塔斜拉橋結(jié)構(gòu)性能影響分析[D].西安:長安大學(xué),2011. Lan Bin.Analysis on structure performance of single inclined pylon cable-stayed bridge under different kinds of back-stay’s cable layout[D].Xi’an:Chang’an University,2011.(in Chinese)
[20] 陳從春. 矮塔斜拉橋設(shè)計理論核心問題研究[D]. 上海:同濟(jì)大學(xué),2006. Chen Congchun. Study on major problems for design theory of extra-dosed cable-stayed bridges[D]. Shanghai: Tongji University,2006.(in Chinese)
[21] 吳益炳,陳仕剛.部分斜拉橋索梁活載比計算公式的推導(dǎo)[J]公路,2016,61(11):144-148. Wu Yibing,Chen Shigang. The formula derivation about distribution ratio of live load between cable and beam in extra-dosed cable-stayed bridge[J].Highway,2016,61(11):144-148.(in Chinese)
[22] 劉 凱.曲線部分斜拉橋的幾個設(shè)計參數(shù)研究[D].西安:長安大學(xué),2013. Liu Kai. Study on several design parameters of curve extra-dosde cable-stayed bridge[D].Xi’an:Chang’an University,2013.(in Chinese)
[23] 楊 可. 矮塔斜拉橋動力特性及地震響應(yīng)分析[D]大連:大連海事大學(xué),2016. Yang Ke. Research on dynamic behavior and seismic response of extra-dosed cable-stayed bridges[D]Dalian:Dalian Maritime University,2016.(in Chinese)
[24] 畢樹兵.矮塔斜拉橋墩頂不平衡轉(zhuǎn)體施工關(guān)鍵技術(shù)研究[J].公路交通科技,2011,7(12):238-241. Bi Shubing. Research on unbalanced swivel construction of extra-dosed cable-stayed bridges[J]. Journal of Highway and Transportation Research and Development,2011,7(12):238-241.(in Chinese)
【中文責(zé)編:坪梓;英文責(zé)編:之聿】
Comparisonofcabledesignsbasedonthedistributionratiobetweencableandbeamofextra-dosedbridge
PengJingrong1,HeShuanhai1,andLiYao2
1)SchoolofHighway,Chang’anUniversity,Xi’an710064,ShaanxiProvince,P.R.China2)CCCCFirstHighwayConsultantsCo.Ltd,Xi’an710075,ShaanxiProvince,P.R.China
The formula of live load ratio between the cable and beam for the rigid system extra-dosed bridge is derived, and the concept of cable quantity is put forward for different cable layouts. For extra-dosed bridge, the larger the angle between cable and girder is (less than54.74°), the more live load born by cables, so the ratio of radial layout is the maximum, then that of the fan-shaped layout, and the ratio of harp-shaped layout is the minimum. However, the length for three cable layouts is exactly opposite. Therefore, when the initial design of the extra-dosed bridge is completed, the most economical cable layout can be chosen based on the cable quantity. Finite element models of three cable layouts for an extra-dosed bridge are set up. The results show that in order to achieve the expected live load ratio between the cable and beam, the cable quantity for the radial cable layout is the least, followed by that of the fan-shaped layout which is25% more than the cable quantity of the radial cable layout. The cable quantity of the harp-shaped layout is the most which is81% more than that of the radial cable layout. The finite element analysis results are consistent with the calculated ones by the simplified formula with only a difference of8%.
bridge engineering; extra-dosed bridge; cable layout; radial layout; fan-shaped layout; harp-shaped layout; distribution ratio; cable quantity
2017-01-04;Accepted:2017-04-18
Professor He Shuanhai.E-mail:heshai@chd.edu.cn
U 442;U 448.27
:Adoi:10.3724/SP.J.1249.2017.05482
Foundation:Science and Technology Project of Guangdong Provincial Transportation Department (2014-02-017)
:Peng Jingrong, He Shuanhai, Li Yao.Comparison of cable designs based on the distribution ratio between cable and beam of extra-dosed bridge[J]. Journal of Shenzhen University Science and Engineering, 2017, 34(5): 482-487.(in Chinese)
廣東省交通運輸廳科技項目(2014-02-017)
彭晶蓉(1988—),女,長安大學(xué)博士研究生.研究方向:橋梁結(jié)構(gòu)理論研究.E-mail:pjrgreen6@163.com
引文:彭晶蓉,賀拴海,李 堯.基于索梁活載比的部分斜拉橋布索形式比較[J]. 深圳大學(xué)學(xué)報理工版,2017,34(5):482-487.