王滿英, 丁小軍, 孫 揚(yáng), 余優(yōu)成
復(fù)旦大學(xué)附屬中山醫(yī)院口腔科, 上海 200032
·短篇論著·
二氫楊梅素通過(guò)STAT3/Bcl-2信號(hào)通路促進(jìn)HNSCC細(xì)胞自噬和凋亡
王滿英, 丁小軍*, 孫 揚(yáng), 余優(yōu)成
復(fù)旦大學(xué)附屬中山醫(yī)院口腔科, 上海 200032
目的: 探討二氫楊梅素(DHM)對(duì)人頭頸鱗癌(HNSCC)細(xì)胞增殖及凋亡的影響。方法: 分別用不同濃度(12.5、25、50 μmol/L)DHM處理人HNSCC SCC-25細(xì)胞6、12、24 h,用流式細(xì)胞儀檢測(cè)SCC-25細(xì)胞凋亡情況;用細(xì)胞免疫熒光法觀察SCC-25細(xì)胞中自噬小體產(chǎn)生情況;Western 印跡法檢測(cè)SCC-25凋亡和自噬標(biāo)志物的表達(dá)。結(jié)果: 12.5、25、50 μmol/L的DHM處理24 h后,SCC-25細(xì)胞凋亡逐漸增加;細(xì)胞中凋亡標(biāo)志物CL-PARP、Bax、CL-casp3逐漸增加,Bcl-2逐漸減少(P<0.05)。12.5、25、50 μmol/L的DHM處理24 h后,SCC-25細(xì)胞自噬逐漸增強(qiáng);自噬標(biāo)志指標(biāo)p-STAT3表達(dá)上調(diào),LC3Ⅱ/LC3Ⅰ的比值逐漸加大,Beclin 1增加,p62逐漸減少(P<0.05)。抑制自噬能促進(jìn)DHM誘導(dǎo)的SCC-25細(xì)胞凋亡,細(xì)胞凋亡標(biāo)志物CL-PARP、Bax增加,Bcl-2減少(P<0.05)。結(jié)論: DHM能誘導(dǎo)HNSCC細(xì)胞凋亡及自噬,其機(jī)制與STAT3相關(guān)信號(hào)通路有關(guān);抑制自噬能促進(jìn)DHM誘導(dǎo)的HNSCC細(xì)胞凋亡。
頭頸鱗狀細(xì)胞癌;二氫楊梅素;凋亡;自噬
頭頸部鱗狀細(xì)胞癌(head and neck squamous cell carcinoma,HNSCC)是世界范圍內(nèi)第六大常見的癌癥,每年新增病例約600 000例[1]。盡管隨著分子生物學(xué)和細(xì)胞生物學(xué)技術(shù)的不斷發(fā)展,HNSCC的診斷和治療方法也在不斷進(jìn)步,然而近30年來(lái)并未明顯提高HNSCC患者的生存率[1]。其原因在于HNSCC易遠(yuǎn)處轉(zhuǎn)移、局部區(qū)域復(fù)發(fā),且對(duì)現(xiàn)階段化療方案的耐藥性較高[2]。
二氫楊梅素(dihydromyricetin,DHM),又名蛇葡萄素,其化學(xué)名為3,5,7,3’,4’,5’-六羥基2,3雙氫黃酮醇,是一種天然的黃酮類化合物,廣泛存在于葡萄科蛇葡萄屬植物中[3]。近年來(lái),大量研究表明DHM對(duì)人肝癌、人乳腺癌、卵巢癌、肺癌細(xì)胞等具有較強(qiáng)的體外抑制作用[4-9],DHM的抗腫瘤活性作用不斷得到重視。本研究通過(guò)分析DHM對(duì)HNSCC細(xì)胞凋亡及自噬的影響,初步探討DHM抗HNSCC的機(jī)制,以期為HNSCC的臨床治療提供新的靶點(diǎn),提高療效。
1.1 材 料 SCC-25細(xì)胞株購(gòu)買于中國(guó)科學(xué)院上海生命科學(xué)研究院細(xì)胞資源中心。DMEM培養(yǎng)基購(gòu)買于美國(guó)Gibco公司,胎牛血清購(gòu)買于杭州四季青生物工程材料有限公司;DHM購(gòu)買于美國(guó)Selleck公司 ;CL-PARP、Bcl-2、Bax、LC3、Beclin 1、p62、兔抗人STAT3、p-STAT3抗體購(gòu)買于美國(guó)CST公司,鼠抗人GAPDH抗體購(gòu)買于英國(guó)Abcam公司;3-MA、ATG5-siRNA購(gòu)買于美國(guó)Santa公司;Caspase-3試劑盒購(gòu)自碧云天生物有限公司。
1.2 細(xì)胞培養(yǎng) SCC-25細(xì)胞接種在胎牛血清(體積濃度為10%)并含100 U/L青霉素、100 mg/L鏈霉素的新鮮DMEM培養(yǎng)液中培養(yǎng),培養(yǎng)條件為37℃、飽和濕度、5% CO2[10]。
1.3 流式細(xì)胞學(xué)分析 選取對(duì)數(shù)生長(zhǎng)期的SCC-25細(xì)胞制成單細(xì)胞懸液,接種于12孔板,密度為每孔2×105/mL。培養(yǎng)24 h 后,分別加入含有12.5、25、50 μmol/L DHM的培養(yǎng)液,于離心管251.55×g離心10 min,棄上清,加入固定液(預(yù)冷的75%乙醇)1 mL,4℃過(guò)夜。第2天轉(zhuǎn)移至5 mL EP管中,111.8×g離心10 min,棄上清。用標(biāo)記凋亡細(xì)胞的異硫氰酸熒光素(fluorescein isothiocyanate,F(xiàn)ITC)標(biāo)記膜聯(lián)蛋白Ⅴ或標(biāo)記壞死細(xì)胞的熒光染料碘化丙啶處理后,4℃避光條件下靜置2 h,置于流式細(xì)胞儀進(jìn)行檢測(cè)。每組重復(fù)3個(gè)樣本,重復(fù)實(shí)驗(yàn)3次。
1.4 Western 印跡法檢測(cè)凋亡指標(biāo) 取對(duì)數(shù)生長(zhǎng)期的SCC-25細(xì)胞,消化后以每孔2 mL的量接種于6孔板中,細(xì)胞密度為(2.0~3.0)×106/mL。培養(yǎng)條件為37℃、5%CO2。培養(yǎng)24 h后,分別加入12.5、25、50 μmol/L的DHM,培養(yǎng) 6、12、24 h后,提取細(xì)胞總蛋白,Western 印跡法檢測(cè)凋亡指標(biāo)(CL-PARP、Bcl-2、Bax)及自噬指標(biāo)(LC3、Beclin 1、p62)蛋白的表達(dá)。用Image J 軟件掃描各條帶進(jìn)行半定量分析,以上述目的蛋白電泳條帶灰度值與內(nèi)參照GAPDH條帶灰度值的比值作為各蛋白的相對(duì)表達(dá)水平。實(shí)驗(yàn)重復(fù)3次。
1.5 酶法檢測(cè)caspase-3活性 細(xì)胞加入自噬的抑制劑3-MA和敲除自噬成膜特異性基因ATG5處理后,加入50 μmol/L的DHM處理24 h后,胰酶消化,并用細(xì)胞裂解液裂解,離心取上清,按照碧云天說(shuō)明書進(jìn)行caspase-3活性的檢測(cè)[11]。
2.1 DHM誘導(dǎo)SCC-25細(xì)胞凋亡 12.5、25、50 μmol/L 的DHM處理SCC-25細(xì)胞24 h后,細(xì)胞凋亡率分別為6.00%、24.93%及38.17%(圖1A)。Western 印跡檢測(cè)發(fā)現(xiàn),CL-PARP、Bax、CL-casp3隨著DHM濃度的增加而增加,Bcl-2則隨著DHM濃度的增加而減少(P<0.05,圖1B)。用50 μmol/L的DHM分別處理SCC-25細(xì)胞6、12、24 h后,CL-PARP、Bax及CL-casp3逐漸增加,而Bcl-2逐漸減少(P<0.05,圖1C)。
2.2 DHM誘導(dǎo)SCC-25細(xì)胞自噬 免疫熒光檢測(cè)結(jié)果顯示,培養(yǎng) 24 h后,LC3陽(yáng)性細(xì)胞數(shù)隨DHM濃度的增加而增加(P<0.05,圖2A)。Western 印跡檢測(cè)發(fā)現(xiàn),隨著DHM濃度的增加或時(shí)間的延長(zhǎng),LC3Ⅱ/LC3Ⅰ的比值逐漸加大,Beclin 1增加,而p62逐漸減少(P<0.05,圖2B、2C)。
2.3 DHM通過(guò)靶向影響STAT3促進(jìn)SCC-25細(xì)胞自噬 Western 印跡結(jié)果表明,培養(yǎng)24 h后,隨著DHM濃度的增加,磷酸化STAT3蛋白逐漸增加(P<0.05, 圖3A)。DHM 50 μmol/L處理SCC-25細(xì)胞6、12、24 h后,p-STAT3表達(dá)逐漸增加(P<0.05, 圖3B)。用STAT3的特異性抑制劑NSC74859抑制SCC-25細(xì)胞中p-STAT3的表達(dá)24 h后,再用50 μmol/L的DHM處理SCC-25細(xì)胞24 h,結(jié)果發(fā)現(xiàn),細(xì)胞自噬水平下降(LC3Ⅱ/LC3Ⅰ比值下降),細(xì)胞凋亡水平升高(CL-PARP、Bax的表達(dá)增加,Bcl-2表達(dá)降低;P<0.05, 圖3C)。
2.4 抑制自噬顯著增強(qiáng)DHM引起的SCC-25細(xì)胞凋亡 通過(guò)使用自噬的抑制劑3-MA和敲除自噬成膜特異性基因ATG5觀察自噬抑制后對(duì)凋亡的影響。50 μmol/L的 DHM處理SCC-25細(xì)胞后,細(xì)胞中的caspase-3活性增強(qiáng);3-MA和ATG5 si-RNA處理后,caspase-3活性進(jìn)一步增強(qiáng)(P<0.05,圖4)。
圖1 DHM誘導(dǎo)SCC-25細(xì)胞凋亡
部分癌癥患者對(duì)化療藥物不敏感或耐受,因此,亟需發(fā)現(xiàn)一些潛在的治療癌癥的藥物。DHM有多種生物學(xué)效應(yīng)[12-16],如抗毒性、抗腫瘤及抗乙醇中毒活性。但是,DHM抗腫瘤的具體機(jī)制目前尚不清楚。研究[17]顯示,DHM可以通過(guò)p53相關(guān)信號(hào)通路促進(jìn)人類胃癌細(xì)胞凋亡。研究[18]發(fā)現(xiàn),在人類肝癌細(xì)胞中,DHM通過(guò)p53/Bcl-2信號(hào)通路協(xié)同萘達(dá)鉑的殺腫瘤效應(yīng)。本研究中,DHM可以誘導(dǎo)SCC-25細(xì)胞自噬及凋亡,凋亡相關(guān)蛋白CL-PARP、Bcl-2、Bax、Cl-casp3及自噬相關(guān)蛋白LC3、Beclin 1、p62表達(dá)改變,且p-STAT3表達(dá)增加。
細(xì)胞自噬普遍存在于真核細(xì)胞中[19]。自噬在生物體存活中起著雙刃劍的作用:一方面細(xì)胞可以通過(guò)自噬吸取能量來(lái)維持細(xì)胞正常的新陳代謝;另一方面,自噬可以導(dǎo)致細(xì)胞死亡。本研究中,首先用3-MA抑制細(xì)胞的自噬過(guò)程,再用DHM處理腫瘤細(xì)胞,發(fā)現(xiàn)細(xì)胞中caspase-3活性增強(qiáng);然后,在基因水平上沉默自噬過(guò)程中起決定作用的ATG5基因,再用DHM處理腫瘤細(xì)胞,發(fā)現(xiàn)細(xì)胞中caspase-3的活性也增強(qiáng)。結(jié)果說(shuō)明,在HNSCC細(xì)胞中,DHM引起的細(xì)胞自噬對(duì)腫瘤細(xì)胞起保護(hù)作用。
圖2 DHM誘導(dǎo)SCC-25細(xì)胞自噬
STAT3是信號(hào)轉(zhuǎn)導(dǎo)和轉(zhuǎn)錄激活因子家族的重要成員之一。持續(xù)激活STAT3信號(hào)轉(zhuǎn)導(dǎo)通路可導(dǎo)致腫瘤發(fā)生、發(fā)展。體內(nèi)外使某些腫瘤細(xì)胞中的STAT3信號(hào)通路被阻斷,可使細(xì)胞的增殖和存活被抑制,并誘導(dǎo)細(xì)胞自噬[20]。本研究發(fā)現(xiàn),p-STAT3的表達(dá)隨DHM濃度的增加而增加;用p-STAT3特異性抑制劑NSC74859抑制p-STAT3的活性后,DHM所導(dǎo)致的腫瘤細(xì)胞自噬減少,而DHM所引起的腫瘤細(xì)胞凋亡增多。
綜上所述,本研究結(jié)果表明,人HNSCC細(xì)胞凋亡及自噬水平可在DHM所誘導(dǎo)下升高,其機(jī)制可能與STAT3信號(hào)通路相關(guān),提示抑制自噬可使DHM的抗癌能力顯著增強(qiáng),DHM聯(lián)合應(yīng)用抗自噬藥物會(huì)加強(qiáng)抗腫瘤效應(yīng)。但是,目前國(guó)內(nèi)外基于DHM抗腫瘤效應(yīng)的研究中,各種腫瘤細(xì)胞對(duì)DHM的敏感性機(jī)制并不一致[4-9]。本研究證明,DHM可誘導(dǎo)自噬和凋亡,而STAT3信號(hào)的研究說(shuō)明引起的自噬起保護(hù)作用,為了增加DHM的殺腫瘤效應(yīng)可以聯(lián)合使用自噬抑制劑。
圖3 DHM通過(guò)促進(jìn)p-STAT3的表達(dá)影響SCC-25細(xì)胞自噬及凋亡蛋白的表達(dá)
圖4 3-MA(A)和ATG5 si-RNA(B)抑制自噬增強(qiáng)DHM對(duì)SCC-25細(xì)胞中caspase-3活性的增強(qiáng)效應(yīng)
[ 1 ] AMINUDDIN A, NG P Y. Promising druggable target in head and neck squamous cell carcinoma: wnt signaling[J]. Fronti in Pharmacol, 2016,7:244.
[ 2 ] MARTIN A, SALVADOR F, MORENO-BUENO G, et al. Lysyl oxidase-like 2 represses Notch1 expression in the skin to promote squamous cell carcinoma progression[J]. EMBO J, 2015,34(8):1090-1109.
[ 3 ] WONG I L, WANG B C, YUAN J, et al. Potent and nontoxic chemosensitizer of P-glycoprotein-mediated multidrug resistance in cancer: synthesis and evaluation of methylated epigallocatechin, gallocatechin, and dihydromyricetin derivatives[J]. J Med Chem, 2015,58(11):4529-4549.
[ 4 ] ROY K, KANWAR R K, KRISHNAKUMAR S, et al. Competitive inhibition of survivin using a cell-permeable recombinant protein induces cancer-specific apoptosis in colon cancer model[J]. Int J Nanomedicine, 2015,10:1019-1043.
[ 5 ] ZHANG K, LI Y, LIU W, et al. Silencing survivin expression inhibits the tumor growth of non-small-cell lung cancer cells in vitro and in vivo[J]. Mol Med Rep, 2015,11(1):639-644.
[ 6 ] LIU B, ZHOU W, CHEN X, et al. Dihydromyricetin induces mouse hepatoma Hepal-6 cell apoptosis via the transforming growth factor-beta pathway[J]. Mol Med Rep, 2015,11(3):1609-1614.
[ 7 ] ZHOU Y, SHU F, LIANG X, et al. Ampelopsin induces cell growth inhibition and apoptosis in breast cancer cells through ROS generation and endoplasmic reticulum stress pathway[J]. PLoS One, 2014,9(2):e89021.
[ 8 ] ZHANG Q Y, LI R, ZENG G F, et al. Dihydromyricetin inhibits migration and invasion of hepatoma cells through regulation of MMP-9 expression[J]. World J Gastroenterol, 2014,20(29):10082-10093.
[ 9 ] XU Y, WANG S, CHAN H F, et al. Dihydromyricetin Induces Apoptosis and Reverses Drug Resistance in Ovarian Cancer Cells by p53-mediated Downregulation of Survivin[J]. Sci Rep, 2017,7:46060.
[10] WANG Y F, ZHANG W, HE K F, et al. Induction of autophagy-dependent cell death by the survivin suppressant YM155 in salivary adenoid cystic carcinoma[J]. Apoptosis, 2014,19(4):748-758.
[11] LI Z L, HU J, LI Y L, et al. The effect of hyperoside on the functional recovery of the ischemic/reperfused isolated rat heart: potential involvement of the extracellular signal-regulated kinase 1/2 signaling pathway[J]. Free Radic Biol Med, 2013,57:132-140.
[12] LIU B, TAN X, LIANG J, et al. A reduction in reactive oxygen species contributes to dihydromyricetin-induced apoptosis in human hepatocellular carcinoma cells[J]. Sci Rep, 2014,4:7041.
[13] MENG G, YANG S, CHEN Y, et al. Attenuating effects of dihydromyricetin on angiotensin Ⅱ-induced rat cardiomyocyte hypertrophy related to antioxidative activity in a NO-dependent manner[J]. Pharm Biol, 2015,53(6):904-912.
[14] SHEN Y, LINDEMEYER A K, GONZALEZ C, et al. Dihydromyricetin as a novel anti-alcohol intoxication medication[J]. J Neurosci, 2012,32(1):390-401.
[15] YE L, WANG H, DUNCAN S E, et al. Antioxidant activities of Vine Tea (Ampelopsis grossedentata) extract and its major component dihydromyricetin in soybean oil and cooked ground beef[J]. Food Chem, 2015,172:416-422.
[16] LIU B, ZHOU W, CHEN X, et al. Dihydromyricetin induces mouse hepatoma Hepal-6 cell apoptosis via the transforming growth factor-beta pathway[J]. Mol Med Rep, 2015,11(3):1609-1614.
[17] JI F J, TIAN X F, LIU X W, et al. Dihydromyricetin induces cell apoptosis via a p53-related pathway in AGS human gastric cancer cells[J]. Genet Mol Res, 2015,14(4):15564-15571.
[18] XIE J, LIU J, CHEN T M, et al. Dihydromyricetin alleviates carbon tetrachloride-induced acute liver injuryviaJNK-dependent mechanism in mice[J]. World J Gastroenterol, 2015,21(18):5473-5481.
[19] KLIONSKY D J, ABDALLA F C, ABELIOVICH H, et al. Guidelines for the use and interpretation of assays for monitoring autophagy[J]. Autophagy, 2012,8(4):445-544.
[20] MALI S B. Review of STAT3 (signal transducers and activators of transcription) in head and neck cancer[J]. Oral Oncol, 2015,51(6):565-569.
[本文編輯] 姬靜芳
Dihydromyricetin promotes autophagy and apoptosis in head and neck squamous cell carcinoma cells through STAT3/Bcl-2 signaling pathway
WANG Man-ying, DING Xiao-jun*, SUN Yang, YU You-cheng
Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
Objective: To study the effects of dihydromyricetin (DHM) on cell proliferation and apoptosis of head and neck squamous cell carcinoma (HNSCC).Methods: SCC-25 cancer cells were treated with 12.5, 25, 50 μmol/L DHM for 6, 12, and 24 h. SCC-25 cell apoptosis was detected by flow cytometry. Immunofluorescence was used to observe the emergence of autophagosomes in HNSCC cells. Western blotting was used to detect the expression of apoptosis and autophagy markers in SCC-25.Results: After treatment of 12.5, 25, and 50 μmol/L DHM for 24 h, the apoptosis of SCC-25 cells gradually increased; the apoptotic markers CL-PARP, Bax, and CL-casp3 gradually increased and Bcl-2 gradually decreased (P<0.05). After treatment of 12.5, 25, and 50 μmol/L DHM for 24 h, in line with the apoptosis, the autophagy markers of SCC-25 cells gradually changed, the p-STAT3 expression was up-regulated; the ratio of LC3 Ⅱ /LC3 Ⅰ gradually increased, Beclin 1 increased, p62 gradually decreased (P<0.05). Inhibition of autophagy could promote apoptosis of SCC-25 cells which were induced by DHM, increase apoptosis markers CL-PARP and Bax, and decrease Bcl-2 (P<0.05).Conclusions: DHM can induce apoptosis and increase autophagy of HNSCC cells. The mechanism is related to STAT3 signaling pathway. Inhibition of autophagy can promote apoptosis of HNSCC cells induced by DHM.
head and neck squamous cell carcinoma;dihydromyricetin; apoptosis; autophagy
R 739.91
A
2016-10-17 [接受日期] 2017-01-14
王滿英, 碩士生. E-mail:14211210070@fudan.edu.cn
*通信作者(Corresponding author). Tel: 021-64041990-2585, E-mail:dingxiaojun@zs-hospital.sh.cn
10.12025/j.issn.1008-6358.2017.20160961