蒲啟建 王之盛 彭全輝 張 燦 景小平 胡 瑞 鄒華圍
(四川農(nóng)業(yè)大學(xué)動物營養(yǎng)研究所,牛低碳養(yǎng)殖與安全生產(chǎn)重點實驗室,雅安625014)
熱應(yīng)激對不同品種(系)青年肉牛生產(chǎn)性能、營養(yǎng)物質(zhì)表觀消化率及血液生化指標(biāo)的影響
蒲啟建 王之盛*彭全輝 張 燦 景小平 胡 瑞 鄒華圍
(四川農(nóng)業(yè)大學(xué)動物營養(yǎng)研究所,牛低碳養(yǎng)殖與安全生產(chǎn)重點實驗室,雅安625014)
本試驗旨在研究熱應(yīng)激對不同品種(系)青年肉牛生產(chǎn)性能、營養(yǎng)物質(zhì)表觀消化率及血液生化指標(biāo)的影響,探究不同品種(系)肉牛的耐熱性差異。選取體重[(185.89±14.02) kg]相近、健康的青年西雜牛(西門塔爾?!列麧h黃牛)、地方黃牛(宣漢黃牛)和犏牛(娟姍?!聋溚蓐笈?各6頭為研究對象,試驗期間不同品種(系)的青年肉牛飼喂相同飼糧。試驗時間為2015年4—9月,預(yù)試期7 d,正試期180 d。結(jié)果表明:1)試驗牛舍5—8月溫濕度指數(shù)(THI)高于72,屬于熱應(yīng)激期,且顯著高于4月(熱應(yīng)激發(fā)生前)和9月(熱應(yīng)激發(fā)生后)(P<0.05);熱應(yīng)激環(huán)境導(dǎo)致各試驗牛呼吸頻率和直腸溫度顯著升高(P<0.05)。試驗期間犏牛呼吸頻率和直腸溫度顯著高于西雜牛和地方黃牛(P<0.05)。2)熱應(yīng)激期內(nèi)西雜牛、地方黃牛和犏牛單位體重干物質(zhì)采食量均有不同程度降低,以6月為最低,均較4月顯著降低(P<0.05),且降低幅度為犏牛>西雜牛>地方黃牛。西雜牛、地方黃牛和犏牛的平均日增重(ADG)均在6月最低,分別較4月降低了27.62%(P<0.05)、10.81%(P>0.05)和46.15%(P<0.05);西雜牛的ADG在4—7月顯著高于犏牛(P<0.05)。西雜牛和犏牛的料重比(F/G)以6月為最高,分別較4月升高了63.01%(P<0.05)和89.03%(P<0.05);地方黃牛的F/G在9月最高,較4月升高了53.12%(P<0.05)。3)熱應(yīng)激期內(nèi)西雜牛、地方黃牛和犏牛的粗蛋白質(zhì)(CP)表觀消化率均有不同程度降低,且7月均較4月顯著降低(P<0.05);西雜牛7月的粗脂肪(EE)表觀消化率較4月顯著降低(P<0.05),而熱應(yīng)激對地方黃牛和犏牛的EE表觀消化率無顯著影響(P>0.05);熱應(yīng)激期內(nèi)犏牛中性洗滌纖維(NDF)(6月)和酸性洗滌纖維(ADF)的表觀消化率(5—8月)較熱應(yīng)激發(fā)生前顯著降低(P<0.05);熱應(yīng)激期內(nèi)西雜牛和犏牛鈣(Ca)(西雜牛:6—8月;犏牛:5—8月)和磷(P)的表觀消化率(西雜牛:6—7月;犏牛:5—8月)較熱應(yīng)激發(fā)生前顯著降低(P<0.05)。試驗期間,不同品種(系)牛的CP表觀消化率無顯著差異(P>0.05),西雜牛和地方黃牛的EE表觀消化率顯著高于犏牛(P<0.05),地方黃牛的ADF表觀消化率顯著高于西雜牛和犏牛(P<0.05),西雜牛和地方黃牛的P表觀消化率顯著高于犏牛(P<0.05)。此外,5—9月地方黃牛的Ca表觀消化率顯著高于犏牛(P<0.05)。4)西雜牛、地方黃牛和犏牛血清中葡萄糖(GLU)濃度均以6月最低,較4月分別降低了16.82%(P<0.05)、12.82%(P>0.05)和15.90%(P<0.05);熱應(yīng)激期間各試驗牛血清中非酯化脂肪酸(NEFA)濃度均以7月最低,顯著低于4月(P<0.05);試驗期間西雜牛和地方黃牛血清中尿素氮(UN)濃度隨年齡的增大呈先升高后降低變化,而犏牛血清中UN濃度則持續(xù)升高;6—9月各試驗牛血清肌酐(CRE)濃度均顯著高于4、5月(P<0.05),且7—9月犏牛血清CRE濃度顯著高于地方黃牛(P<0.05)。綜上所述,熱應(yīng)激導(dǎo)致不同品種(系)青年肉牛生產(chǎn)性能降低、飼糧營養(yǎng)物質(zhì)消化率降低,地方黃牛的耐熱應(yīng)激能力強(qiáng)于西雜牛和犏牛,犏牛對熱應(yīng)激最敏感。
熱應(yīng)激;肉牛;生產(chǎn)性能;營養(yǎng)物質(zhì)表觀消化率;血液生化指標(biāo)
隨著我國人們生活水平的提高,消費(fèi)者對牛肉的消費(fèi)需求逐年增加,然而國內(nèi)牛肉卻因牛源不足連續(xù)減產(chǎn)?!吨腥A人民共和國國民經(jīng)濟(jì)和社會發(fā)展第十三個五年規(guī)劃綱要》提出要分區(qū)域推進(jìn)現(xiàn)代草業(yè)和草食畜牧業(yè)發(fā)展。然而,當(dāng)前牧區(qū)牲畜超載過牧越來越嚴(yán)重,草畜矛盾越來越尖銳。我國南方地區(qū)因其氣候優(yōu)勢,草場的單位面積產(chǎn)量高、開發(fā)潛力較大,肉牛養(yǎng)殖有著可觀的發(fā)展前景?!澳练鞭r(nóng)育”的提出,為緩解牧區(qū)草畜矛盾、提高農(nóng)區(qū)肉牛產(chǎn)量提供了解決辦法。但是,在我國南方高溫高濕環(huán)境下牛極易出現(xiàn)熱應(yīng)激反應(yīng)[1],嚴(yán)重降低其生產(chǎn)性能[2-3],給養(yǎng)殖業(yè)造成巨大損失[4]。國內(nèi)外常將環(huán)境溫度和濕度相結(jié)合即溫濕度指數(shù)(temperature humidity index,THI)來評價外界環(huán)境,且大量研究認(rèn)為當(dāng)THI大于72時,奶牛即處于熱應(yīng)激狀態(tài)[5-7]。
牛的耐熱性與品種(系)、生產(chǎn)性能有密切關(guān)系[8-9]。西雜牛是為改善我國地方黃牛生產(chǎn)性能而與西門塔爾牛雜交的改良種;黃牛是我國固有牛種,其養(yǎng)殖數(shù)量在我國牛類中居首,其適應(yīng)能力強(qiáng),耐粗飼;犏牛則是青藏高原地區(qū)為改善牦牛生產(chǎn)性能而與其他普通牛種雜交的品種,能適應(yīng)高海拔、低氣壓和冷季長的生態(tài)環(huán)境。上述3種肉牛在我國農(nóng)區(qū)和牧區(qū)肉牛養(yǎng)殖中有著舉足輕重的地位。目前關(guān)于反芻動物熱應(yīng)激的研究主要集中于奶牛,關(guān)于肉牛熱應(yīng)激的相關(guān)研究還相對較少,因此探究西雜牛、地方黃牛和犏牛的耐熱能力對南方高溫高濕地區(qū)肉牛養(yǎng)殖具有重要意義。鑒于此,本試驗選用西雜牛(西門塔爾?!列麧h黃牛)、地方黃牛(宣漢黃牛)和犏牛(娟姍?!聋溚蓐笈?3種肉牛,在南方地區(qū)(四川省雅安市)經(jīng)4—9月連續(xù)6個月飼養(yǎng),通過生產(chǎn)性能、營養(yǎng)物質(zhì)表觀消化率、血液生化指標(biāo)等考察熱應(yīng)激對不同品種(系)肉牛的影響,為我國南方地區(qū)肉牛養(yǎng)殖品種的選擇提供參考。
1.1試驗動物與試驗設(shè)計
本試驗于2015年4—9月在四川農(nóng)業(yè)大學(xué)動物營養(yǎng)研究所試驗場(平均海拔598 m)進(jìn)行。選取體重[(185.89±14.02) kg]相近、健康的青年西雜牛(西門塔爾?!列麧h黃牛)、地方黃牛(宣漢黃牛)、犏牛(麥洼牦牛×娟姍牛)去勢公牛各6頭,分為3個組,即西雜牛組、地方黃牛組和犏牛組,每組6個重復(fù),每個重復(fù)1頭牛。試驗期間不同品種(系)的青年肉牛飼喂相同飼糧。西雜牛和地方黃牛購于四川省達(dá)州市宣漢縣(平均海拔780 m),犏牛購于四川省阿壩藏族羌族自治州紅原縣(平均海拔3 500 m)。
1.2飼養(yǎng)管理與飼糧
所有牛只均舍飼飼養(yǎng),預(yù)試期7 d,正試期180 d。飼養(yǎng)開始前,對試驗牛進(jìn)行驅(qū)蟲處理。每天09:00和15:00定時飼喂2次,以預(yù)試期測定的采食量為基礎(chǔ),自由采食和飲水,所有余料在第2天晨飼前記錄。
根據(jù)中國《肉牛飼養(yǎng)標(biāo)準(zhǔn)》(NY/T 815—2004)中200 kg體重、日增重800 g肉牛營養(yǎng)推薦值,以玉米、豆粕、小麥麩、菜籽粕等為精料,以稻草、白酒糟為粗料設(shè)計配方。飼糧組成及營養(yǎng)水平見表1。
1.3樣品采集和指標(biāo)測定
1.3.1 樣品采集
試驗期內(nèi),在牛舍前、中、后部距地面1.5 m高處各懸掛1支干濕溫度計,于每天08:00、11:00、14:00和17:00記錄牛舍的干球溫度(Td)和濕球溫度(Tw),利用下列公式計算THI。
THI=0.72×(Td+Tw)+40.6[10]。
參考Johnson等[11]的方法每10 d分別于08:00和14:00測量各組肉牛直腸溫度并記錄呼吸頻率。
試驗期間每天記錄各試驗牛精料、粗料實際飼喂量,并計算干物質(zhì)采食量(DMI);根據(jù)DMI和體重計算單位體重DMI。
表1 飼糧組成及營養(yǎng)水平(風(fēng)干基礎(chǔ))
1)預(yù)混料為每千克飼糧提供The premix provided the following per kg of the diet:VA 3 300 IU,VD 880 IU,VE 60 IU,Cu (as copper sulfate) 10 mg,F(xiàn)e (as ferrous sulfate) 50 mg,Mn (as manganese sulfate) 20 mg,Zn (as zinc sulfate) 30 mg,I (as potassium iodide) 0.50 mg,Se (as sodium selenite) 0.10 mg,Co (as cobalt chloride) 0.1 mg。
2)綜合凈能根據(jù)我國《肉牛飼養(yǎng)標(biāo)準(zhǔn)》(NY/T 815—2004)計算得出,其余為實測值。NEmfwas calculated according to the ChineseFeedingStandardofBeefCattle(NY/T 815—2004), while the other nutrient levels were measured values.
分別在正式試驗第0天(正式試驗開始前)、第30天、第60天、第90天、第120天、第150天、第180天晨飼前空腹稱重,計算各試驗牛的平均日增重(ADG)并計算料重比(F/G);并由頸靜脈采集試驗牛血液15 mL,靜置30 min后4 000 r/min離心15 min制備血清,-20 ℃保存待測血液生化指標(biāo)。
試驗期內(nèi)每30 d采集1次飼料樣,-20 ℃保存。分別在正式試驗第0天、第30天、第60天、第90天、第120天、第150天連續(xù)7 d 08:00、14:00、20:00采集各試驗牛鮮糞樣100 g左右,于-20 ℃保存,待7 d糞樣收集完全后混勻,按糞樣重量的5%加入濃度為10%的稀硫酸固氮,-20 ℃保存待測[12]。
1.3.2 指標(biāo)測定
參照張麗英[13]的方法測定飼糧及糞樣中干物質(zhì)(DM)、粗蛋白質(zhì)(CP)、粗纖維(CF)、中性洗滌纖維(NDF)、酸性洗滌纖維(ADF)、鈣(Ca)和磷(P)的含量。采用內(nèi)源指示劑[酸不溶灰分(AIA)]法測定試驗牛的營養(yǎng)物質(zhì)表觀消化率[12]。
某營養(yǎng)物質(zhì)表觀消化率(%)=100-100×[(F2/F1)×(A1/A2)]
式中:A1為飼糧中AIA含量(%);A2為糞中AIA含量(%);F1為飼糧中該營養(yǎng)物質(zhì)含量(%);F2為糞中該營養(yǎng)物質(zhì)含量(%)。
采用全自動生化分析儀(AUTOLAB PM-4000,意大利)通過比色法測定血清中葡萄糖(GLU)、甘油三酯(TG)、尿素氮(UN)、肌酐(CRE)的濃度;采用酶聯(lián)免疫吸附測定(ELISA)法測定血清中非酯化脂肪酸(NEFA)的濃度,試劑盒購于南京建成生物工程研究所,具體操作方法參考說明書進(jìn)行。
1.4數(shù)據(jù)分析
試驗數(shù)據(jù)經(jīng)Excel 2016初步分析后,用SPSS 19.0統(tǒng)計軟件進(jìn)行單因素方差分析(one-way ANOVA)程序方差分析,有顯著差異(P<0.05)時,以Duncan氏法進(jìn)行多重比較,結(jié)果以平均值±標(biāo)準(zhǔn)差表示。
2.1牛舍THI與肉牛直腸溫度、呼吸頻率
試驗期間牛舍THI指數(shù)變化見表2和圖1。試驗期間牛舍內(nèi)溫度逐漸升高,THI也逐漸升高,5—8月牛舍THI顯著高于4月和9月(P<0.05)。根據(jù)THI將整個試驗階段分為熱應(yīng)激發(fā)生前(4月,THI<72)、熱應(yīng)激期(5—8月,THI≥72)和熱應(yīng)激結(jié)束后(9月,THI<72)。
表2 試驗期間牛舍THI變化
同行數(shù)據(jù)肩標(biāo)無字母或相同小寫字母表示差異不顯著(P>0.05),不同小寫字母表示差異顯著(P<0.05)。
In the same row, values with the same or no small letter superscripts mean no significant difference (P>0.05), while with different small letter superscripts mean significant difference (P<0.05)。
圖1 試驗期間牛舍THI
熱應(yīng)激對肉牛呼吸頻率和直腸溫度的影響見表3。
各試驗牛只試驗期間呼吸頻率隨THI的升高而升高,濕熱應(yīng)激期內(nèi)各試驗牛呼吸頻率較濕熱應(yīng)激發(fā)生前顯著升高(P<0.05)。試驗期間犏牛呼吸頻率顯著高于西雜牛和地方黃牛(P<0.05),而西雜牛呼吸頻率顯著高于地方黃牛(P<0.05)。
各試驗牛直腸溫度均是在熱應(yīng)激期中的6月開始顯著升高(P<0.05)。西雜牛、地方黃牛和犏牛均以7月直腸溫度最高,分別較熱應(yīng)激發(fā)生前升高了1.15%(P<0.05)、0.84%(P<0.05)和1.98%(P<0.05),而熱應(yīng)激結(jié)束后直腸溫度均較7月顯著降低(P<0.05)。試驗期間犏牛直腸溫度顯著高于西雜牛和地方黃牛(P<0.05)。
不同月份THI和各試驗牛只直腸溫度、呼吸頻率的變化表明西雜牛、地方黃牛和犏牛在5—8月處于熱應(yīng)激狀態(tài)。
2.2熱應(yīng)激對肉牛生產(chǎn)性能的影響
熱應(yīng)激對肉牛生產(chǎn)性能的影響見表4。
試驗期間隨著試驗牛年齡的增大,西雜牛、地方黃牛和犏牛DMI均有不同程度升高,9月相對于4月分別升高了65.01%(P<0.05)、37.83%(P<0.05)和33.89%(P<0.05);9月時西雜牛DMI顯著高于地方黃牛和犏牛(P<0.05)。熱應(yīng)激期內(nèi)西雜牛、地方黃牛和犏牛單位體重DMI均有不同程度降低,且以6月為最低,較熱應(yīng)激發(fā)生前分別降低了11.17%(P<0.05)、8.83%(P<0.05)和16.15%(P<0.05);犏牛單位體重DMI的降低較西雜牛和地方黃牛發(fā)生早,與熱應(yīng)激發(fā)生前相比,西雜牛和地方黃牛單位體重DMI在6月開始顯著降低(P<0.05),而犏牛在5月即開始顯著降低(P<0.05)。
各試驗牛ADG在6月最低,其中西雜牛6月的ADG較熱應(yīng)激發(fā)生前降低了27.62%(P<0.05),地方黃牛6月的ADG較熱應(yīng)激發(fā)生前降低了10.81%(P>0.05),犏牛6月的ADG較熱應(yīng)激發(fā)生前降低了46.15%(P<0.05);在整個試驗期內(nèi),西雜牛的ADG均高于地方黃牛和犏牛,且在4—7月與犏牛的差異達(dá)到顯著水平(P<0.05)。
熱應(yīng)激期內(nèi)西雜牛和犏牛的F/G均有不同程度升高,且以6月為最高,分別較熱應(yīng)激發(fā)生前升高了63.01%(P<0.05)和89.03%(P<0.05);試驗期間地方黃牛F/G隨年齡的增大逐漸升高,9月的F/G較熱應(yīng)激發(fā)生前升高了53.12%(P<0.05);在整個試驗期內(nèi),犏牛F/G均高于西雜牛和地方黃牛,且5—7月與西雜牛和地方黃牛的差異達(dá)到顯著水平(P<0.05)。
2.3熱應(yīng)激對肉牛營養(yǎng)物質(zhì)表觀消化率的影響
由表5可知,熱應(yīng)激期內(nèi)西雜牛、地方黃牛和犏牛的CP表觀消化率均有不同程度降低,且以7月最低,分別較熱應(yīng)激發(fā)生前降低了10.30%(P<0.05)、10.17%(P<0.05)和9.77%(P<0.05);西雜牛7月的EE表觀消化率較熱應(yīng)激發(fā)生前顯著降低(P<0.05),而熱應(yīng)激對地方黃牛和犏牛的EE表觀消化率無顯著影響(P>0.05);熱應(yīng)激期內(nèi)犏牛NDF和ADF的表觀消化率均有不同程度降低,其NDF的表觀消化率在6月顯著低于熱應(yīng)激發(fā)生前(P<0.05),ADF的表觀消化率在整個熱應(yīng)激期內(nèi)均顯著低于熱應(yīng)激發(fā)生前(P<0.05);熱應(yīng)激期內(nèi)西雜牛和犏牛Ca的表觀消化率均有不同程度降低,其中西雜牛Ca的表觀消化率在6—8月顯著低于熱應(yīng)激發(fā)生前(P<0.05),犏牛Ca的表觀消化率在整個熱應(yīng)激期內(nèi)均顯著低于熱應(yīng)激發(fā)生前(P<0.05);熱應(yīng)激期內(nèi)西雜牛和犏牛P的表觀消化率均有不同程度降低,其中西雜牛P的表觀消化率在6—7月顯著低于熱應(yīng)激發(fā)生前(P<0.05),犏牛P的表觀消化率在整個熱應(yīng)激期內(nèi)均顯著低于熱應(yīng)激發(fā)生前(P<0.05)。試驗期間不同品種(系)牛的CP表觀消化率無顯著差異(P>0.05),西雜牛和地方黃牛的EE表觀消化率顯著高于犏牛(P<0.05),地方黃牛的ADF表觀消化率均顯著高于西雜牛和犏牛(P<0.05),西雜牛和地方黃牛的P表觀消化率顯著高于犏牛(P<0.05);5—9月地方黃牛的Ca表觀消化率顯著高于犏牛(P<0.05)。
表3 熱應(yīng)激對肉牛呼吸頻率和直腸溫度的影響
同行數(shù)據(jù)肩標(biāo)無字母或相同小寫字母表示差異不顯著(P>0.05),不同小寫字母表示差異顯著(P<0.05)。同列數(shù)據(jù)肩標(biāo)無字母或相同大寫字母表示差異不顯著(P>0.05),不同大寫字母表示差異顯著(P<0.05)。下表同。
In the same row, values with the same or no small letter superscripts mean no significant difference(P>0.05), while with different small letter superscripts mean significant difference (P<0.05). In the same column ,values with the same or no capital letter superscripts mean no significant difference (P>0.05), while with different capital letter superscripts mean significant difference (P<0.05). The same as below.
表4 熱應(yīng)激對肉牛生產(chǎn)性能的影響
續(xù)表4項目Items4月April5月May6月June7月July8月August9月September地方黃牛Indigenousyellowcattle0.74±0.19A0.81±0.28B0.66±0.23B0.74±0.28AB0.71±0.240.71±0.29犏牛Cattleyak0.78±0.07Ab0.53±0.13Aa0.42±0.09Aa0.53±0.09Aa0.66±0.17ab0.62±0.14ab料重比F/G西雜牛Simmentalcrossbredcattle6.11±0.68Aa7.05±0.81Aab9.96±1.43Ac9.45±1.56Abc9.87±2.43c9.81±0.21c地方黃牛Indigenousyellowcattle7.70±0.35Ba8.92±2.88Aab10.83±2.64Aab11.04±1.57Aab11.69±2.27b11.79±2.31b犏牛Cattleyak8.57±0.96Ba12.57±1.08Bab16.20±3.18Bb14.38±2.07Bab12.71±2.16ab13.24±3.68ab
表5 熱應(yīng)激對肉牛營養(yǎng)物質(zhì)表觀消化率的影響
2.4熱應(yīng)激對肉牛血液生化指標(biāo)的影響
由表6可知,熱應(yīng)激期內(nèi)西雜牛、地方黃牛和犏牛血清中GLU濃度均先降低后升高,且均以6月最低,較熱應(yīng)激發(fā)生前分別降低了16.82%(P<0.05)、12.82%(P>0.05)和15.90%(P<0.05)。試驗期間各試驗牛血清中TG濃度隨年齡的增大逐漸升高,熱應(yīng)激結(jié)束后血清中TG濃度顯著高于熱應(yīng)激發(fā)生前(P<0.05),且熱應(yīng)激結(jié)束后西雜牛血清中TG濃度顯著高于地方黃牛和犏牛(P<0.05)。此外,熱應(yīng)激期間各試驗牛血清中NEFA濃度均有不同程度降低,且以7月最低,顯著低于熱應(yīng)激發(fā)生前(P<0.05);熱應(yīng)激結(jié)束后西雜牛和犏牛血清中NEFA濃度較8月顯著升高(P<0.05),而地方黃牛NEFA濃度仍維持在較低水平。試驗期間西雜牛和地方黃牛血清中UN濃度隨年齡的增大呈先升高后降低變化,而犏牛血清中UN濃度則持續(xù)升高。西雜牛7、8月血清中UN濃度較熱應(yīng)激發(fā)生前顯著升高(P<0.05);地方黃牛6、7月血清中UN濃度顯著高于熱應(yīng)激發(fā)生前和熱應(yīng)激結(jié)束后(P<0.05);犏牛熱應(yīng)激結(jié)束后血清中UN濃度較熱應(yīng)激發(fā)生前升高了93.75%(P<0.05)。6—9月各試驗牛血清CRE濃度均顯著高于4、5月(P<0.05),且7—9月犏牛血清CRE濃度顯著高于地方黃牛(P<0.05)。
表6 熱應(yīng)激對肉牛血液生化指標(biāo)的影響
3.1熱應(yīng)激對肉牛直腸溫度和呼吸頻率的影響
我國南方地區(qū)夏季高溫高濕,肉牛極易處于熱應(yīng)激狀態(tài),對其生產(chǎn)性能、健康狀況造成不利影響[1,14]。本試驗于四川省降水最多的地域雅安市進(jìn)行,夏季悶熱潮濕。本研究發(fā)現(xiàn)5—8月牛舍THI均高于72,肉牛處于熱應(yīng)激環(huán)境下,而4和9月牛舍THI低于72,肉牛處于非熱應(yīng)激環(huán)境下。
在適宜環(huán)境溫度下,牛呼吸頻率為20~40次/min,體溫為38.5 ℃左右。熱應(yīng)激狀態(tài)下肉牛通過增加呼吸頻率來增加蒸發(fā)散熱[15],本研究中熱應(yīng)激狀態(tài)下各試驗牛呼吸頻率較直腸溫度先升高,說明當(dāng)呼吸代償仍不能有效緩解環(huán)境溫度對機(jī)體的影響時肉牛體溫才會升高。試驗期間5月時各試驗牛呼吸頻率即顯著升高,說明5月肉牛即進(jìn)入熱應(yīng)激狀態(tài)。試驗期內(nèi)犏牛呼吸頻率和直腸溫度均顯著高于西雜牛和地方黃牛,說明犏牛熱應(yīng)激反應(yīng)較西雜牛和地方黃牛嚴(yán)重且可能4月已處于熱應(yīng)激狀態(tài),推測是因為犏牛屬高原牛種且?guī)в嘘笈Qy(tǒng),被毛較西雜牛和地方黃牛厚,阻礙了體表的輻射散熱;此外,犏牛源自我國氣候偏冷、長冬無夏西北高原地區(qū),因而南方地區(qū)高溫高濕對犏牛造成了較嚴(yán)重的熱應(yīng)激。7、8月時地方黃牛直腸溫度顯著低于西雜牛和犏牛,說明地方黃牛體溫受環(huán)境影響較小,抗熱應(yīng)激能力強(qiáng)于西雜牛和犏牛。
3.2熱應(yīng)激對肉牛生產(chǎn)性能和營養(yǎng)物質(zhì)表觀消化率的影響
在熱應(yīng)激狀態(tài)下,動物通過降低采食量降低機(jī)體熱增耗以維持機(jī)體熱平衡[16],這將導(dǎo)致動物生產(chǎn)性能降低甚至是負(fù)增長。而本研究中,試驗期間各試驗牛DMI并未降低,且9月西雜牛、地方黃牛和犏牛DMI相對于4月分別增加了65.01%、37.83%和33.89%,推測是本試驗牛只為處于生長發(fā)育快速時期的青年牛,因熱應(yīng)激減少的采食量小于肉牛因生長發(fā)育需要而增加的采食量[17]。當(dāng)采用單位體重DMI來評價熱應(yīng)激對肉牛采食量的影響時,可發(fā)現(xiàn)西雜牛、地方黃牛和犏牛單位體重DMI均是6月最低,較熱應(yīng)激發(fā)生前分別降低了11.17%、8.83%和16.15%,由此可知熱應(yīng)激對地方黃牛采食量的影響要小于西雜牛和犏牛,對犏牛采食量影響最大。
西雜牛和犏牛ADG在熱應(yīng)激狀態(tài)下出現(xiàn)不同程度降低,與前人研究結(jié)果[18]一致。西雜牛、地方黃牛和犏牛6月ADG最低且較熱應(yīng)激發(fā)生前分別降低了27.62%、10.81%和46.15%,說明熱應(yīng)激對地方黃牛ADG影響小于西雜牛和犏牛,對犏牛ADG影響最大。結(jié)合THI變化和單位體重DMI可發(fā)現(xiàn),各試驗牛6月受熱應(yīng)激影響較大,采食量降低導(dǎo)致ADG降低。試驗期間西雜牛ADG均高于地方黃牛和犏牛,說明西雜牛生產(chǎn)性能優(yōu)于地方黃牛和犏牛。
熱應(yīng)激狀態(tài)下肉牛大量血液被分配到體表幫助散熱而使得消化道血流量減少,導(dǎo)致營養(yǎng)物質(zhì)表觀消化率降低[19-20]。本試驗中,夏季西雜牛CP、EE、Ca和P的表觀消化率受熱應(yīng)激影響而降低;但地方黃牛僅CP的表觀消化率受熱應(yīng)激影響而降低;而犏牛CP、EE、NDF、ADF、Ca和P的表觀消化率均有所降低,說明同樣環(huán)境條件下熱應(yīng)激對地方黃牛營養(yǎng)物質(zhì)表觀消化率影響較西雜牛和犏牛小。各試驗牛CP的表觀消化率均因熱應(yīng)激而降低,推測是因為動物機(jī)體攝入蛋白質(zhì)后的熱增耗較其他營養(yǎng)物質(zhì)高[21],CP表觀消化率降低可降低肉牛內(nèi)源性產(chǎn)熱。此外,試驗期間地方黃牛ADF的表觀消化率高于西雜牛和犏牛,說明地方黃牛更耐粗飼。
3.3熱應(yīng)激對肉牛血液生化指標(biāo)的影響
血清代謝物是反映機(jī)體代謝變化的敏感指標(biāo)。Scharf等[22]研究發(fā)現(xiàn),肉牛血清中GLU濃度在急性熱應(yīng)激時會升高,而在慢性熱應(yīng)激時則降低。本試驗中,試驗牛的熱應(yīng)激狀態(tài)是在自然條件下隨本地區(qū)季節(jié)、氣候變化而變化的,屬于慢性熱應(yīng)激。6月各試驗牛血清中GLU濃度最低,說明其通過利用GLU供能加快外周循環(huán)以增強(qiáng)機(jī)體散熱[23];隨著熱應(yīng)激時間的持續(xù),肉牛血清中GLU濃度逐漸升高,推測是因為糖異生作用加強(qiáng)以維持血糖濃度穩(wěn)定,增強(qiáng)機(jī)體對熱應(yīng)激的抵抗力[24]。與西雜牛、地方黃牛相比,犏牛血清中GLU濃度下降出現(xiàn)的較早,5月血清中GLU濃度即顯著降低,說明犏牛對熱應(yīng)激更加敏感。
大量研究發(fā)現(xiàn),熱應(yīng)激有增加機(jī)體脂肪沉積的趨勢[25-27]。本研究中,肉牛在熱應(yīng)激狀態(tài)下血清中TG濃度升高而NEFA濃度降低,說明熱應(yīng)激使肉牛脂肪合成代謝加強(qiáng),這與前人研究發(fā)現(xiàn)的熱應(yīng)激抑制泌乳早期奶牛血清中NEFA濃度升高的結(jié)果[23,28]相似。這可能是血清中NEFA濃度降低可減少細(xì)胞線粒體基質(zhì)的氧化分解反應(yīng),減少內(nèi)源性產(chǎn)熱和活性氧化物的產(chǎn)生,減緩熱應(yīng)激帶來的副作用[29-31]。地方黃牛和犏牛血清中NEFA濃度降低較西雜牛發(fā)生早且地方黃牛熱應(yīng)激期內(nèi)血清中NEFA濃度顯著低于犏牛,說明犏牛和地方黃牛對熱應(yīng)激較西雜牛敏感且地方黃牛內(nèi)源性產(chǎn)熱低于犏牛。
熱應(yīng)激時動物DMI的下降會使得糖原的儲存量減少,血糖濃度需要糖異生作用來維持[32]。在這種情況下,氨基酸代謝的增加會使血清中UN濃度增加。而CRE是由動物機(jī)體肌肉蛋白質(zhì)水解產(chǎn)生的,其濃度主要與動物機(jī)體肌肉總量有關(guān)[33]。本試驗中,西雜牛、地方黃牛和犏牛血清中UN濃度在熱應(yīng)激期內(nèi)顯著升高,推測可能是熱應(yīng)激狀態(tài)下各肉牛單位體重DMI降低使得機(jī)體糖原儲存量減少,導(dǎo)致血糖濃度需要通過氨基酸糖異生作用來維持[32]。熱應(yīng)激發(fā)生前犏牛血清中UN濃度顯著低于西雜牛和地方黃牛,說明犏牛氮利用效率高于西雜牛和地方黃牛[34]。而熱應(yīng)激結(jié)束后西雜牛、地方黃牛和犏牛血清中UN濃度較熱應(yīng)激發(fā)生前分別升高了25.35%、13.47%和93.75%,說明熱應(yīng)激對犏牛氨基酸代謝影響較大。試驗期間各試驗牛血清中CRE濃度隨著熱應(yīng)激時間的持續(xù)而逐漸升高,可能是由于各試驗牛處于生長發(fā)育迅速的青年時期,其肌肉總量逐漸增加。但7、8、9月犏牛血清中CRE濃度高于西雜牛和地方黃牛,但其試驗期間增重較西雜牛和地方黃牛少,說明熱應(yīng)激使得犏牛肌肉蛋白質(zhì)水解增加,氨基酸代謝加強(qiáng),使得血清中UN濃度持續(xù)升高,這與其ADG的降低密切相關(guān)[35]。
熱應(yīng)激狀態(tài)下西雜牛、地方黃牛和犏牛的呼吸頻率和直腸溫度升高,生產(chǎn)性能和營養(yǎng)物質(zhì)表觀消化率降低。地方黃牛的耐熱應(yīng)激能力強(qiáng)于西雜牛和犏牛,犏牛對熱應(yīng)激最敏感,且熱應(yīng)激降低了犏牛的氮利用效率。
[1] 王祖新,王之盛,王立志,等.不同季節(jié)溫濕度指數(shù)對奶牛生產(chǎn)性能和生理生化指標(biāo)的影響[J].中國畜牧雜志,2009,45(23):60-63.
[2] LEFCOURT A M,ADAMS W R.Radiotelemetry measurement of body temperatures of feedlot steers during summer[J].Journal of Animal Science,1996,74(11):2633-2640.
[3] MADER T L,DAVIS M S,BROWN-BRANDL T.Environmental factors influencing heat stress in feedlot cattle[J].Journal of Animal Science,2006,84(3):712-719.
[4] ST-PIERRE N R,COBANOV B,SCHNITKEY G.Economic losses from heat stress by us livestock industries 1[J].Journal of Dairy Science,2003,86(Suppl.1):E52-E77.
[5] YOUSEF M K,JOHNSON H D.Calorigenesis of dairy cattle as influenced by thyroxine and environmental temperature[J].Journal of Animal Science,1966,25(1):150-156.
[6] BOHMANOVA J,MISZTAL I,COLE J B.Temperature-humidity indices as indicators of milk production losses due to heat stress[J].Journal of Dairy Science,2007,90(4):1947-1956.
[7] ARMSTRONG D V.Heat stress interaction with shade and cooling[J].Journal of Dairy Science,1994,77(7):2044-2050.
[8] SILANIKOVE N.Effects of heat stress on the welfare of extensively managed domestic ruminants[J].Livestock Science,2000,67(1/2):1-18.
[9] COLLIER R J,COLLIER J L,RHOADS R P,et al.Invited review:genes involved in the bovine heat stress response[J].Journal of Dairy Science,2008,91(2):445-454.
[10] LEE D G K.Climatic stress indices for domestic animals[J].International Journal of Biometeorology,1965,9(1):29-35.
[11] JOHNSON J S,SCHARF B,WEABER R L,et al.Patterns of heat response and adaptation on summer pasture:a comparison of heat-sensitive (Angus) and-tolerant (Romosinuano) cattle[J].Journal of Thermal Biology,2012,37(4):344-350.
[12] VAN KEULEN J,YOUNG B A.Evaluation of acid-insoluble ash as a natural marker in ruminant digestibility studies[J].Journal of Animal Science,1977,44(2):282-287.
[13] 張麗英.飼料分析及飼料質(zhì)量檢測技術(shù)[M].2版.中國農(nóng)業(yè)大學(xué)出版社,2003.
[14] COLLIER R J,BEEDE D K,THATCHER W W,et al.Influences of environment and its modification on dairy animal health and production[J].Journal of Dairy Science,1982,65(11):2213-2227.
[15] EIGENBERG R A,BROWN-BRANDL T M,NIENABER J A,et al.Dynamic response indicators of heat stress in shaded and non-shaded feedlot cattle,part 2:predictive relationships[J].Biosystems Engineering,2005,91(1):111-118.
[16] DERNO M,JENTSCH W,SCHWEIGEL M,et al.Measurements of heat production for estimation of maintenance energy requirements of Hereford steers[J].Journal of Animal Science,2005,83(11):2590-2597.
[17] BURROW H M,PRAYAGA K C.Correlated responses in productive and adaptive traits and temperament following selection for growth and heat resistance in tropical beef cattle[J].Livestock Production Science,2004,86(1/2/3):143-161.
[18] O’BRIEN M D,RHOADS R P,SANDERS S R,et al.Metabolic adaptations to heat stress in growing cattle[J].Domestic Animal Endocrinology,2010,38(2):86-94.
[19] KADZERE C T,MURPHY M R,SILANIKOVE N,et al.Heat stress in lactating dairy cows:a review[J].Livestock Production Science,2002,77(1):59-91.
[20] BERNABUCCI U,LACETERA N,DANIELI P P,et al.Influence of different periods of exposure to hot environment on rumen function and diet digestibility in sheep[J].International Journal of Biometeorology,2009,53(5):387-395.
[21] TASAKI I,KUSHIMA M.Heat production when single nutrients are given to fasted cockerels[M]//MOUNT L E.Energy metabolism.Amsterdam:Elsevier,1980:253-256.
[22] SCHARF B,CARROLL J A,RILEY D G,et al.Evaluation of physiological and blood serum differences in heat-tolerant (Romosinuano) and heat-susceptible (Angus)Bostauruscattle during controlled heat challenge[J].Journal of Animal Science,2010,88(7):2321-2336.
[23] WHEELOCK J B,RHOADS R P,VANBAALE M J,et al.Effects of heat stress on energetic metabolism in lactating Holstein cows[J].Journal of Dairy Science,2010,93(2):644-655.
[24] 劉鈾,林紅英,羅東君,等.熱應(yīng)激對肉雞血液生化指標(biāo)及內(nèi)分泌機(jī)能的影響[J].湛江海洋大學(xué)學(xué)報,1999,19(1):61-64.
[25] 王啟軍.高溫環(huán)境對不同生長階段北京油雞脂肪沉積及脂質(zhì)代謝的影響[D].碩士學(xué)位論文.楊凌:西北農(nóng)林科技大學(xué),2006.
[26] 李潔蕾,楊培歌,馮躍進(jìn),等.L-肉堿對熱應(yīng)激大鼠機(jī)體脂質(zhì)代謝的影響[J].動物營養(yǎng)學(xué)報,2015,27(9):2849-2855.
[27] KOUBA M,HERMIER D,LE DIVIDICH J.Influence of a high ambient temperature on lipid metabolism in the growing pig[J].Journal of Animal Science,2001,79(1):81-87.
[28] RHOADS M L,RHOADS R P,VANBAALE M J,et al.Effects of heat stress and plane of nutrition on lactating Holstein cows:Ⅰ.Production,metabolism,and aspects of circulating somatotropin[J].Journal of Dairy Science,2009,92(5):1986-1997.
[29] BERNABUCCI U,LACETERA N,BAUMGARD L H,et al.Metabolic and hormonal acclimation to heat stress in domesticated ruminants[J].Microchemical Journal,2010,4(7):1167-1183.
[30] BAUMGARD L H,RHOADS R P.Effects of heat stress on postabsorptive metabolism and energetics[J].Annual Review of Animal Biosciences,2013,1(2):311-337.
[31] ZHANG F J,WENG X G,WANG J F,et al.Effects of temperature-humidity index and chromium supplementation on antioxidant capacity,heat shock protein 72,and cytokine responses of lactating cows[J].Journal of Animal Science,2014,92(7):3026-3034.
[32] BAIRD G D,HEITZMAN R J,HIBBITT K G.Effects of starvation on intermediary metabolism in the lactating cow.A comparison with metabolic changes occurring during bovine ketosis[J].Biochemical Journal,1972,128(5):1311-1318.
[33] ASAI H,HAYASHI N,TAKAI N,et al.Estimation of daily urinary potassium excretion using urinary creatinine as an index substance in prepartum dairy cows[J].Animal Science Journal,2005,76(1):51-54.
[34] WANG H,LONG R,ZHOU W,et al.A comparative study on urinary purine derivative excretion of yak (Bosgrunniens),indigenous cattle (Bostaurus),and crossbred (Bostaurus×Bosgrunniens) in theQing-haiTibetan plateau,China[J].Journal of Animal Science,2009,87(7):2355-2362.
[35] RHOADS R P,OBRIEN M D,GREER K,et al.Consequences of heat stress on the profile of skeletal muscle gene expression in beef cattle[J].The FASEB Journal,2008,22(Suppl.1):1165.1
*Corresponding author, professor, E-mail: zswangsicau@126.com
(責(zé)任編輯 菅景穎)
Effects of Heat Stress on Performance, Nutrient Apparent Digestibility and Blood Biochemical Indices of Different Breeds of Young Beef Cattle
PU Qijian WANG Zhisheng*PENG Quanhui ZHANG Can JING Xiaoping HU Rui ZOU Huawei
(Animal Nutrition Institute of Sichuan Agricultural University, Key Laboratory of Low Carbon Culture and Safety Production in Cattle in Sichuan, Ya’an 625014, China)
This experiment was conducted to investigate the effects of heat stress on performance, nutrient apparent digestibility and blood biochemical indices of different breeds of young beef cattle, in order to explore the heat resistance difference of different breeds of beef cattle. Six individuals of Simmental crossbred cattle (Simmental cattle×Xuanhanyellow cattle), indigenous yellow cattle (Xuanhanyellow cattle) and cattle yak (Maiwayak×Jersey cattle) were chosen based on similar body weight [(185.89±14.02) kg]. Animals were fed with the same diet and feeding experiment lasted 187 days, including 7-days adaption period and 180-days test period. The experiment from April 2015 to September 2015. The results showed as follows: 1) the temperature humidity index (THI) of barn was above 72 from May to August and this stage belonged to heat stress (HS) period, and the THI of HS period was higher than April (pre HS) and September (after HS) (P<0.05). During the HS period, the respiratory frequency and rectal temperature were significantly increased (P<0.05) for all experimental animals. The respiratory frequency and rectal temperature of cattle yak was significantly higher than those of Simmental crossbred cattle and indigenous yellow cattle in the period of experiment (P<0.05). 2) The dry matter intake per body weight of Simmental crossbred cattle, indigenous yellow cattle and cattle yak was decreased in HS period, and the lowest value in June and significantly lower than April (P<0.05), the degree of decreased was cattle yak>Simmental crossbred cattle>indigenous yellow cattle. The lowest values of average daily gains of Simmental crossbred cattle, indigenous yellow cattle and cattle yak were all in June, and decreased by 27.62% (P<0.05), 10.81% (P>0.05) and 46.15% (P<0.05) as contrasted April, respectively. The average daily gain of Simmental crossbred cattle was significantly higher than that of cattle yak from April to July (P<0.05). The highest values of feed/gain of Simmental crossbred cattle and cattle yak in June, and increased by 63.01% (P<0.05) and 89.03% (P<0.05)as contrasted April, respectively; the highest value of feed/gain of indigenous yellow cattle in September, and increased by 53.12% as contrasted to April (P<0.05). 3) The apparent digestibility of crude protein (CP) of Simmental crossbred cattle, indigenous yellow cattle and cattle yak was different degrees of reduction in HS period and significantly decreased in July compared with April (P<0.05). The apparent digestibility of ether extract (EE) of Simmental crossbred cattle was significantly decreased in July compared with April (P<0.05), but the HS had no significant effects on the apparent digestibility of EE for indigenous yellow cattle and cattle yak (P>0.05). The apparent digestibility of neutral detergent fiber (NDF) (June) and acid detergent fiber (ADF) (from May to August) of cattle yak was significantly decreased in HS period compared with pre HS (P<0.05). The apparent digestibility of calcium (Ca) of Simmental crossbred cattle (from June to August) and cattle yak (from May to August) was significantly decreased in HS period compared with pre HS (P<0.05), and the apparent digestibility of phosphorus (P) of Simmental crossbred cattle (from June to July) and cattle yak (from May to August) was significantly decreased in HS period compared with pre HS, too (P<0.05). During the experiment period, the apparent digestibility of CP had no significant difference among the three breeds of young beef cattle (P>0.05), the apparent digestibility of EE of Simmental crossbred cattle and indigenous yellow cattle was significantly higher than that of cattle yak (P<0.05), the apparent digestibility of ADF of indigenous yellow cattle was significantly higher than that of Simmental crossbred cattle and cattle yak (P<0.05), and the apparent digestibility of P of Simmental crossbred cattle and indigenous yellow cattle was significantly higher than that of cattle yak (P<0.05). Moreover, the apparent digestibility of Ca of indigenous yellow cattle was significantly higher than that of cattle yak from May to September (P<0.05). 4) Serum glucose (GLU) concentration of Simmental crossbred cattle, indigenous yellow cattle and cattle yak had the lowest value in June and decreased by 16.82% (P<0.05), 12.82% (P>0.05) and 15.90% (P<0.05) compared with April, respectively. For all the experimental cattle, the non-esterfied fatty acid (NEFA) concentration had the lowest value in July and significantly lower than that in April (P<0.05). Serum urea nitrogen (UN) concentration of Simmental crossbred cattle and indigenous yellow cattle was increased at first and then decreased in the experiment period with the age increasing, while the serum UN concentration of cattle yak was continually increased. Serum creatinine (CRE) concentration of all experimental animals in June to September was significantly higher than that in April and May (P<0.05), and the serum CRE concentration of cattle yak was significantly higher than that of indigenous yellow cattle from July to September (P<0.05). In conclusion, the performance and apparent digestibility of nutrients of different breeds of young beef cattle are decreased under heat stress condition. Indigenous yellow cattle are more tolerance of heat stress than Simmental crossbred cattle and cattle yak, and cattle yak are more sensitive to heat stress.[ChineseJournalofAnimalNutrition,2017,29(9):3120-3131]
heat stress; beef cattle; performance; nutrient apparent digestibility; blood biochemical indices
2017-02-20
國家肉牛牦牛產(chǎn)業(yè)技術(shù)體系資金資助(CARS-38)
蒲啟建(1990—),男,四川成都人,碩士研究生,從事反芻動物營養(yǎng)與飼料科學(xué)研究。E-mail: penqiji@live.com
*通信作者:王之盛,教授,博士生導(dǎo)師,E-mail: zswangsicau@126.com
10.3969/j.issn.1006-267x.2017.09.013
S816
:A
:1006-267X(2017)09-3120-12