劉怡琳 吳 信 印遇龍, 王占彬*
(1.河南科技大學(xué)動物科技學(xué)院,河南省飼草飼料資源開發(fā)與畜禽健康養(yǎng)殖院士工作站,洛陽471003;2.中國科學(xué)院亞熱帶農(nóng)業(yè)生態(tài)研究所,中國科學(xué)院亞熱帶農(nóng)業(yè)生態(tài)過程重點實驗室,湖南省畜禽健康養(yǎng)殖工程技術(shù)研究中心,長沙410125)
蛋氨酸缺乏對蛋雞產(chǎn)蛋后期生產(chǎn)性能、血清游離氨基酸含量和肝臟蛋氨酸代謝相關(guān)基因表達的影響
劉怡琳1吳 信2印遇龍1,2王占彬1*
(1.河南科技大學(xué)動物科技學(xué)院,河南省飼草飼料資源開發(fā)與畜禽健康養(yǎng)殖院士工作站,洛陽471003;2.中國科學(xué)院亞熱帶農(nóng)業(yè)生態(tài)研究所,中國科學(xué)院亞熱帶農(nóng)業(yè)生態(tài)過程重點實驗室,湖南省畜禽健康養(yǎng)殖工程技術(shù)研究中心,長沙410125)
本試驗旨在研究蛋氨酸缺乏對蛋雞產(chǎn)蛋后期生產(chǎn)性能、血清游離氨基酸含量和肝臟蛋氨酸代謝相關(guān)酶基因表達的影響。選取180只62周齡的海蘭灰蛋雞,根據(jù)產(chǎn)蛋率均勻分成3組(每組6個重復(fù),每個重復(fù)10只):對照組飼喂蛋氨酸水平為0.33%的飼糧,蛋氨酸缺乏組分別飼喂蛋氨酸水平為0.21%和0.27%的飼糧,試驗期90 d。結(jié)果表明:1)飼糧蛋氨酸缺乏顯著降低了蛋雞的平均日采食量、產(chǎn)蛋率、平均日產(chǎn)蛋重、平均蛋重和不合格蛋率(P<0.05),顯著提高了料蛋比(P<0.05)。2)蛋氨酸缺乏顯著降低蛋雞血清中蛋氨酸的含量(P<0.05)。0.21%蛋氨酸組蛋雞血清中絲氨酸、甘氨酸和丙氨酸的含量顯著高于其他2組(P<0.05)。0.27%蛋氨酸組蛋雞血清中纈氨酸、異亮氨酸和精氨酸的含量顯著低于對照組(P<0.05),脯氨酸的含量顯著低于0.21%蛋氨酸組(P<0.05)。3)與對照組相比,0.21%蛋氨酸組蛋雞肝臟中DNA甲基轉(zhuǎn)移酶1、N6-甲基腺苷(m6A)甲基轉(zhuǎn)移酶3(METTL3)和m6A甲基轉(zhuǎn)移酶14的表達量顯著提高(P<0.05),0.27%蛋氨酸組蛋雞肝臟中METTL3的表達量顯著提高(P<0.05)。4)與對照組相比,0.21%蛋氨酸組蛋雞肝臟中甲硫氨酸腺苷轉(zhuǎn)移酶1a、5-甲基四氫葉酸-同型半胱氨酸甲基轉(zhuǎn)移酶(MTR)和胱硫醚-β-合成酶的表達量顯著提高(P<0.05),0.27%蛋氨酸組蛋雞肝臟中MTR的表達量顯著提高(P<0.05)。蛋氨酸缺乏對蛋雞肝臟甲硫氨酸腺苷高半胱氨酸酶和甜菜堿高半胱氨酸甲基轉(zhuǎn)移酶的表達量無顯著影響(P>0.05)。由以上結(jié)果可知:蛋雞飼糧高水平的蛋氨酸缺乏會降低蛋雞的生產(chǎn)性能,可能與蛋氨酸缺乏改變蛋氨酸代謝途徑,影響DNA和RNA的甲基化過程有關(guān)。
蛋氨酸;蛋雞;生產(chǎn)性能;蛋氨酸代謝;甲基化;基因表達
蛋氨酸是必需氨基酸中唯一的含硫氨基酸,在機體內(nèi)參與蛋白質(zhì)合成,是半胱氨酸、還原型谷胱甘肽和牛磺酸合成的前體物,并為肌酸、磷脂酰膽堿和多胺合成等轉(zhuǎn)甲基化反應(yīng)及DNA、RNA和組蛋白的甲基化提供甲基[1-2]。機體可通過對蛋氨酸限制的代謝適應(yīng)提高線粒體的生物合成和功能及能量消耗,改變脂質(zhì)和碳水化合物穩(wěn)態(tài),降低氧化損傷和炎癥,延長壽命[3]。但是,蛋氨酸是蛋雞的第一限制性氨基酸,限制其在飼糧中添加量會引起蛋雞的產(chǎn)蛋率、蛋重、飼料利用率、體重下降以及肝臟脂質(zhì)聚積[4-5]。這不僅是由于蛋氨酸缺乏影響了氨基酸平衡和蛋白質(zhì)利用率,還與蛋氨酸代謝過程的改變有關(guān),如甘氨酸、絲氨酸、膽堿、半胱氨酸和谷胱甘肽等代謝中間產(chǎn)物的水平變化[6]。不過,關(guān)于蛋氨酸缺乏對蛋氨酸代謝過程的具體影響還未有報道。本研究旨在以海蘭灰蛋雞為試驗動物,通過研究飼糧中蛋氨酸缺乏對海蘭灰蛋雞生產(chǎn)性能、血清游離氨基酸含量和蛋氨酸代謝相關(guān)酶基因表達的影響,以期為蛋氨酸的科學(xué)利用提供理論依據(jù)。
1.1試驗設(shè)計
試驗采用單因子完全隨機試驗設(shè)計。選取180只62周齡的海蘭灰蛋雞,根據(jù)產(chǎn)蛋率均勻分成3個組,每個組6個重復(fù),每個重復(fù)10只雞。對照組飼喂蛋氨酸水平為0.33%的飼糧(基礎(chǔ)飼糧),蛋氨酸缺乏組分別飼喂蛋氨酸水平為0.21%和0.27%的飼糧?;A(chǔ)飼糧組成及營養(yǎng)水平見表1。蛋雞飼養(yǎng)于三階梯蛋雞籠中,每籠2只雞,每個重復(fù)隨機分布在雞舍,采用乳頭式飲水器。夜間開燈補光,每天總光照時間為16 h。自由釆食和飲水,每天07:30和15:30各補料1次。試驗期90 d。
表1 基礎(chǔ)飼糧組成及營養(yǎng)水平(風(fēng)干基礎(chǔ))
1)預(yù)混料為每千克飼糧提供The premix provided the following per kg of the diet:VA 12 000 IU,VB13 mg,VB29 mg,VB66 mg,VB120.03 mg,VD33 000 IU,VE 30 IU,VK36 mg,泛酸 pantothenate 18 mg,生物素 biotin 0.12 mg,葉酸 folic acid 1.5 mg,煙酰胺 nicotinamide 6 mg,Mn 106 mg,I 0.8 mg,F(xiàn)e 90 mg,Cu 6.4 mg,Zn 70 mg,Se 0.3 mg。
2)營養(yǎng)水平為計算值。Nutrient levels were calculated values.
1.2試驗材料
DL-蛋氨酸(純度99%)購自法國安迪蘇公司。
1.3檢測指標
1.3.1 生產(chǎn)性能
試驗期間以重復(fù)為單位記錄每周采食量、每日產(chǎn)蛋數(shù)、破畸數(shù)、產(chǎn)蛋重和破畸重等。計算產(chǎn)蛋率、平均日產(chǎn)蛋重、平均日采食量、料蛋比、平均蛋重和不合格蛋率。
1.3.2 血清游離氨基酸含量
于試驗第90天,每組隨機選取6只蛋雞,頸脈采血,3 000 r/min離心10 min制備血清,-20 ℃保存。取600 μL血清加入600 mL 8%的磺基水楊酸漩渦混勻,4 ℃靜置過夜,8 000 r/min離心10 min,取上清液,用過濾器(孔徑0.22 μm)過濾,取500 μL過濾液于氨基酸分析儀進行游離氨基酸含量分析。
1.3.3 蛋氨酸代謝相關(guān)酶基因表達量
在蛋雞放血處死后,迅速剖腹取出肝臟,用液氮速凍并轉(zhuǎn)至-80 ℃的冰箱內(nèi)保存,用于實時熒光定量PCR檢測。實時熒光定量PCR為10 μL體系,包括1 μL的cDNA模版、5 μL的SYBR Green熒光染料、0.3 μL的上游引物、0.3 μL的下游引物和3.4 μL的雙蒸水。測定的基因包括甲硫氨酸腺苷轉(zhuǎn)移酶1a(MAT1a)、DNA甲基轉(zhuǎn)移酶1(Dnmt1)、DNA甲基轉(zhuǎn)移酶3a(Dnmt3a)、N6-甲基腺苷(m6A)甲基轉(zhuǎn)移酶3(METTL3)、m6A甲基轉(zhuǎn)移酶14(METTL14)、甲硫氨酸腺苷高半胱氨酸酶(Ahcy)、5-甲基四氫葉酸-同型半胱氨酸甲基轉(zhuǎn)移酶(MTR)、甜菜堿高半胱氨酸甲基轉(zhuǎn)移酶(BHMT)和胱硫醚-β-合成酶(CBS),引物根據(jù)雞的基因序列用NCBI設(shè)計(表2)。
表2 引物序列
1.4數(shù)據(jù)統(tǒng)計分析
數(shù)據(jù)以平均值和標準誤表示,P<0.05為差異顯著。利用β-肌動蛋白(β-actin)作為內(nèi)參基因,用2-ΔΔCt法計算基因的相對表達量。試驗數(shù)據(jù)用統(tǒng)計SPSS 17.0進行單因子方差分析(one-way ANOVA),差異顯著時,以Duncan氏法進行多重比較檢驗。
2.1蛋氨酸缺乏對蛋雞生產(chǎn)性能的影響
由表3可知,飼糧蛋氨酸水平顯著影響蛋雞生產(chǎn)性能的各項指標(P<0.05)。蛋雞的產(chǎn)蛋率、平均日產(chǎn)蛋重和平均蛋重隨飼糧蛋氨酸水平的提高而顯著增加(P<0.05)。0.33%蛋氨酸組(對照組)蛋雞的平均日采食量和不合格蛋率均顯著高于0.21%和0.27%蛋氨酸組(P<0.05)。0.21%蛋氨酸組蛋雞的料蛋比顯著高于0.27%和0.33%蛋氨酸組(P<0.05)。
2.2蛋氨酸缺乏對蛋雞血清游離氨基酸含量的影響
由表4可知,蛋氨酸缺乏對蛋雞血清中蛋氨酸的含量有顯著的影響,隨飼糧蛋氨酸水平的降低而顯著降低(P<0.05)。0.21%蛋氨酸組蛋雞血清中絲氨酸、甘氨酸和丙氨酸的含量顯著高于其他2組(P<0.05)。0.27%蛋氨酸組蛋雞血清中纈氨酸、異亮氨酸和精氨酸的含量顯著低于0.21%和0.33%蛋氨酸組(P<0.05)。0.27%蛋氨酸組蛋雞血清中脯氨酸的含量顯著低于0.21%蛋氨酸組(P<0.05)。
表3 蛋氨酸缺乏對蛋雞生產(chǎn)性能的影響
同行數(shù)據(jù)肩標無字母或相同字母表示差異不顯著(P>0.05),不同小寫字母表示差異顯著(P<0.05)。下表同。
In the same row, values with no letter or the same letter superscripts mean no significant difference (P>0.05), while with different small letter superscripts mean significant difference (P<0.05). The same as below.
表4 蛋氨酸缺乏對蛋雞血清游離氨基酸含量的影響
2.3蛋氨酸缺乏對蛋雞肝臟蛋氨酸代謝相關(guān)基因表達的影響
由表5可知,飼糧蛋氨酸水平對MAT1a、Dnmt1、METTL3、METTL14、CBS和MTR在蛋雞肝臟內(nèi)的表達量有顯著影響(P<0.05),但對Dnmt1、Ahcy和BHMT表達量無顯著影響(P>0.05)。0.21%蛋氨酸組蛋雞肝臟中Dnmt1、METTL3和METTL14的表達量顯著高于其他2組(P<0.05)。0.27%蛋氨酸組蛋雞肝臟中METTL3的表達量顯著高于對照組(P<0.05)。0.21%蛋氨酸組蛋雞肝臟中MAT1a和MTR的表達量顯著高于其他2組(P<0.05),CBS的表達量顯著高于對照組(P<0.05)。0.27%蛋氨酸組蛋雞肝臟中MTR的表達量顯著高于對照組(P<0.05)。
表5 蛋氨酸缺乏對蛋雞肝臟蛋氨酸代謝相關(guān)基因表達的影響
3.1蛋氨酸缺乏對蛋雞生產(chǎn)性能的影響
蛋氨酸是蛋雞的第一限制性氨基酸,對蛋雞的生產(chǎn)性能有重要的作用。研究表明,蛋氨酸含量較低時,提高蛋氨酸水平能夠提高蛋雞生產(chǎn)性能,當飼糧中蛋氨酸含量到一定水平時,繼續(xù)添加蛋氨酸反而會降低生產(chǎn)性能[7-8]。本試驗中,飼糧蛋氨酸均處于較低水平,0.33%蛋氨酸組蛋雞的生產(chǎn)性能指標達到最高,但是料蛋比與0.27%蛋氨酸組無顯著差異。Saki等[8]的研究結(jié)果表明,蛋氨酸水平從0.24%提高到0.34%能顯著提高蛋雞的產(chǎn)蛋率、平均蛋重、平均日產(chǎn)蛋重和平均日采食量并降低料蛋比。Harms等[9]的試驗結(jié)果表明,飼糧蛋氨酸水平(0.20%~0.34%)對產(chǎn)蛋率、平均蛋重和平均日采食量有顯著影響,當?shù)鞍彼崴礁哂?.28%后對上述指標無顯著影響。但Keshavarz[10]的試驗結(jié)果表明,54~72周齡的白色單冠來航蛋雞飼糧蛋氨酸水平從0.36%降低到0.23%會顯著降低產(chǎn)蛋率、平均蛋重和飼料利用率,但是對平均日產(chǎn)蛋重和平均日采食量無顯著影響。
3.2蛋氨酸缺乏對蛋雞血清游離氨基酸含量的影響
血清游離氨基酸的濃度在一定程度上可以反映動物體內(nèi)氨基酸的代謝狀況。由于氨基酸之間存在協(xié)同、替代、轉(zhuǎn)換和拮抗的關(guān)系,飼糧中某種氨基酸的缺乏或過量均能造成氨基酸比例的失衡,影響自身或其他氨基酸的利用。本試驗結(jié)果顯示,飼糧蛋氨酸的水平會顯著影響血清中一些氨基酸的含量和比例,如降低蛋氨酸、半胱氨酸、異亮氨酸和精氨酸含量,提高絲氨酸和甘氨酸的含量。與本研究相似,呂明斌等[11]的試驗結(jié)果也表明,飼糧蛋氨酸水平會影響絲氨酸、蛋氨酸和異亮氨酸的含量。Yodseranee等[12]在肉雞上的試驗結(jié)果也表明飼糧蛋氨酸水平會影響血漿蛋氨酸、半胱氨酸和?;撬岬暮?。
3.3蛋氨酸缺乏對蛋雞肝臟蛋氨酸代謝過程的影響
動物攝入的蛋氨酸大約20%在胃腸道進行消化代謝,80%經(jīng)過血液運送至細胞和組織,而一半以上的蛋氨酸在肝臟轉(zhuǎn)化為S-腺苷甲硫氨酸,進入蛋氨酸代謝途徑[13]。蛋氨酸通過消耗ATP在甲硫氨酸腺苷轉(zhuǎn)移酶的作用下轉(zhuǎn)化為S-腺苷甲硫氨酸,該酶主要由MAT1a編碼[14]。90%以上的S-腺苷甲硫氨酸隨后可在甲基轉(zhuǎn)移酶的作下轉(zhuǎn)化為S-腺苷同型半胱氨酸,該過程脫去的甲基可在甲基轉(zhuǎn)移酶的作用,參與DNA和RNA的甲基化過程,從而調(diào)控基因的表達量及RNA介導(dǎo)的細胞通路[15-17]。本試驗中蛋氨酸缺乏顯著影響了Dnmt1、METTL3和METTL14的表達量,說明蛋氨酸缺乏可能影響DNA和RNA的甲基化過程。Mattocks等[6]發(fā)現(xiàn),短期蛋氨酸缺乏能夠改善成年C57BL/6J小鼠DNA甲基化維持系統(tǒng)的效率,提高肝臟整體DNA甲基化水平。但是Liu等[18]的試驗結(jié)果為,低蛋氨酸組和高蛋氨酸組GC富集的肌肉生長抑制素基因外顯子1區(qū)域的甲基化水平分別為46%和83%,而且如果GC富集的區(qū)域已經(jīng)高度甲基化時,飼糧蛋氨酸攝入過量或不足會導(dǎo)致去甲基化。RNA的甲基化是RNA最常見和高豐度的修飾方式,由S-腺苷甲硫氨酸提供甲基在碳或氮原子上形成m6A[19]。METTL3是哺乳動物細胞中m6A甲基轉(zhuǎn)移酶復(fù)合體的活性成分,敲除METTL3基因可能通過p53介導(dǎo)的途徑,引起HeLa細胞總m6A水平會下降30%以及HepG2細胞的凋亡[20]。METTL14是另一種m6A甲基轉(zhuǎn)移酶復(fù)合體的活性成分,可以與METTL3蛋白以1∶1的化學(xué)計量比結(jié)合形成穩(wěn)定二聚體復(fù)合物,調(diào)控細胞內(nèi)m6A在mRNA上的沉積[21]。目前關(guān)于蛋氨酸缺乏對RNA甲基化的影響還未見報道,本試驗中蛋氨酸缺乏顯著提高了METTL3和METTL14的表達量,說明蛋氨酸缺乏可能會影響RNA的甲基化水平,但是與蛋氨酸缺乏的劑量有關(guān)。
S-腺苷同型半胱氨酸在Ahcy的作用下分解為腺苷和高半胱氨酸,該過程是可逆的非限速步驟,其代謝通量由S-腺苷同型半胱氨酸的合成及腺苷和高半胱氨酸消耗的速率而決定[22]。本試驗中,3個組的Ahcy表達量沒有顯著差異,說明蛋氨酸缺乏可能對上述代謝物的比例無影響。高半胱氨酸隨后的代謝途徑有2條:一個是在MTR的作用下利用5-甲基-四氫葉酸和BHMT的作用下利用甜菜堿作為甲基供體甲基化再生成蛋氨酸,由此構(gòu)成蛋氨酸的循環(huán)過程;另一個是在絲氨酸的參與下可被CBS催化發(fā)生轉(zhuǎn)硫基作用形成胱硫醚,繼而參與半胱氨酸、谷胱甘肽或?;撬岷铣珊脱趸到獾萚23-24]。脫去甲基的四氫葉酸隨后可經(jīng)過循環(huán)過程重新生成5-甲基-四氫葉酸,該過程同時將絲氨酸轉(zhuǎn)化為甘氨酸。本試驗中,蛋氨酸缺乏對MAT1a、CBS和MTR表達量有顯著影響,說明蛋氨酸缺乏可能影響高半胱氨酸在代謝途徑。同時,高劑量蛋氨酸缺乏組蛋雞血清中半胱氨酸的含量的降低及絲氨酸和甘氨酸含量顯著積累,說明蛋氨酸缺乏可能降低了蛋氨酸的轉(zhuǎn)硫基作用,增強了再甲基化途徑,且轉(zhuǎn)硫基作用的降低程度可能大于再甲基化途徑的增加。研究表明,當?shù)鞍彼崛狈r,高半胱氨酸通過再甲基化生成蛋氨酸可保證甲基化反應(yīng)的正常進行,盡管會降低α-丁酮酸和谷胱甘肽的合成[25]。相反,當?shù)鞍彼崴絻H提高10%,就會導(dǎo)致高半胱氨酸合成效率提高2倍[22]。蛋氨酸負載試驗表明,蛋氨酸負載可活化大鼠肝細胞中同型半胱氨酸的轉(zhuǎn)硫化途徑,同時抑制其再甲基化途徑,會顯著減弱BHMT和蛋氨酸合成酶活性,但不影響CBS的活性[26]。但是,本試驗中蛋氨酸缺乏也顯著提高了CBS的表達量。Tang等[27]研究表明,蛋氨酸剝奪會誘導(dǎo)組織通過S-腺苷甲硫氨酸的獨立機制下調(diào)CBS蛋白關(guān)閉轉(zhuǎn)硫基途徑,從而高效保留蛋氨酸;但是在mRNA水平上CBS表達量并沒有降低,甚至有所提高,這與本研究的結(jié)果相一致。
① 蛋氨酸缺乏顯著降低了海蘭灰蛋雞產(chǎn)蛋后期的產(chǎn)蛋率、平均日產(chǎn)蛋重和平均蛋重,提高了料蛋比。
② 蛋氨酸缺乏顯著提高了肝臟中Dnmt1、METTL3和METTL14的表達量,影響DNA和RNA的甲基化過程。
③ 蛋氨酸缺乏顯著降低了血清中蛋氨酸的含量,提高了血清中甘氨酸和絲氨酸的含量及肝臟中MTR的表達量,影響蛋氨酸的再合成和轉(zhuǎn)硫基途徑。
[1] AKBARI MOGHADDAM KAKHKI R,GOLIAN A,ZARGHI H.Effect of digestible methionine+cystine concentration on performance,egg quality and blood metabolites in laying hens[J].British Poultry Science,2016,57(3):403-414.
[2] BERTOLO R F,MCBREAIRTY L E.The nutritional burden of methylation reactions[J].Current Opinion in Clinical Nutrition and Metabolic Care,2013,16(1):102-108.
[3] PERRONE C E,MALLOY V L,ORENTREICH D S,et al.Metabolic adaptations to methionine restriction that benefit health and lifespan in rodents[J].Experimental Gerontology,2013,48(7):654-660.
[4] KIKUSATO M,SUDO S,TOYOMIZU M.Methionine deficiency leads to hepatic fat accretion via impairment of fatty acid import by carnitine palmitoyltransferase Ⅰ[J].British Poultry Science,2015,56(2):225-231.
[6] MATTOCKS D A L,MENTCH S J,SHNEYDER J,et al.Short term methionine restriction increases hepatic global DNA methylation in adult but not young male C57BL/6J mice[J].Experimental Gerontology,2017,88:1-8.
[7] 梁中軍,王瑛,韓雪嬌,等.飼糧蛋氨酸水平對蛋雞產(chǎn)蛋后期生產(chǎn)性能的影響[J].動物營養(yǎng)學(xué)報,2015,27(9):2699-2704.
[8] SAKI A A,NASERI HARSINI R,TABATABAEI M M,et al.Estimates of methionine and sulfur amino acid requirements for laying hens using different models[J].Revista Brasileira de Ciência Avícola,2012,14(3):209-216.
[9] HARMS R H,RUSSELL G B.Performance of commercial laying hens fed diets with various levels of methionine[J].The Journal of Applied Poultry Research,2003,12(4):449-455.
[10] KESHAVARZ K.Effects of reducing dietary protein,methionine,choline,folic acid,and vitamin B12during the late stages of the egg production cycle on performance and eggshell quality[J].Poultry Science,2003,82(9):1407-1414.
[11] 呂明斌,孫作為,燕磊,等.肉仔雞飼糧中蛋氨酸和半胱氨酸與賴氨酸適宜比例的研究[J].動物營養(yǎng)學(xué)報,2011,23(12):2109-2117.
[12] YODSERANEE R,BUNCHASAK C.Effects of dietary methionine source on productive performance,blood chemical,and hematological profiles in broiler chickens under tropical conditions[J].Tropical Animal Health and Production,2012,44(8):1957-1963.
[13] ROBINSON J L,MCBREAIRTY L E,RANDELL E W,et al.Restriction of dietary methyl donors limits methionine availability and affects the partitioning of dietary methionine for creatine and phosphatidylcholine synthesis in the neonatal piglet[J].The Journal of Nutritional Biochemistry,2016,35:81-86.
[14] MATO J M,LU S C.Role of S-adenosyl-L-methionine in liver health and injury[J].Hepatology,2007,45(5):1306-1312.
[15] WATERLAND R A.Assessing the effects of high methionine intake on DNA methylation[J].The Journal of Nutrition,2006,136(Suppl 6):1706S-1710S.
[16] JIA G F,FU Y,HE C.Reversible RNA adenosine methylation in biological regulation[J].Trends in Genetics,2013,29(2):108-115.
[17] FINKELSTEIN J D.The metabolism of homocysteine:pathways and regulation[J].European Journal of Pediatrics,1998,157(Suppl.2):S40-S44.
[18] LIU G Q,ZONG K,ZHANG L L,et al.Dietary methionine affect meat qulity and myostatin gene exon 1 region methylation in skeletal muscle tissues of broilers[J].Agricultural Sciences in China,2010,9(9):1338-1346.
[19] NIU Y M,ZHAO X,WU Y S,et al.N6-methyl-adenosine (m6A) in RNA:an old modification with a novel epigenetic function[J].Genomics,Proteomics & Bioinformatics,2013,11(1):8-17.
[20] FU Y,DOMINISSINI D,RECHAVI G,et al.Gene expression regulation mediated through reversible m6A RNA methylation[J].Nature Reviews Genetics,2014,15(5):293-306.
[21] LIU J Z,YUE Y N,HAN D L,et al.A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation[J].Nature Chemical Biology,2014,10(2):93-95.
[22] MARTINOV M V,VITVITSKY V M,MOSHAROV E V,et al.A substrate switch:a new mode of regulation in the methionine metabolic pathway[J].Journal of Theoretical Biology,2000,204(4):521-532.
[23] BROSNAN J T,BROSNAN M E.The sulfur-containing amino acids:an overview[J].The Journal of Nutrition,2006,136(6):1636S-1640S.
[24] PILLAI P B,FANATICO A C,BEERS K W,et al.Homocysteine remethylation in young broilers fed varying levels of methionine,choline,and betaine[J].Poultry Science,2006,85(1):90-95.
[25] MATO J M,LU S C.The hepatocarcinogenic effect of methionine and choline deficient diets:an adaptation to the Warburg effect?[J].Alcoholism: Clinical and Experimental Research,2011,35(5):811-814.
[26] 高蔚娜,韓超,韋京豫,等.蛋氨酸負載對大鼠肝細胞Hcy代謝酶及相關(guān)代謝物的影響[J].營養(yǎng)學(xué)報,2013,35(6):545-548.
[27] TANG B Q,MUSTAFA A,GUPTA S,et al.Methionine-deficient diet induces post-transcriptional downregulation of cystathionine β-synthase[J].Nutrition,2010,26(11/12):1170-1175.
*Corresponding author, professor, E-mail: wangzhanbin3696@126.com
(責任編輯 田艷明)
Effects of Methionine Deficiency on Performance, Serum Free Amino Acid Contents and Liver Methionine Metabolism Gene Expression of Laying Hens during Late Period of Laying
LIU Yilin1WU Xin2YIN Yulong1,2WANG Zhanbin1*
(1. Henan Provincial Academician Workstation of Feed Resource Development and Healthy Livestock, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China; 2. Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China)
This experiment was conducted to study the effects of methionine deficiency on performance, serum free amino acid contents and liver methionine metabolism gene expression of laying hens during late period of laying. Based on the egg production, a total of 180 Hy-Line Grey laying hens at 62 weeks of age were allocated to 3 groups with 6 replicates each and 10 hens in each replicate. Hens in three groups were fed different diets which contained 0.21%, 0.27% and 0.33% (control group) methionine, respectively, and the experiment period was 90 days. The results showed as follows: 1) dietary methionine deficiency significantly reduced the average daily feed intake, laying rate, average daily egg production, average egg weight and unqualified rate of eggs (P<0.05), but significantly increased the ratio of feed to egg of laying hens (P<0.05). 2) Methionine deficiency significantly reduced the serum methionine content of laying hens (P<0.05). The contents of serum serine, glycine and alanine in 0.21% methionine group were significantly higher than those in the other two groups (P<0.05). The contents of serum valine, isoleucine and arginine in 0.27% methionine group were significantly lower than those in control group (P<0.05), and serum proline content in 0.27% methionine group was significantly lower than that in 0.21% methionine group (P<0.05). 3) Compared with control group, the expression levels of DNA methyltransferase 1, N6-adenosine-methyltransferase subunit 3 (METTL3) and N6-adenosine-methyltransferase subunit 14 in liver of hens in 0.21% methionine group were significantly improved (P<0.05), and theMETTL3 expression level in liver of hens in 0.27% methionine group was also significantly improved (P<0.05). 4) Compared with control group, the expression levels of methionine adenosyltransferase 1a, cystathionine-beta-synthase and 5-methyltetrahydrofolate-homocysteine methyltransferase (MTR) in liver of hens in 0.21% methionine group were significantly improved (P<0.05), and theMTRexpression level in liver of hens in 0.27% methionine group was also significantly improved (P<0.05). Methionine deficiency had no significant influence on the expression levels of adenosylhomocysteinas and betaine homocysteine methyltransferase in liver of hens (P>0.05). In conclusion, dietary methionine deficiency reduces performance of hens which may duo to the change of methionine metabolism pathway and the methylation of DNA and RNA.[ChineseJournalofAnimalNutrition,2017,29(9):3091-3098]
methionine; laying hens; performance; methionine metabolism; methylation; gene expression
10.3969/j.issn.1006-267x.2017.09.010
2017-02-13
國家重點研發(fā)計劃(2016YFD0500504)
劉怡琳(1992—),女,河南南陽人,碩士研究生,從事動物營養(yǎng)與飼料科學(xué)研究。E-mail: 15236286951@163.com
*通信作者:王占彬,教授,碩士生導(dǎo)師,E-mail: wangzhanbin3696@126.com
S831.5
:A
:1006-267X(2017)09-3091-08