張軼鳳 齊智利
(華中農(nóng)業(yè)大學(xué)動(dòng)物科技學(xué)院,武漢430070)
熱應(yīng)激條件下機(jī)體發(fā)生氧化應(yīng)激的機(jī)制
張軼鳳 齊智利*
(華中農(nóng)業(yè)大學(xué)動(dòng)物科技學(xué)院,武漢430070)
熱應(yīng)激是指機(jī)體在高溫條件下對熱暴露所做出的非特異性生理反應(yīng)的總和。有研究表明熱應(yīng)激會(huì)引起機(jī)體氧化還原平衡紊亂,發(fā)生氧化應(yīng)激,損傷細(xì)胞和組織,從而影響機(jī)體的生長發(fā)育及健康狀況。熱應(yīng)激一直都是國內(nèi)外研究的熱點(diǎn),隨著全球氣溫的上升,熱應(yīng)激問題將會(huì)更加突出,本文就熱應(yīng)激條件下氧化應(yīng)激發(fā)生的機(jī)制作一綜述,以期為后續(xù)的相關(guān)研究提供參考。
熱應(yīng)激;氧化應(yīng)激;抗氧化系統(tǒng);活性氧;活性氮
隨著全球氣溫的升高,熱應(yīng)激給畜牧業(yè)帶來了很大的經(jīng)濟(jì)損失,熱應(yīng)激的發(fā)生是由于機(jī)體釋放到環(huán)境中的熱量與機(jī)體產(chǎn)生的熱量處于負(fù)平衡狀態(tài)(產(chǎn)生大于釋放),這種失衡有很多因素,如環(huán)境溫度、濕度、光照和運(yùn)動(dòng)等[1],在現(xiàn)代畜牧業(yè)的發(fā)展過程中,熱應(yīng)激對于家畜的影響幾乎是無法避免的。熱應(yīng)激使家畜的采食量下降、機(jī)體營養(yǎng)代謝消耗增加、免疫機(jī)能下降,造成家畜生長性能和繁殖性能的降低[2-3]。一般認(rèn)為,熱應(yīng)激導(dǎo)致的生產(chǎn)和繁殖性能下降與采食量降低有直接的關(guān)系,但是越來越多的研究表明,熱應(yīng)激首先降低采食量和營養(yǎng)物質(zhì)的吸收,進(jìn)而影響機(jī)體代謝水平;特別是產(chǎn)生過多自由基,引起機(jī)體抗氧化機(jī)能紊亂[4-5],細(xì)胞和線粒體氧化損傷最終導(dǎo)致家畜生產(chǎn)和繁殖性能下降。動(dòng)物在熱應(yīng)激條件下體溫會(huì)升高,體溫的升高會(huì)影響機(jī)體內(nèi)代謝酶的活性,使機(jī)體代謝率升高,高代謝率會(huì)導(dǎo)致自由基的產(chǎn)生增加,自由基會(huì)和很多大分子物質(zhì)反應(yīng),如脂質(zhì)、蛋白質(zhì)和核酸。很多研究表明,當(dāng)動(dòng)物受到熱應(yīng)激侵害時(shí),機(jī)體內(nèi)的過氧化氫酶(CAT)、谷胱甘肽過氧化物酶(GSH-Px)、超氧化物歧化酶(SOD)的活性受到影響,影響機(jī)體的抗氧化系統(tǒng),從而改變自由基的含量,這表明熱應(yīng)激可以引起機(jī)體氧化應(yīng)激[5-7]。氧化應(yīng)激是指體內(nèi)氧化和抗氧化系統(tǒng)失衡,產(chǎn)生過多的活性氧(ROS)和活性氮(RNS),造成機(jī)體組織細(xì)胞及蛋白質(zhì)和核酸等生物大分子損傷[8]。所有生物,包括簡單的生命形式,如酵母和細(xì)菌,都具有復(fù)雜的抗氧化系統(tǒng),來平衡體內(nèi)不斷產(chǎn)生的氧化物質(zhì)。在機(jī)體內(nèi)存在著2條抗氧化系統(tǒng),即抗氧化酶系統(tǒng)和抗氧化非酶系統(tǒng)。很多研究發(fā)現(xiàn)氧化應(yīng)激可以引起脂質(zhì)氧化和DNA損傷,產(chǎn)生的過多自由基可以在體內(nèi)誘發(fā)腸炎和腸道黏膜通透性增加等腸道相關(guān)疾病,從而影響機(jī)體的生長發(fā)育[9]。熱應(yīng)激一直以來都是限制畜牧業(yè)發(fā)展的關(guān)鍵性因素,研究在熱應(yīng)激條件下機(jī)體氧化應(yīng)激的變化不僅可以全面揭示熱應(yīng)激引起氧化應(yīng)激的機(jī)制,同時(shí)可以為熱應(yīng)激條件下如何緩解氧化應(yīng)激提供理論依據(jù)。本文就熱應(yīng)激引起氧化應(yīng)激的機(jī)制作一綜述。
氧化/抗氧化平衡時(shí),機(jī)體處于正常生理狀態(tài),一旦這種平衡被打破就會(huì)引起氧化應(yīng)激反應(yīng),熱應(yīng)激打破了機(jī)體的氧化/抗氧化平衡狀態(tài)(圖1),引起了氧化應(yīng)激反應(yīng),從而給機(jī)體帶來危害,同時(shí)給畜牧業(yè)帶來很大的經(jīng)濟(jì)損失。
HS:熱應(yīng)激 heat stress;complex Ⅰ:復(fù)合體Ⅰ;complex Ⅱ:復(fù)合體Ⅱ;complex Ⅲ:復(fù)合體Ⅲ;complex Ⅳ:復(fù)合體Ⅳ;monoamine oxidase:單胺氧化酶;mitochondrion:線粒體;oxidation:氧化;native protein:天然蛋白質(zhì);oxidited protein:氧化蛋白;induction:誘導(dǎo);binding:結(jié)合;degradation:降解;apoptosis:凋亡;lysine:賴氨酸;ARE:抗氧化反應(yīng)元件 antioxidant response element;ΔΨ:膜通透性 membrane permeability;citrulline:瓜氨酸;nucleus:細(xì)胞核。
圖1熱應(yīng)激條件下氧化應(yīng)激發(fā)生的機(jī)制
Fig.1 Mechanism of oxidative stress under heat stress
家畜處于熱應(yīng)激狀態(tài)下其采食量下降,影響機(jī)體的代謝水平,特別是產(chǎn)生過多的自由基,自由基是指能獨(dú)立存在的含有1個(gè)或2個(gè)以上不配對電子的任何原子或原子團(tuán)。ROS中的一部分是在自由基反應(yīng)過程中產(chǎn)生的,這部分嚴(yán)格意義上來說不屬于自由基,但是卻可以直接或間接地觸發(fā)自由基反應(yīng),因此一般認(rèn)為機(jī)體內(nèi)的自由基主要有ROS和RNS,參與機(jī)體內(nèi)的各種代謝反應(yīng)。
2.1熱應(yīng)激與ROS
ROS是正常細(xì)胞的代謝產(chǎn)物,可與糖和脂質(zhì)反應(yīng),也可與蛋白質(zhì)直接反應(yīng),還能使一些氨基酸殘基發(fā)生突變[16]。研究發(fā)現(xiàn),熱應(yīng)激下ROS產(chǎn)生過多,破壞了線粒體膜,使細(xì)胞色素C(Cyto-C)釋放到細(xì)胞液,一旦Cyto-C進(jìn)入就會(huì)很快完成組裝,激活半胱氨酸的級聯(lián)反應(yīng),隨后胱氨酸的天冬氨酸蛋白水解酶3(Caspases-3)基因表達(dá)量上升,導(dǎo)致細(xì)胞凋亡[17]。還有研究發(fā)現(xiàn)熱休克蛋白70(Hsp70)抑制凋亡蛋白酶激活因子(Apaf-1)的基因表達(dá)[18]和Cyto-C的釋放[19],使Caspases-3基因表達(dá)量下降,減少細(xì)胞凋亡。研究發(fā)現(xiàn)Hsp70還可通過激活抗氧化酶(如SOD)來減少ROS的產(chǎn)生[20]。很多研究已表明,熱應(yīng)激下Hsp70的基因表達(dá)量上升[21-22],而Reeg等[23]發(fā)現(xiàn)ROS使Hsp70降解失活,加重了熱應(yīng)激程度,形成一個(gè)惡性循環(huán),給機(jī)體帶來嚴(yán)重?fù)p傷。熱休克蛋白雖然可以激活抗氧化酶,但會(huì)有部分被降解,起作用的熱休克蛋白的量還是很少的。此外,研究發(fā)現(xiàn)在夏季熱應(yīng)激下奶牛體內(nèi)的Nrf2基因表達(dá)量升高[24]。黃毅[25]還發(fā)現(xiàn)熱應(yīng)激使Keap1基因的表達(dá)量下降,從而Nrf2基因釋放入核,表達(dá)量上升,產(chǎn)生SOD1和血紅素加氧酶-1(HO-1)來抑制ROS的產(chǎn)生,緩解氧化應(yīng)激。Sholomskas等[26]研究表明小鼠在熱應(yīng)激下使氧化還原因子1(Ref-1)過表達(dá),激活了核轉(zhuǎn)錄激活蛋白1(AP-1),一方面抑制細(xì)胞凋亡,另一方面使錳超氧化物歧化酶(Mn-SOD)活性升高,從而負(fù)反饋調(diào)節(jié)抑制了ROS產(chǎn)生,緩解了氧化應(yīng)激,減少了氧化應(yīng)激帶來的細(xì)胞和組織損傷。解偶聯(lián)蛋白(UCPs)是線粒體內(nèi)膜蛋白,在哺乳動(dòng)物體內(nèi)發(fā)現(xiàn)有5種(UCP1、UCP2、UCP3、UCP4和UCP5),其中對氧化應(yīng)激反應(yīng)起調(diào)節(jié)作用的主要是UCP2和UCP3[27-28]。UCPs的主要作用是通過調(diào)節(jié)質(zhì)子泄漏來降低ROS的產(chǎn)生。Affourtit等[29]報(bào)道在胰島細(xì)胞中UCP2基因表達(dá)量升高,線粒體ROS生成減少,結(jié)果表明UCP2對胰島素有負(fù)調(diào)節(jié)作用,通過能量代謝調(diào)節(jié)ROS產(chǎn)生。有研究表明,熱應(yīng)激下UCPs基因表達(dá)量下調(diào),這種下調(diào)與ROS的增加有關(guān),熱應(yīng)激使ROS產(chǎn)生過多,UCPs無法及時(shí)抑制ROS產(chǎn)生而導(dǎo)致其基因表達(dá)量下調(diào)[30]。
2.2熱應(yīng)激與RNS
RNS主要有一氧化氮(NO)和過氧亞硝基(ONOO-)。NO在細(xì)胞中以L-精氨酸作為底物通過一氧化氮合酶(NOS)催化產(chǎn)生,可直接反映機(jī)體氧化應(yīng)激水平(圖1)。研究發(fā)現(xiàn)熱應(yīng)激的刺激下小鼠體內(nèi)NOS的基因表達(dá)量上調(diào),從而催化L-精氨酸生成大量的NO,對機(jī)體造成損傷[31]。NO是具有高活性的自由基,在細(xì)胞信號通路中也是一個(gè)重要的信號分子,參與各種機(jī)體反應(yīng)。NO不僅可以與氧合血紅蛋白反應(yīng)來有效地防止NO與氧直接高速反應(yīng)生成二氧化氮(NO2),還可以與ROS反應(yīng)產(chǎn)生具有很強(qiáng)氧化性的ONOO-,使Mn-SOD和鐵超氧化物歧化酶(Fe-SOD)失活[32]。而且可以攻擊多不飽和脂肪酸,在此過程中產(chǎn)生的不穩(wěn)定的中間體脂質(zhì)過氧化物(LOO-和LOOH)可以引起脂質(zhì)過氧化,造成蛋白質(zhì)和DNA的損傷[33]。同時(shí)熱應(yīng)激狀態(tài)下,ROS產(chǎn)生增多,與NO發(fā)生反應(yīng),使過氧化硝基增多,很可能造成機(jī)體中毒[31]。ONOO-可以通過使酪氨酸殘基硝基化來修飾蛋白質(zhì),氧化色氨酸和半胱氨酸,使其失去活性,造成機(jī)體損傷[34]。此外,研究還發(fā)現(xiàn)線粒體結(jié)構(gòu)的完整性受到破壞和線粒體膜通透性的增加造成線粒體鈣離子(Ca2+)內(nèi)流增加,Ca2+可以與鈣調(diào)蛋白結(jié)合使NOS活性增強(qiáng),NO生成增多[35]。RNS在自由基引起氧化應(yīng)激過程中起著重要的作用,在人的研究上發(fā)現(xiàn),RNS可引發(fā)很多疾病,如血栓、癌癥等。但是在動(dòng)物熱應(yīng)激狀態(tài)下的研究很少,這還需要進(jìn)一步的研究。
熱應(yīng)激可分為急性熱應(yīng)激和慢性熱應(yīng)激,不同的熱應(yīng)激下機(jī)體內(nèi)抗氧化酶的活性不同(表1)。急性熱應(yīng)激狀態(tài)下,機(jī)體突然受到刺激,使體內(nèi)自由基迅速增多,體內(nèi)抗氧化酶系統(tǒng)做出應(yīng)答,CAT、SOD、GSH-Px的活性明顯升高,來清除過多的自由基。而慢性熱應(yīng)激使機(jī)體較長時(shí)間的受到熱應(yīng)激的侵害,CAT、SOD、GSH-Px的活性下降,抗氧化酶系統(tǒng)被破壞,無法及時(shí)地清除大量自由基,打破了機(jī)體的氧化平衡,從而引起機(jī)體氧化應(yīng)激。不同的熱應(yīng)激會(huì)使抗氧化酶活性不同,而動(dòng)物不同的耐熱能力也會(huì)使抗氧化酶活性存在差異。一系列研究表明熱應(yīng)激使抗氧化酶的活性發(fā)生了改變,但都是在表觀上說明酶活性的變化,而如何影響酶活性相關(guān)的研究并不能清楚的解釋其機(jī)制(表1)。影響酶活性的因素有很多,如乙?;?、甲基化、酶活中心微量元素含量等。研究發(fā)現(xiàn)某些氨基酸發(fā)生乙?;挂恍┑鞍踪|(zhì)表達(dá)發(fā)生改變,影響了酶的活性[36]。但對于熱應(yīng)激下甲基化、磷酸化影響酶活性的研究還沒有報(bào)道,因此熱應(yīng)激是否使某些蛋白質(zhì)甲基化或某些氨基酸磷酸化而使酶的活性發(fā)生改變,這還有待于進(jìn)一步研究。
表1 熱應(yīng)激條件下抗氧化酶的變化
機(jī)體內(nèi)發(fā)生氧化應(yīng)激時(shí),除抗氧化酶系統(tǒng)外,還存在著抗氧化非酶系統(tǒng),抗氧化非酶系統(tǒng)有維生素C、維生素E、GSH、類胡蘿卜素及微量元素銅、鋅、硒、錳等,這些非酶物質(zhì)參與機(jī)體內(nèi)的生物轉(zhuǎn)化。
非酶物質(zhì)大都從采食獲得,在熱應(yīng)激狀態(tài)下,動(dòng)物的采食量下降,使大部分非酶物質(zhì)減少,抗氧化非酶系統(tǒng)的抗氧化能力下降,引起氧化應(yīng)激。不同非酶物質(zhì)的作用機(jī)制不同(表2),維生素E在生物系統(tǒng)中是一個(gè)重要的抗氧化劑,可以插入到脂質(zhì)雙分子層結(jié)構(gòu)中與維生素C和其他抗氧化系統(tǒng)結(jié)合終止脂質(zhì)氧化[33]。糖皮質(zhì)激素在體內(nèi)能夠促進(jìn)蛋白質(zhì)的分解,增強(qiáng)機(jī)體對外界不良環(huán)境的適應(yīng)能力,熱應(yīng)激條件下糖皮質(zhì)激素分泌過多引起細(xì)胞一定程度的損傷,而維生素C可以調(diào)節(jié)體內(nèi)糖皮質(zhì)激素,從而緩解熱應(yīng)激下的細(xì)胞損傷。鋅在生物體內(nèi)的抗氧化防御系統(tǒng)起著重要作用,參與CuZn-SOD構(gòu)成來緩解氧化應(yīng)激[44];還可以調(diào)控金屬硫蛋白表達(dá)來提高機(jī)體抗氧化能力[45]。研究發(fā)現(xiàn)鉻可以促進(jìn)RNA的合成,通過在細(xì)胞核中大量積累來調(diào)節(jié)細(xì)胞核合成的作用,同時(shí),它還具有酶的功能,能催化DNA的聚合,防止DNA損傷[46]。而熱應(yīng)激增加了尿液中鉻的含量,使鉻大量流失,無法滿足機(jī)體的需求,引起DNA損傷。此外,硒也是機(jī)體內(nèi)重要的元素,GSH-Px是最主要的硒依賴性酶,當(dāng)熱應(yīng)激發(fā)生時(shí)無法滿足機(jī)體對硒的需求而導(dǎo)致GSH-Px的活性下降。SOD是依賴硒的另一種抗氧化酶,與GSH-Px共同發(fā)揮抗氧化作用,將大量的自由基轉(zhuǎn)化為無毒的羥基化合物,并催化H2O2分解成水[47]。
熱應(yīng)激狀態(tài)下機(jī)體內(nèi)的自由基產(chǎn)生過多,引起細(xì)胞和組織發(fā)生氧化應(yīng)激,從而給機(jī)體帶來危害。為了緩解熱應(yīng)激下引起的氧化應(yīng)激,減少經(jīng)濟(jì)損失,國內(nèi)外對于抗氧化劑添加的研究有很多(表3)。熱應(yīng)激引起的氧化應(yīng)激主要是由于體內(nèi)的自由基增多,超過了機(jī)體所能清除的能力,通過添加抗氧化劑增強(qiáng)了機(jī)體對于自由基的清除力,從而緩解氧化應(yīng)激。但是研究發(fā)現(xiàn)在畜牧業(yè)生產(chǎn)中需要更多安全有效的抗氧化劑,這有待于進(jìn)一步去研究開發(fā)。
熱應(yīng)激狀態(tài)下自由基產(chǎn)生過多容易引起氧化應(yīng)激給動(dòng)物機(jī)體帶來危害,本文就熱應(yīng)激引起氧化應(yīng)激的機(jī)制做了詳細(xì)闡述,該機(jī)制可作為預(yù)防熱應(yīng)激參考依據(jù)的一部分。一些自由基可作為信號分子在細(xì)胞通路中反饋抑制自由基的產(chǎn)生,如果清楚地知道在自由基作用下的細(xì)胞通路的基因在熱應(yīng)激下表達(dá)的情況,就能更好地完善該機(jī)制,更有效地緩解熱應(yīng)激引起的氧化應(yīng)激。目前緩解氧化應(yīng)激的添加劑實(shí)際效果報(bào)道不一,而且添加量沒有統(tǒng)一的標(biāo)準(zhǔn)。是否可以采取多種添加劑混合或開發(fā)更多的中草藥添加劑來更好地緩解氧化應(yīng)激,但關(guān)于這方面的研究報(bào)道還很少,有待于進(jìn)一步的研究。
表2 熱應(yīng)激條件下抗氧化非酶系統(tǒng)
表3 2010—2016年熱應(yīng)激條件下抗氧化劑研究
[1] RENAUDEAU D,COLLIN A,YAHAV S,et al.Adaptation to hot climate and strategies to alleviate heat stress in livestock production[J].Animal,2012,6(5):707-728.
[2] 寧章勇,劉思當(dāng),趙德明,等.熱應(yīng)激對肉仔雞呼吸、消化和內(nèi)分泌器官的形態(tài)和超微結(jié)構(gòu)的影響[J].畜牧獸醫(yī)學(xué)報(bào),2003,34(6):558-561.
[3] HU H,BAI X,SHAH A A,et al.Dietary supplementation with glutamine and γ-aminobutyric acid improves growth performance and serum parameters in 22-to 35-day-old broilers exposed to hot environment[J].Journal of Animal Physiology and Animal Nutrition,2016,100(2):361-370.
[4] QUINTEIRO-FILHO W M,RODRIGUES M V,RIBEIRO A,et al.Acute heat stress impairs performance parameters and induces mild intestinal enteritis in broiler chickens:role of acute hypothalamic-pituitary-adrenal axis activation[J].Journal of Animal Science,2012,90(6):1986-1994.
[5] YANG L,TAN G Y,FU Y Q,et al.Effects of acute heat stress and subsequent stress removal on function of hepatic mitochondrial respiration,ROS production and lipid peroxidation in broiler chickens[J].Comparative Biochemistry and Physiology Part C:Toxicology and Pharmacology,2010,151(2):204-208.
[6] ZENG T,LI J J,WANG D Q,et al.Effects of heat stress on antioxidant defense system,inflammatory injury,and heat shock proteins of Muscovy and Pekin ducks:evidence for differential thermal sensitivities[J].Cell Stress and Chaperones,2014,19(6):895-901.
[7] GU X H,HAO Y,WANG X L.Overexpression of heat shock protein 70 and its relationship to intestine under acute heat stress in broilers:2.intestinal oxidative stress[J].Poultry Science,2012,91(4):790-799.
[8] HALLIWELL B,WHITEMAN M.Measuring reactive species and oxidative damageinvivoand in cell culture:how should you do it and what do the results mean?[J].British Journal of Pharmacology,2004,142(2):231-255.
[9] THANAN R,OIKAWA S,HIRAKU Y,et al.Oxidative stress and its significant roles in neurodegenerative diseases and cancer[J].International Journal of Molecular Sciences,2014,16(1):193-217.
[10] BABIOR B M,LAMBETH J D,NAUSEEF W.The neutrophil NADPH oxidase[J].Archives of Biochemistry and Biophysics,2002,397(2):342-324.
[11] LIOCHEV S I,FRIDOVICH I.Superoxide and iron:partners in crime[J].IUBMB Life,1999,48(2):157-161.
[12] RAY G,HUSAIN S A.Oxidants,antioxidants and carcinogenesis[J].Indian Journal of Experimental Biology,2002,40(11):1213-1232.
[13] RUSSO A,MITCHELL J B,MCPHERSON S.The effects of glutathione depletion on thermotolerance and heat stress protein synthesis[J].British Journal of Cancer,1984,49(6):753-758.
[14] AGARWAL A,PRABAKARAN S A.Mechanism,measurement,and prevention of oxidative stress in male reproductive physiology[J].Indian Journal of Experimental Biology,2005,43(11):963-974.
[15] MANUCHA W,VALLéS P.Hsp70/nitric oxide relationship in apoptotic modulation during obstructive nephropathy[J].Cell Stress and Chaperones,2008,13(4):413-420.
[16] GAO H B,TONG M H,HU Y Q,et al.Mechanisms of glucocorticoid-induced Leydig cell apoptosis[J].Molecular and Cellular Endocrinology,2003,199(1/2):153-163.
[17] STADTMAN E R,LEVINE R L.Free radical-mediated oxidation of free amino acids and amino acid residues in proteins[J].Amino Acids,2003,25(3/4):207-218.
[18] BEERE H M,WOLF B B,CAIN K,et al.Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome[J].Nature Cell Biology,2000,2(8):469-475.
[19] KLEIN S D,BRüNE B.Heat-shock protein 70 attenuates nitric oxide-induced apoptosis in RAW macrophages by preventing cytochrome c release[J].Biochemical Journal,2002,362(3):635-641.
[20] ARNAL M E,LALLS J P.Gut epithelial inducible heat-shock proteins and their modulation by diet and the microbiota[J].Nutrition Reviews,2016,74(3):181-197.
[21] XIE J J,TANG L,LU L,et al.Differential Expression of heat shock transcription factors and heat shock proteins after acute and chronic heat stress in laying chickens (Gallusgallus)[J].PLoS One,2014,9(7):e102204.
[22] YU J M,BAO E D.Effect of acute heat stress on heat shock protein 70 and its corresponding mRNA expression in the heart,liver,and kidney of broilers[J].Asian-Australasian Journal of Animal Sciences,2008,21(8):1116-1126.
[23] REEG S,JUNG T,CASTRO J P,et al.The molecular chaperone hsp70 promotes the proteolytic removal of oxidatively damaged proteins by the proteasome[J].Free Radical Biology and Medicine,2016,99:153-166.
[24] ZACHUT M,KRA G,LIVSHITZ L,et al.Seasonal heat stress affects adipose tissue proteome toward enrichment of theNrf2-mediated oxidative stress response in late-pregnant dairy cows[J].Journal of Proteomics,2017,158:52-61.
[25] 黃毅.熱應(yīng)激對小鼠肝臟抗氧化功能的影響及日糧添加TBHQ的緩解作用研究[D].碩士學(xué)位論文.南京:南京農(nóng)業(yè)大學(xué),2012.
[26] SHOLOMSKAS L M,ROCHE K L,BLOOMER S A.Aging impairs induction of redox factor-1 after heat stress:a potential mechanism for heat-induced liver injury[J].International Journal of Physiology Pathophysiology & Pharmacology,2015,7(1):14-26.
[27] SUSKI J M,SCH?NFELD P,BONORA M,et al.Guanosine diphosphate exerts a lower effect on superoxide release from mitochondrial matrix in the brains of uncoupling protein-2 knockout mice:new evidence for a putative novel function of uncoupling proteins as superoxide anion transporters[J].Biochemical and Biophysical Research Communications,2012,428(2):234-238.
[28] NABBEN M,HOEKS J,BRIEDé J J,et al.The effect ofUCP3 overexpression on mitochondrial ROS production in skeletal muscle of young versus aged mice[J].FEBS Letters,2008,582(30):4147-4152.
[29] AFFOURTIT C,JASTROCH M,BRAND M D.Uncoupling protein-2 attenuates glucose-stimulated insulin secretion in INS-1E insulinoma cells by lowering mitochondrial reactive oxygen species[J].Free Radical Biology and Medicine,2011,50(5):609-616.
[30] MUJAHID A,SATO K,AKIBA Y,et al.Acute heat stress stimulates mitochondrial superoxide production in broiler skeletal muscle,possibly via downregulation of uncoupling protein content[J].Poultry Science,2006,85(7):1259-1265.
[31] BOUCHARD J N,YAMASAKI H.Heat stress stimulates nitric oxide production inSymbiodiniummicroadriaticum:a possible linkage between nitric oxide and the coral bleaching phenomenon[J].Plant and Cell Physiology,2008,49(4):641-652.
[32] ISCHIROPOULOS H,ZHU L,CHEN J,et al.Peroxynitrite-mediated tyrosine nitration catalyzed by superoxide dismutase[J].Archives of Biochemistry and Biophysics,1992,298(2):431-437.
[33] REED T T.Lipid peroxidation and neurodegenerative disease[J].Free Radical Biology and Medicine,2011,51(7):1302-1319.
[34] ISCHIROPOULOS H,AL-MEHDI A B.Peroxynitrite-mediated oxidative protein modifications[J].FEBS Letters,1995,364(3):279-282.
[35] DAWSON T M,DAWSON V L,SNYDER S H.Molecular mechanisms of nitric oxide actions in the brain[J].Annals of the New York Academy of Sciences,1994,738:76-85.
[36] GUAN K L,XIONG Y.Regulation of intermediary metabolism by protein acetylation[J].Trends in Biochemical Sciences,2011,36(2):108-116.
[37] PAMOK S,AENGWANICH W,KOMUTRIN T.Adaptation to oxidative stress and impact of chronic oxidative stress on immunity in heat-stressed broilers[J].Journal of Thermal Biology,2009,34(7):353-357.
[38] CHAND N,MUHAMMAD S,KHAN R U,et al.Ameliorative effect of synthetic γ-aminobutyric acid (GABA) on performance traits,antioxidant status and immune response in broiler exposed to cyclic heat stress[J].Environmental Science and Pollution Research International,2016,23(23):23930-23935.
[39] 李燕.有機(jī)鉻對熱應(yīng)激肉鴨腸黏膜形態(tài)、HSP70 mRNA和抗氧化能力的影響[D].碩士學(xué)位論文.武漢:華中農(nóng)業(yè)大學(xué),2013.
[40] DEL VESCO A P,GASPARINO E,ZANCANELA V,et al.Effects of selenium supplementation on the oxidative state of acute heat stress-exposed quails[J].Animal Physiology and Animal Nutrition,2017,101(1):170-179.
[41] 宋小珍,付戴波,瞿明仁,等.熱應(yīng)激對肉牛血清內(nèi)分泌激素含量、抗氧化酶活性及生理生化指標(biāo)的影響[J].動(dòng)物營養(yǎng)學(xué)報(bào),2012,24(12):2485-2490.
[42] 胡煜,蔡明成,王玲,等.熱應(yīng)激狀態(tài)下牛血清生化指標(biāo)、miRNA表達(dá)變化及其相關(guān)性分析[J].畜牧獸醫(yī)學(xué)報(bào),2016,47(9):1840-1847.
[43] 許嘯.奶山羊高溫預(yù)警指標(biāo)的篩選及有機(jī)鉻調(diào)控作用研究[D].碩士學(xué)位論文.武漢:華中農(nóng)業(yè)大學(xué),2013.
[44] YIN L L,ZHANG Y,GUO D M,et al.Effects of zinc on interleukins and antioxidant enzyme values in psoriasis-induced mice[J].Biological Trace Element Research,2013,155(3):411-415.
[45] ZHENG J J,ZHANG Y,XU W T,et al.Zinc protects HepG2 cells against the oxidative damage and DNA damage induced by ochratoxin A[J].Toxicology and Applied Pharmacology,2013,268(2):123-131.
[47] 顏雪明,洪敏,張華,等.微量元素硒及有機(jī)硒藥物研究進(jìn)展[J].廣東微量元素科學(xué),2003,10(9):1-10.
[48] ZHANG H J,XU L,DRAKE V J,et al.Heat-induced liver injury in old rats is associated with exaggerated oxidative stress and altered transcription factor activation[J].FASEB Journal,2003,17(12):2293-2295.
[49] XU D N,LI W Y,HUANG Y M,et al.The effect of selenium and polysaccharide ofAtractylodesmacrocephalaKoidz. (PAMK) on immune response in chicken spleen under heat stress[J].Biological Trace Element Research,2014,160(2):232-237.
[50] 李文立,路靜,孫振鈞,等.谷氨酰胺對熱應(yīng)激肉雞抗氧化性能的影響[J].動(dòng)物營養(yǎng)學(xué)報(bào),2011,23(4):695-702.
[51] ZHU Y Z,CHENG J L,REN M,et al.Effect of γ-Aminobutyric acid-producingLactobacillusstrain on laying performance,egg quality and serum enzyme activity in Hy-line brown hens under heat stress[J].Asian-Australasian Journal of Animal Sciences,2015,28(7):1006-1013.
[52] KIKUSATO M,NAKAMURA K,MIKAMI Y,et al.The suppressive effect of dietary coenzyme Q10on mitochondrial reactive oxygen species production and oxidative stress in chickens exposed to heat stress[J].Animal Science Journal,2015,87(10):1244-1251.
[53] 朱勇文.飼糧錳、鋅對肉雞的抗熱應(yīng)激效應(yīng)及其分子機(jī)制的研究[D].博士學(xué)位論文.北京:中國農(nóng)業(yè)大學(xué),2016.
[54] SAHIN N,ORHAN C,TUZCU M,et al.Capsaicinoids improve egg production by regulating ovary nuclear transcription factors against heat stress in quail[J].British Poultry Science,2016,58(2):177-183.
[55] 胡永靈,葉世莉,羅佳捷.中草藥制劑對熱應(yīng)激奶牛泌乳性能、抗氧化能力及免疫功能的影響[J].草業(yè)學(xué)報(bào),2015,24(1):132-140.
[56] LIU F,COTTRELL J J,FURNESS J B,et al.Selenium and vitamin E together improve intestinal epithelial barrier function and alleviate oxidative stress in heat-stressed pigs[J].Experimental Physiology,2016,101(7):801-810.
*Corresponding author, associate professor, E-mail: zhiliqi@mail.hzau.edu.cn
(責(zé)任編輯 王智航)
Mechanism of Oxidative Stress in Body under Heat Stress
ZHANG Yifeng QI Zhili*
(College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China)
Heat stress is the nonspecific physiological responses of body to heat exposure at high ambient temperature. A large number of studies show that heat stress can cause the body redox unbalance, which results in oxidative stress, damaged cells and tissues, and affecting growth and development as well as health. This research on heat stress has always been a hot research field both at home and abroad. With the increase of global temperature, the problem of heat stress will become more prominent. In this paper, the mechanism of oxidative stress under heat stress is reviewed to provide a reference for the following study.[ChineseJournalofAnimalNutrition,2017,29(9):3051-3058]
heat stress; oxidative stress; antioxidant system; reactive oxygen species; reactive nitrogen species
10.3969/j.issn.1006-267x.2017.09.005
2017-03-01
國家重點(diǎn)研發(fā)項(xiàng)目(2016YFD0500507);湖北省科技支撐計(jì)劃項(xiàng)目(2014BBA205);華中農(nóng)業(yè)大學(xué)重點(diǎn)引智項(xiàng)目(110000200420170126);校自主科技創(chuàng)新培育專項(xiàng)(2662016PY010)
張軼鳳(1994—),女,河南商丘人,碩士研究生,從事反芻動(dòng)物營養(yǎng)研究。E-mail: 2494318936@qq.com
*通信作者:齊智利,副教授,碩士生導(dǎo)師,E-mail: zhiliqi@mail.hzau.edu.cn
S852.2
:A
:1006-267X(2017)09-3051-08