• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      OSCILLATION OF NONLINEAR IMPULSIVE DELAY HYPERBOLIC EQUATION WITH FUNCTIONAL ARGUMENTS VIA RICCATI METHOD

      2017-09-15 05:55:57ZOUMinCHENRongsanLIUAnping
      數(shù)學(xué)雜志 2017年5期
      關(guān)鍵詞:陳榮卡蒂方程解

      ZOU Min,CHEN Rong-san,LIU An-ping

      (School of Mathematics and Physics,China University of Geosciences,Wuhan 430074,China)

      OSCILLATION OF NONLINEAR IMPULSIVE DELAY HYPERBOLIC EQUATION WITH FUNCTIONAL ARGUMENTS VIA RICCATI METHOD

      ZOU Min,CHEN Rong-san,LIU An-ping

      (School of Mathematics and Physics,China University of Geosciences,Wuhan 430074,China)

      In this paper,we mainly deal with the oscillation problems of nonlinear impulsive hyperbolic equation with functional arguments.By using integral averaging method and a generalized Riccati technique,a sufficient condition for oscillation of the solutions of nonlinear impulsive hyperbolic equation with functional arguments is obtained.We can make better use of some existing conclusions about oscillation of the solutions of impulsive ordinary dif f erential equations with delay.

      oscillation;impulsive;delay;hyperbolic equation;Riccati inequality

      1 Introduction

      The theories of nonlinear partial functional di ff erential equations are applied in many fi elds.In recent years the research of oscillation to impulsive partial di ff erential systems caught more and more attention.In this paper,we study the oscillation properties of the solutions to impulsive delay hyperbolic equation

      The following is the boundary conditionwhere G is a bounded domain of Rnwith the smooth boundary?G and n is the unit exterior normal vector to?G.

      Following are the basic hypothesis

      (H1)r(t)∈C([0,+∞);(0,+∞)),a(t),bi(t)∈PC([0,+∞);[0,+∞)),i=1,2,···,n.j=1,2,···,m,where PC denotes the class of functions which are piecewise continuous in t with discontinuities of the fi rst kind only at t=tk,k=1,2,···.

      (H2)τi(t)∈C([0,+∞);R)=+∞,i=1,2,···,n.

      (H3)h(u),hi(u)∈C(R,R),uh(u)≥0,uh′(u)≥0,≥0,i=1,2,···,n;φj(s)∈C(R,R),=const.>0 for s 6=0.αk,βk=const.>-1,0<t1<t2<···<tk<

      We introduce the notations

      De fi nition 1.1The solution u(x,t)of the problems(1.1)-(1.4)is said to be nonoscillatory in domain Ω if it is either eventually positive or eventually negative.Otherwise,it is called oscillatory.

      Def i nition 1.2We say that functions Hi,i=1,2,belong to a function class H,if Hi∈C(D;[0,+∞)),i=1,2,satisfy

      1.Hi(t,s)=0,i=1,2 for t=s, 2.Hi(t,s)>0,i=1,2 for t>s,

      where D={(t,s):0<s≤t<+∞}.Moreover,the partial derivatives?H1/?s and?H2/?s exist on D such that

      where h1,h2∈Cloc(D;R).

      In recent years,there was much research activity concerning the oscillation theory of nonlinear hyperbolic equations with functional arguments by employing Riccati technique. Riccati techniques were used to obtain various oscillation results.Recently,Shoukaku and Yoshida[2]derived oscillation criteria by using oscillation criteria of Riccati inequality.In this work,we study the hyperbolic equation with impulsive.

      2 Main Results

      Theorem 2.1If for each T≥0,there exist(H1,H2)∈H and a,b,c∈R such that T≤a<c<b and

      then every solution of the problems(1.1)-(1.4)oscillates in Ω,where

      ProofSuppose to the contrary that there is a nonoscillatory solution u(x,t)of the problems(1.1)-(1.4).Without loss of generality we may assume that u(x,t)>0 in G× [t0,+∞)for some t0>0 because the case where u(x,t)<0 can be treated similarly.Since (H2)holds,we see that u(x,τi(t))>0(i=1,2,···n)in G×[t1,+∞)for some t1≥t0.

      (1)For t≥t1,t 6=tk,k=1,2,···,integrating(1)with respect to x over G,we obtain

      that is

      Thus we obtain that the functions U(t)is a eventually positive solution of the impulsive dif f erential inequality

      Multiplying(2.4)by H2(t,s)and integrating over[c,t]for t∈[c,b),we have

      which contradicts condition(2.1).

      [1]Lakshmikantham V,Bainov D,Simeonov P S.Theory of impulsive dif f erential equations[M].Singapore:World Scientif i c,1989.

      [2]Yutaka Shoukaku,Norio Yoshida.Oscillations of nonlinear hyperbolic equations with functional arguments via Riccati method[J].Appl.Math.Comput.,2010,217:143-151.

      [3]Luo Zhiguo,Shen Jianhua.Oscillations of second linear dif f erential equations with impulses[J].Appl. Math.Lett.,2007,20:75-81.

      [4]Bainov D D,Minchev E.Oscillation of the solutions of impulsive parabolic equations[J].J.Comput. Appl.Math.,1996,69:207-214.

      [5]Liu Anping,Liu Ting,Zou Min.Oscillation of nonlinear impulsive parabolic dif f erential equations of neutral type[J].Rocky Mount.J.Math.,2011,41:833-850.

      [6]Chen Rongsan,Zou Min,Liu Anping.Comparison of several numerical schemes for scalar linear advaction equation[J].J.Math.,2015,35(4):977-982.

      里卡蒂方法研究帶泛函參數(shù)的非線性脈沖時(shí)滯雙曲方程的振動(dòng)性

      鄒敏,陳榮三,劉安平

      (中國(guó)地質(zhì)大學(xué)(武漢)數(shù)學(xué)與物理學(xué)院,湖北武漢430074)

      本文研究了帶泛函參數(shù)的非線性脈沖時(shí)滯雙曲方程的振動(dòng)性問題.利用積分平均法和里卡蒂方法得到了這類方程解的振動(dòng)性的一個(gè)充分條件,對(duì)非線性時(shí)滯雙曲方程解的震動(dòng)性進(jìn)行了推廣,能更好地利用一些現(xiàn)有的脈沖時(shí)滯常微分方程解的振動(dòng)性的結(jié)論.

      振動(dòng);脈沖;時(shí)滯;雙曲方程;Riccati不等式

      O175.27

      A

      0255-7797(2017)05-1007-06

      ?Received date:2015-11-25Accepted date:2016-03-04

      Supported by National Natural Science Foundation of China(11201436).

      Biography:Zou min(1981-),female,born at Xiantao,Hubei,lecturer,major in partial dif f erential equation.

      2010 MR Subject Classif i cation:58J45;35B05

      猜你喜歡
      陳榮卡蒂方程解
      陳榮:做一只奔跑、跳躍的“袋鼠”
      Navier-Stokes-Coriolis方程解的長(zhǎng)時(shí)間存在性
      一類Choquard型方程解的存在性
      送給世界一棵卷心菜
      世界上最矮小夫妻
      中老年健康(2016年9期)2016-11-18 15:25:16
      送給世界一棵卷心菜
      灰太狼的陰謀
      一類Kirchhoff-Poisson方程解的存在性
      重慶暖男“暖化”法國(guó)美女
      258條評(píng)論追愛,重慶暖男搞定法國(guó)女神
      南投市| 信阳市| 盱眙县| 吐鲁番市| 井陉县| 绵阳市| 湖口县| 九龙县| 汾西县| 博爱县| 呼图壁县| 长海县| 长岭县| 玉门市| 綦江县| 仙桃市| 双牌县| 赤水市| 将乐县| 太湖县| 崇信县| 盐山县| 清流县| 黄冈市| 平罗县| 柘荣县| 山西省| 天峨县| 襄城县| 刚察县| 宝鸡市| 宜都市| 北辰区| 桐庐县| 轮台县| 乌兰察布市| 琼中| 乌兰浩特市| 阜阳市| 贡山| 布尔津县|