• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    回轉(zhuǎn)窯熱解氣化爐處理生活垃圾特性

    2017-09-15 13:43:28夏訓(xùn)峰王京剛王麗君呂慧瑜
    環(huán)境科學(xué)研究 2017年9期
    關(guān)鍵詞:回轉(zhuǎn)窯焦油氣化爐

    韋 超, 夏訓(xùn)峰, 王京剛, 王麗君, 呂慧瑜, 張 穎

    1.中國環(huán)境科學(xué)研究院, 國家環(huán)境保護(hù)地下水污染過程模擬與控制重點(diǎn)實(shí)驗室, 北京 100012 2.北京化工大學(xué)化學(xué)工程學(xué)院, 北京 100029

    回轉(zhuǎn)窯熱解氣化爐處理生活垃圾特性

    韋 超1,2, 夏訓(xùn)峰1*, 王京剛2, 王麗君1, 呂慧瑜2, 張 穎1

    1.中國環(huán)境科學(xué)研究院, 國家環(huán)境保護(hù)地下水污染過程模擬與控制重點(diǎn)實(shí)驗室, 北京 100012 2.北京化工大學(xué)化學(xué)工程學(xué)院, 北京 100029

    熱解氣化爐; 熱解氣化; 預(yù)熱空氣溫度; 過量空氣系數(shù)

    在國內(nèi),目前常用的氣化技術(shù)是采用固定床和流化床氣化,以常溫或預(yù)熱溫度不高的普通空氣或富氧空氣作為氣化劑[23]. 高溫空氣氣化技術(shù)的開發(fā)與研究還處于萌芽時期. 為緊跟國際研究前沿,縮短我國在高溫空氣氣化技術(shù)方面與國外先進(jìn)技術(shù)的差距,積極開展高溫空氣氣化技術(shù)的研究與開發(fā),將具有十分重要的意義. 目前,關(guān)于高溫預(yù)熱空氣氣化技術(shù)的研究及報道集中在固定床和流化床,而關(guān)于回轉(zhuǎn)窯式熱解氣化爐[24]的相關(guān)研究甚少.

    鑒于此,該試驗采用福建農(nóng)村地區(qū)生活垃圾(與城市生活垃圾相比規(guī)模小)作為研究對象,根據(jù)村鎮(zhèn)生活垃圾分散性處理模式,在小型回轉(zhuǎn)窯式熱解干餾氣化爐中對村鎮(zhèn)生活垃圾氣化特性進(jìn)行系統(tǒng)的研究. 分別考察預(yù)熱空氣溫度[25]和過量空氣系數(shù)[26]對村鎮(zhèn)生活垃圾的熱解氣化特性的影響,分析其熱解氣化燃?xì)夂?、氣態(tài)污染物濃度及焦油的成分,并對熱解氣化產(chǎn)生的飛灰和底渣中的重金屬含量進(jìn)行分析,以期為村鎮(zhèn)生活垃圾小型回轉(zhuǎn)窯式[27]熱解氣化爐的設(shè)計和運(yùn)行提供參考.

    1 材料方法

    1.1樣品采集

    采集經(jīng)過篩選、破碎、磁選及干燥后的進(jìn)爐垃圾,垃圾的工業(yè)成分分析得到水分、揮發(fā)分、灰分、固定碳的含量分別為21.8%、39.6%、26.2%、12.4%. 垃圾經(jīng)元素分析得到C、H、N、S含量分別為35.3%、2.78%、0.800%、0.210%. 垃圾的熱值為9.10 MJ/kg.

    試驗設(shè)計如下:

    a) 熱解氣化試驗. 將垃圾樣品經(jīng)過地秤稱量后,運(yùn)送到垃圾儲藏室進(jìn)行滲濾處理. 經(jīng)過滲濾處理的垃圾先通過人工篩選,把較大塊的金屬以及泥磚等難以燃燒的物質(zhì)分揀出來,初步提高了垃圾的燃燒效率. 人工篩選后的垃圾經(jīng)鏈?zhǔn)絺魉蛶屯鶟L筒篩,經(jīng)過3個滾筒篩的篩選后的垃圾送入到垃圾儲存?zhèn)}放置、滲濾. 儲存?zhèn)}放置一段時間的垃圾送往破碎機(jī)進(jìn)行充分破碎. 然后,將儲藏室的垃圾送往干燥滾筒干燥處理,干燥后的垃圾送往回轉(zhuǎn)窯式垃圾熱解氣化爐處理. 熱解燃?xì)饨?jīng)水封除塵[28]以及電捕焦[29]處理后通往二燃室再燃燒,燃燒后的煙氣經(jīng)凈化系統(tǒng)處理后排放到大氣中.

    b) 不同預(yù)熱空氣溫度下過量空氣系數(shù)對回轉(zhuǎn)窯熱解氣化特性的影響試驗. 根據(jù)熱解氣化爐處理垃圾的熱解氣化段溫度為700 ℃左右,試驗設(shè)置預(yù)熱空氣溫度為常溫(25 ℃)、100、200、500、700 ℃,研究回轉(zhuǎn)窯熱解氣化爐[30]中過量空氣系數(shù)(a)對氣化氣的影響. 垃圾在小型回轉(zhuǎn)窯式熱解氣化爐中模擬研究設(shè)定的過量空氣系數(shù)變化范圍為0.4~1.0. 過量空氣系數(shù)變化間距為0.2,分別收集熱解氣化氣進(jìn)行氣體含量的分析,計算熱解氣化氣中各種氣體的含量百分比.

    c) 焦油含量分析試驗. 過量空氣系數(shù)為0.4時,空氣預(yù)熱溫度為500、700 ℃條件下,采集該回轉(zhuǎn)窯式熱解氣化爐中產(chǎn)生的焦油進(jìn)行分析測試.

    d) 重金屬含量分析試驗. 過量空氣系數(shù)為0.4以及空氣預(yù)熱溫度為500 ℃條件下,收集該回轉(zhuǎn)窯式熱解氣化爐中產(chǎn)生的底渣、飛灰進(jìn)行重金屬離子含量[31]的分析測試.

    1.2試驗裝置及方法

    村鎮(zhèn)生活垃圾熱解氣化裝置見圖1. 采用該裝置測定垃圾熱解氣化特性時,準(zhǔn)確控制進(jìn)氣量是關(guān)鍵,也是難度最大的問題. 該試驗采用控制變量方法研究村鎮(zhèn)生活垃圾的熱解氣化特性,此小型回轉(zhuǎn)窯式熱解氣化爐處理量為2 t/d,進(jìn)料速率為80 kg/h.

    檢測方法、儀器及檢出限如表1所示.

    圖1 村鎮(zhèn)生活垃圾熱解氣化裝置Fig.1 Pyrolysis gasification unit of rural garbage

    檢測項(以ρ計,mg∕m3)檢測方法使用儀器檢出限∕(mg∕m3)顆粒物重量法,參照GB∕T16157—1996《固定污染源排氣中顆粒物測定與氣態(tài)污染物采用方法》自動煙塵測量儀(SMG100,益康RBR公司,德國)2SO2HJ∕T57—2000《固定污染源排氣中二氧化硫的測定定電位電解法》自動煙塵測量儀(SMG100,益康RBR公司,德國)1HClHJ∕T27—1999《固定汚染源排氣中氯化氫的測定硫氰酸汞分光光度法》大氣采樣器〔UV1601北京北分瑞利分析儀器(集團(tuán))有限責(zé)任公司〕0.01NOxHJ693—2014固定汚染源氮氧化物的測定定電位電解法自動煙塵測量儀(SMG100,益康RBR公司,德國)1CO非分散紅外吸收法自動煙塵測量儀(SMG100,益康RBR公司,德國)1Pb原子吸收分光光度法原子吸收分光光度計(AA-7000,島津公司,日本)0.002Cd原子吸收分光光度法原子吸收分光光度計(AA-7000,島津公司,日本)0.001Hg原子吸收分光光度法原子吸收分光光度計(AA-7000,島津公司,日本)0.0005As原子吸收分光光度法原子吸收分光光度計(AA-7000,島津公司,日本)0.01Cu原子吸收分光光度法原子吸收分光光度計(AA-7000,島津公司,日本)0.1

    續(xù)表1

    2 結(jié)果與討論

    2.1過量空氣系數(shù)對垃圾熱解氣化燃?xì)獬煞值挠绊?/p>

    由圖2可見,當(dāng)過量空氣系數(shù)為0.4、0.6、0.8時,熱解可燃?xì)怏wφ(CO)隨著預(yù)熱空氣溫度的增加逐漸減少. 當(dāng)過量空氣系數(shù)為1.0時,熱解氣化可燃?xì)怏wφ(CO)隨著預(yù)熱空氣溫度的增加逐漸增加,此時熱解氣化爐以燃燒為主. 當(dāng)過量空氣系數(shù)為0.4時,熱解氣化產(chǎn)生的φ(CO)最大(變化范圍為9.02%~6.03%),隨著過量空氣系數(shù)的增大,φ(CO)逐漸減少.

    圖2 不同預(yù)熱空氣溫度下熱解氣化可燃?xì)獬煞肿兓疐ig.2 Variation of pyrolysis gasification gas composition under different preheated air temperature

    以上趨勢說明,隨著預(yù)熱空氣溫度的增加氣化φ(CO)減少,高溫預(yù)熱空氣條件下,不利于CO的生成;隨著過量空氣系數(shù)的增大,熱解氣化爐反應(yīng)由氣化轉(zhuǎn)向燃燒,φ(CO)幾乎忽略不計,熱解氣化產(chǎn)物以CO2為主. 隨著預(yù)熱空氣系數(shù)的增大,氧氣量增大,CO燃燒轉(zhuǎn)化為CO2的化學(xué)反應(yīng)增強(qiáng)[33],φ(CO)的增加有助于提高熱解汽化爐燃燒段的溫度,使得熱解產(chǎn)生的炭黑等小分子有機(jī)物燃燒更充分. CO2的生成如式(1)(2)所示.

    (1)

    (2)

    當(dāng)過量空氣系數(shù)為0.4、0.6、0.8時,熱解氣化可燃?xì)怏wφ(H2)隨著預(yù)熱空氣溫度的增加逐漸增加,當(dāng)過量空氣系數(shù)為0.4時,φ(H2)增幅最大(增加了7.14%),并且φ(H2)比重達(dá)到最大值. 當(dāng)過量空氣系數(shù)為1.0時,熱解氣化可燃?xì)怏wφ(H2)隨著預(yù)熱空氣溫度的增加先增加后減少,并且φ(H2)減少幾乎可以忽略,同時也證明了熱解氣化由氣化轉(zhuǎn)向了燃燒. 當(dāng)過量空氣系數(shù)為0.4時,熱解氣化φ(H2)相對較大(預(yù)熱空氣溫度為700 ℃時體積分?jǐn)?shù)達(dá)到了7.10%),隨著過量空氣系數(shù)的增大,φ(H2)相對減少. 以上趨勢說明,預(yù)熱空氣溫度的增加,熱解氣化φ(H2)增加,高溫預(yù)熱空氣條件下,有利于H2的生成;隨過量空氣系數(shù)的增大,熱解氣化爐反應(yīng)由氣化轉(zhuǎn)向燃燒,φ(H2)減少.

    φ(H2)的減少,意味著水蒸汽含量的增大,過量水蒸汽含量會降低垃圾熱解氣化的效率,適宜的H2O(蒸汽體積)/B(B為生活垃圾質(zhì)量)[34]有利于垃圾的熱解氣化反應(yīng)的進(jìn)行,當(dāng)水蒸汽含量高于一定值時會抑制垃圾熱解氣化反應(yīng)的進(jìn)行;水蒸汽含量會反過來影響H2及其他可燃?xì)怏w的生成,從而影響熱解氣化效率.

    當(dāng)過量空氣系數(shù)為0.4、0.6時,熱解氣化可燃?xì)怏wφ(CH4)隨著預(yù)熱空氣溫度的增加逐漸減少,此時預(yù)熱空氣溫度升高不利于CH4的產(chǎn)生. 當(dāng)過量空氣系數(shù)為0.8時,熱解氣化可燃?xì)怏wφ(CH4)隨著預(yù)熱空氣溫度的增加逐漸增加;當(dāng)過量空氣系數(shù)為1.0時,熱解氣化可燃?xì)怏wφ(CH4)隨著預(yù)熱空氣溫度的增加先增大后減小;當(dāng)過量空氣系數(shù)為0.4時,熱解氣化可燃?xì)怏wφ(CH4)相對較大. 以上結(jié)果說明,φ(CH4)受到過量空氣系數(shù)及預(yù)熱空氣溫度雙重因素的影響. 總體來說,隨著過量空氣系數(shù)的增大,熱解氣化爐反應(yīng)由熱解氣化轉(zhuǎn)向燃燒,熱解氣化可燃?xì)猞?CH4)減少. 隨著φ(H2)與φ(CO)的增加,甲烷化反應(yīng)[35]增強(qiáng),反應(yīng)如式(3)~(5)所示.

    2CO+2H2→CH4+CO2

    (3)

    CO+3H2?CH4+H2O

    (4)

    CO2+4H2→CH4+2H2O

    (5)

    CO和H2的生成也會促進(jìn)甲烷化反應(yīng)的進(jìn)行,CO和H2的生成與甲烷化反應(yīng)之間互相促進(jìn)、互相影響. 因此探究出合適的工藝條件使得這三種物質(zhì)生成含量相對較大對熱解氣化反應(yīng)的進(jìn)行有意義,從而提高能源利用率.

    綜上,當(dāng)過量空氣系數(shù)為0.4時,該回轉(zhuǎn)窯式熱解氣化可燃?xì)饪偤肯鄬^大,對垃圾的熱解氣化有利. 相比于“爐排爐、流化床爐工藝”,“回轉(zhuǎn)窯式熱解氣化工藝”利用氣化可燃?xì)馊紵?,減少了熱量的流失,無需外援加熱,提高了垃圾熱能的利用. 因此,“回轉(zhuǎn)窯式熱解氣化工藝”垃圾熱能利用率較高.

    2.2過量空氣系數(shù)對垃圾熱解氣化污染物生成的影響

    由圖3可見,當(dāng)過量空氣系數(shù)為0.4時,污染物ρ(SO2)、ρ(NO)、ρ(NO2)隨著預(yù)熱空氣溫度的增大而逐漸減少,ρ(HCl)、ρ(N2O)、ρ(NH3)隨著預(yù)熱空氣溫度的增大趨于不變,并且ρ(N2O)、ρ(NH3)相近,變化相似,變化趨勢線接近重疊. 當(dāng)過量空氣系數(shù)為0.6時,污染物ρ(NO)、ρ(NO2)、ρ(HCl)隨著預(yù)熱空氣溫度的增大而逐漸減少,污染物ρ(SO2)、ρ(N2O)、ρ(NH3)隨著預(yù)熱空氣溫度的增大趨于不變,并且ρ(N2O)可以忽略不計,ρ(SO2)與ρ(NH3)相近,變化相似,變化趨勢線接近重疊. 當(dāng)過量空氣系數(shù)為0.8時,污染物ρ(NO)隨著預(yù)熱空氣溫度的增大而逐漸增加,污染物ρ(SO2)隨著預(yù)熱空氣溫度的增大而逐漸減小. 污染物ρ(HCl)、ρ(NO2)、ρ(N2O)、ρ(NH3)隨著預(yù)熱空氣溫度的增大而趨于不變,ρ(NH3)幾乎可以忽略不計,其中ρ(NO2)與ρ(N2O)相近,變化相似,變化趨勢線接近重疊. 當(dāng)過量空氣系數(shù)為1.0時,污染物ρ(SO2)、ρ(NO)、ρ(HCl)隨著預(yù)熱空氣溫度的增大而逐漸減小,污染物ρ(NO2)、ρ(N2O)、ρ(NH3)隨著預(yù)熱空氣溫度的逐漸升高而趨于不變,ρ(NO2)與ρ(NH3)幾乎可以忽略不計.

    當(dāng)過量空氣系數(shù)為0.4和1.0時,污染物生成量相對較小,并且經(jīng)2.1節(jié)研究發(fā)現(xiàn),過量空氣系數(shù)為0.4時,垃圾熱解產(chǎn)生可燃?xì)怏w生成量相對較大. 過量空氣系數(shù)為0.4且預(yù)熱空氣溫度為500、700 ℃時,該回轉(zhuǎn)窯式熱解氣化工藝運(yùn)行工況的煙氣達(dá)到了GB 18485—2014《生活垃圾焚燒污染控制標(biāo)準(zhǔn)》的要求.

    2.3過量空氣系數(shù)和預(yù)熱空氣溫度對焦油及重金屬生成的影響

    預(yù)熱空氣溫度為500、700 ℃下焦油中各組分所占比例變化情況如表2所示,當(dāng)過過量空氣系數(shù)為0.4時,空氣預(yù)熱溫度為500 ℃下焦油中不含有非苯環(huán)類物質(zhì)和1個苯環(huán)類物質(zhì). 而在過量空氣系數(shù)為0.6、0.8、1.0時,預(yù)熱空氣溫度為700 ℃下焦油中非苯環(huán)類物質(zhì)所占比例小于預(yù)熱空氣溫度為500 ℃下的值. 在過量空氣系數(shù)為0.6和0.8時,預(yù)熱空氣溫度為700 ℃下焦油中1個苯環(huán)類物質(zhì)所占比例小于預(yù)熱空氣溫度為500 ℃下的值,但過量空氣系數(shù)為1.0時,情況與之相反. 同樣,當(dāng)過量空氣系數(shù)為0.4時,預(yù)熱空氣溫度500 ℃下焦油中不含有2個苯環(huán)和3~4個苯環(huán)類物質(zhì). 當(dāng)過量空氣系數(shù)為1.0時,預(yù)熱空氣溫度為700 ℃下焦油中2個苯環(huán)類物質(zhì)所占比例小于預(yù)熱空氣溫度為500 ℃下的值,當(dāng)過量空氣系數(shù)為其他值時,預(yù)熱空氣溫度為700 ℃下焦油中2個苯環(huán)和3~4個苯環(huán)類物質(zhì)所占比例都大于預(yù)熱空氣溫度為500 ℃下的值. 所以當(dāng)過量空氣系數(shù)為0.4,預(yù)熱空氣溫度為500 ℃時,該回轉(zhuǎn)窯式熱解氣化爐焦油生成量較小.

    過量空氣系數(shù)焦油中各組分所占比例∕%非苯環(huán)1個苯環(huán)2個苯環(huán)3~4個苯環(huán)500℃700℃500℃700℃500℃700℃500℃700℃0.408.930010.63056.63022.760.622.3910.9227.0312.3036.0747.0414.4829.720.818.3210.0325.867.62038.0648.0317.7333.481.019.3015.7333.4254.1534.4012.7612.8517.34

    根據(jù)固體廢物浸出毒性浸出方法[36],且2.1節(jié)與2.2節(jié)所述的村鎮(zhèn)生活垃圾熱解氣化過程中氣態(tài)污染物生成含量相對較小的試驗條件為過量空氣系數(shù)為0.4、空氣預(yù)熱溫度為500 ℃. 因此將垃圾原樣在過量空氣系數(shù)為0.4、空氣預(yù)熱溫度為500 ℃條件下的底渣、飛灰做重金屬含量的分析測試,共測試了六種重金屬——Cr、Cu、Zn、As、Cd和Pb. 測試結(jié)果與GB 18598—2001《危險廢物填埋污染控制標(biāo)準(zhǔn)》[37]的對比見表3. 根據(jù)檢測結(jié)果,該回轉(zhuǎn)窯式熱解氣化爐熱解產(chǎn)生的爐渣作為制作環(huán)保磚的原料處理.

    由表3中可見,垃圾原樣中ρ(Zn)較高,但這六種重金屬的含量均低于GB 18598—2001標(biāo)準(zhǔn)限值. 底渣中ρ(Zn)、ρ(Cr)較高[38],但也低于GB 18598—2001標(biāo)準(zhǔn)限值. 飛灰中ρ(Pb)超過了GB 18598—2001限值,為17.400 mg/L,約為GB 18598—2001限值的3.5倍. 此外飛灰中Zn、Cd、Cu的含量也較高,其中ρ(Zn)接近GB 18598—2001限值的1/2.

    表3 檢測結(jié)果和GB 18598—2001標(biāo)準(zhǔn)對比的數(shù)據(jù)匯總

    根據(jù)上述檢測結(jié)果,需要對該回轉(zhuǎn)窯式熱解氣化工藝進(jìn)一步優(yōu)化,增加布袋除塵裝置,并增設(shè)活性炭吸附裝置,減少飛灰的外溢. 布袋除塵裝置收集的飛灰先經(jīng)過固化和穩(wěn)定化,然后送到垃圾填埋場進(jìn)行安全填埋處理.

    3 結(jié)論

    a) 該回轉(zhuǎn)窯式熱解氣化工藝中,熱解氣化φ(CO)隨著預(yù)熱空氣溫度的增加而減少,高溫預(yù)熱空氣條件下,不利于CO的生成;隨著過量空氣系數(shù)的增大,熱解氣化爐反應(yīng)由氣化轉(zhuǎn)向燃燒,φ(CO)增加. 熱解氣化φ(H2)隨著預(yù)熱空氣溫度的增大而增加,高溫預(yù)熱空氣條件下,有利于H2的生成;隨過量空氣系數(shù)的增大,熱解氣化爐反應(yīng)由熱解氣化轉(zhuǎn)向燃燒,φ(H2)減少.

    b) 該回轉(zhuǎn)窯式熱解氣化工藝中,φ(CH4)受到過量空氣系數(shù)及預(yù)熱空氣溫度雙重因素的影響. 總體來說,隨著過量空氣系數(shù)的增大,熱解氣化爐反應(yīng)由熱解氣化轉(zhuǎn)向燃燒,熱解氣化可燃?xì)猞?CH4)減少.

    c) 當(dāng)過量空氣系數(shù)為0.4時,該回轉(zhuǎn)窯式熱解氣化工藝產(chǎn)生的可燃?xì)饪偤肯鄬ζ渌^量空氣系數(shù)工況條件較大,對垃圾的熱解氣化有利. 當(dāng)過量空氣系數(shù)為0.4,預(yù)熱空氣溫度為500 ℃時,該回轉(zhuǎn)窯式熱解氣化工藝煙氣中污染物排放低于GB 18485—2014《生活垃圾焚燒污染控制標(biāo)準(zhǔn)》的相關(guān)限值,并且回轉(zhuǎn)窯式熱解氣化工藝焦油產(chǎn)量最小.

    d) 垃圾原樣在過量空氣系數(shù)為0.4、預(yù)熱空氣溫度為500 ℃下對底渣、飛灰進(jìn)行重金屬含量的分析測試結(jié)果顯示,底渣、飛灰和垃圾原樣中的重金屬含量大部分在GB 18598—2001《危險廢物填埋污染控制標(biāo)準(zhǔn)》的控制范圍內(nèi),而飛灰中的鉛含量遠(yuǎn)高于GB 18598—2001限值,需要經(jīng)過處理后才能排放.

    [1] SOSSOU S K,SOU/DAKOURE M,HIJIKATA N,etal.Inactivation kinetics of indicator microorganisms during solar heat treatment,for sanitizing compost from composting toilet[J].Journal of Water & Environment Technology,2016,14(2):37- 46.

    [2] 宋志偉,呂一波,梁洋,等.國內(nèi)外城市生活垃圾焚燒技術(shù)的發(fā)展現(xiàn)狀[J].環(huán)境衛(wèi)生工程,2007,15(1):21- 24. SONG Zhiwei,LV Yibo,LIANG Yang,etal.Present situation of the development of municipal domestic waste incineration technology[J].Environmental Sanitation Engineering,2007,15(1):21- 24.

    [3] HE Maoyun,XIAO Bo,LIU Shiming,etal.Hydrogen-rich gas from catalytic steam gasification of municipal solid waste(MSW):influence of catalyst and temperature on yield and product composition[J].International Journal of Hydrogen Energy,2009,34(1):195- 203.

    [4] HELWANI Z,OTHMAN M R,AZIZ N,etal.Solid heterogeneous catalysts for transesterification of triglycerides with methanol:a review[J].Applied Catalysis A:General,2009,363(1):1- 10.

    [5] LINNIK P M,ZUBENKO I B.Role of bottom sediments in the secondary pollution of aquatic environments by heavy-metal compounds[J].Lakes & Reservoirs:Research & Management,2000,5(1):11- 21.

    [6] HJELMAR O.Disposal strategies for municipal solid waste incineration residues[J].Journal of Hazardous Materials,1996,47(1):345- 368.

    [7] MAKEN S,HYUN J,PARK J W,etal.Vitrification of MSWI fly ash using Brown′s gas and fate of heavy metals[J].Journal of Scientific & Industrial Research,2005,64:198- 204.

    [8] VAN DEN BERG M,BIRNBAUM L S,DENISON M,etal.The 2005 World Health Organization reevaluation of human and mammalian toxic equivalency factors for dioxins and dioxin-like compounds[J].Toxicological Sciences,2006,93(2):223- 241.

    [9] 聞望,王寶生,修同斌,等.城市垃圾氣化處理法探索[J].環(huán)境科學(xué),1988,9(2):47- 51. WEN Wang,WANG Baosheng,XIU Tongbin,etal.MSW gasification process[J].Acta Scientiae Cirumstantiae,1988,9(2):47- 51.

    [10] 肖睿,金保升,仲兆平,等.基于低溫氣化和高溫熔融焚燒方法處理城市生活垃圾[J].能源研究與利用,2001(3):28- 30. XIAO Rui,JIN Baosheng,ZHONG Zhaoping,etal.Second generation municipal soild waste incineration-gasification & melting furnace[J].Energy Research and Utilization,2001(3):28- 30.

    [11] ZWART R W R,VAN D D A,BOS A,etal.Oil-based gas washing-flexible tar removal for high-efficient production of clean heat and power as well as sustainable fuels and chemicals[J].Environmental Progress & Sustainable Energy,2010,28(3):324- 335.

    [12] MARTIN J,RODRIGUEZ E,PANIAGUA I,etal.Thermoeconomic evaluation of integrated solar combined cycle systems(ISCCS)[J].Entropy,2014,16(8):4246- 4259.

    [13] 曹小玲.生物質(zhì)高溫空氣氣化的分析與探討[J].華東電力,2003,31(10):16- 19. HUANG Xiaoling.Analysis and discussion on high temperature air gasification of biomass[J].North China Electric Power,2003,31(10):16- 19.

    [14] ZHANG Q,DOR L,ZHANG L,etal.Performance analysis of municipal solid waste gasification with steam in a Plasma Gasification Melting reactor[J].Applied Energy,2012,98(1):219- 229.

    [15] 蕭澤強(qiáng).高風(fēng)溫?zé)o焰燃燒技術(shù)在日,歐幾國的開發(fā)應(yīng)用[J].中國冶金,2000(4):31- 35. XIAO Zeqiang.Application of High blast temperature flameless combustion(HTAC) technology in Japan and several European countries[J].China Metallurgy,2000(4):31- 35.

    [16] 邢桂菊,祁海鷹,徐旭常.日本HiTAC技術(shù)的發(fā)展對中國鋼鐵行業(yè)的啟示[J].鋼鐵,2002,37(9):67- 71. XING Hingju,QI Haiying,XU Xuchang.Japan HiTAC technology development of China′s steel industry enlightenment[J].Journal of Iron and Steel,2002,37(9):67- 71.

    [17] ROMESBERG F E,COLLUM D B.Lithium dialkylamide mixed aggregation:MNDO computational study of salt and solvent dependencies[J].Journal of the American Chemical Society,1994,116(20):121- 127.

    [18] BENNETT J P,KWONG K S,POWELL C A,etal.Improved refractories for slagging gasifiers in IGCC power systems[C]//BENNETT J P.18th Annual Conference on Fossil Energy Materials.Albany:U S Department of Energy Albany Research Center,2004:2- 4.

    [19] YOON H C,COOPER T,STEINFELD A.Non-catalytic autothermal gasification of woody biomass[J].International Journal of Hydrogen Energy,2011,36(13):7852- 7860.

    [20] WATANABE S,TAKAHASHI S,MIZUBAYASHI H,etal.A demonstration project of NGH land transportation system[C]//WATANABE S.Proceedings of the 6th International Conference on Gas Hydrates.Vancouver,British Columbia,Canada:ICGH,2008:6- 10.

    [21] 李燦,唐文武,梁衛(wèi)民,等.高溫空氣燃燒技術(shù)在我國的應(yīng)用現(xiàn)狀與發(fā)展前景[J].冶金能源,2003,22(2):41- 46. LI Can,TANG Wenwu,LIANG Weimin,etal.Application status and development prospect of high temperature air combustion technology in China[J].Metallurgical Energy,2003,22(2):41- 46.[22] CHEN S,ZHU Y,WANG M,etal.Prospect conceiving of joint research and development of shale gas and coalbed methane in China[J].Energy & Power Engineering,2011,3(3):348- 354.

    [23] COLPAN C O,HAMDULLAHPUR F,DINCER I,etal.Effect of gasification agent on the performance of solid oxide fuel cell and biomass gasification systems[J].International Journal of Hydrogen Energy,2010,35(10):5001- 5009.

    [24] CHUN Y N,KIM S C,YOSHIKAWA K.Pyrolysis gasification of dried sewage sludge in a combined screw and rotary kiln gasifier[J].Applied Energy,2011,88(4):1105- 1112.

    [25] JEON B H,CHOI J H.Effect of buoyancy on soot formation in gas-jet diffusion flame[J].Journal of Mechanical Science and Technology,2010,24(7):1537- 1543.

    [26] YUAN H,LU T,KOBAYASHI N,etal.The influence of oxygen concentration and equivalence ratio on pyrolysis gas in oxygen-enriched pyrolysis by theoretical calculation[J].Aasri Procedia,2012,3(10):427- 434.

    [27] WANG N Y,CHUNHAO S,PEITE C,etal.Environmental effects of sewage sludge carbonization and other treatment alternatives[J].Energies,2013,6(2):871- 883.

    [28] 遲忠盛,袁春江.輸送煤氣管道水封器的研究與應(yīng)用[J].鋼鐵,1992(12):65- 67. CHI Zhongsheng,YUAN Chunjiang.Research and application of water sealer for gas pipeline transportation[J].Steel,1992(12):65- 67.

    [29] COLE B J,HARNER C D.Degenerative arthritis of the knee in active patients:evaluation and management[J].Journal of the American Academy of Orthopaedic Surgeons,1999,7(6):389- 402.

    [30] YAN F,LUO S,HU Z,etal.Hydrogen-rich gas production by steam gasification of char from biomass fast pyrolysis in a fixed-bed reactor:influence of temperature and steam on hydrogen yield and syngas composition[J].Bio Resource Technology,2010,101(14):5633- 5637.

    [31] NAJAFI M,ROSTAMIAN R,RAGATI A A.Chemically modified silica gel with thiol group as an adsorbent for retention of some toxic soft metal ions from water and industrial effluent[J].Chemical Engineering Journal,2011,168(1):426- 432.

    [32] BRAGE C,YU Q,CHEN G,etal.Use of amino phase adsorbent for biomass tar sampling and separation[J].Fuel,1997,76(2):137- 142.

    [33] 徐振峰,馬騰才.等離子體輔助下二氧化碳向一氧化碳的轉(zhuǎn)化[J].遼寧師范大學(xué)版(自然科學(xué)學(xué)報),2007,30(2):175- 177. XU Zhenfeng,MA Tengcai.Plasma assisted carbon dioxide to carbon monoxide conversion[J].Journal of Liaoning Normal University(Natural Science Edition),2007,30(2):175- 177.

    [34] CHUNG J N.A Theoretical study of two novel concept systems for maximum thermal-chemical conversion of biomass to hydrogen[J].Frontiers in Energy Research,2014,1(12):1- 10.

    [35] 晏雙華,雙建永,胡四斌.煤制合成天然氣工藝中甲烷化合成技術(shù)[J].化肥設(shè)計,2010(2):19- 21. YAN Shuanghua,SHUANG Jianyong,HU Sibin.In methane in coal for synthesis gas production technology[J].Chemical Fertilizers Design,2010(2):19- 21.

    [36] 劉鋒,王琪,黃啟飛,等.固體廢物浸出毒性浸出方法標(biāo)準(zhǔn)研究[J].環(huán)境科學(xué)研究,2008,21(6):9- 15. LIU Feng,WANG Qi,HUANG Qifei,etal.Study on standard of leaching method for leaching of solid waste[J].Research of Environmental Sciences,2008,21(6):9- 15.

    [37] 國家環(huán)境保護(hù)總局及國家質(zhì)量監(jiān)督檢驗檢疫總局.GB 18598—2001 危險廢物填埋污染控制標(biāo)準(zhǔn)[S].北京:國家環(huán)境保護(hù)總局及國家質(zhì)量監(jiān)督檢驗檢疫總局,2001.

    [38] 蔡旭.生活垃圾熱處置過程中重金屬形態(tài)及遷移轉(zhuǎn)化特性[D].杭州:浙江大學(xué),2015.

    Gasification and Pyrolysis Characteristics of Household Garbage in a Rotary Kiln Gasifier

    WEI Chao1,2, XIA Xunfeng1*, WANG Jinggang2, WANG Lijun1, Lü Huiyu2, ZHANG Ying1

    1.State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China 2.College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China

    Fixed-bed gasification has low gas heat value, low gasification efficiency, small fuel scope and complex pretreatment at room temperature. The influence of different preheated air temperature and excess air coefficient for municipal solid waste in a small, rotary kiln pyrolysis gasifier was studied with the control variable method. The result showed that the preheated air temperature rising is helpful for pyrolysis and gasification, but there are some limitations. When the temperature exceeded 600 °C, the garbage gasification gas decreased obviously. The garbage reached the maximum value and gasification efficiency and minimized the tar yield when the excess air coefficient was 0.4. The heavy metal contents in slag, fly ash and garbage were investigated at the conditions of excess air coefficient 0.4 and air preheating temperature 500 °C. The lead content in fly ash was much higher than the value in GB 18598- 2001StandardforPollutionControlontheSecurityLandfillSiteforHazardousWastes, indicated a need for processing before being emitting. Dioxin sampling analysis results were below the value in GB 18485- 2014StandardforPollutionControlontheMunicipalSolidWasteIncineration. The results showed that the best excess air coefficient of the rotary kiln pyrolysis gasification process was 0.4, and the optimum air preheating temperature was 500 °C. Under the optimum conditions, the tar production, fly ash and coke slag heavy metal content was small, and dioxin levels were less than 0.1 ng/m3.

    pyrolysis and gasification furnace; pyrolysis and gasification; preheated air temperature; excess air coefficient

    2016-10-23

    :2017-06-06

    國家科技重大專項(2015ZX07103- 007- 03)

    韋超(1989-),男,山東臨沂人,wcgd523090@163.com.

    *責(zé)任作者,夏訓(xùn)峰(1968-),男,浙江蒼南人,研究員,博士,主要從事農(nóng)村生活污染控制技術(shù)研究,xiaxunfengg@sina.com

    X705

    :1001- 6929(2017)09- 1471- 08

    ADOI:10.13198/j.issn.1001- 6929.2017.02.69

    韋超,夏訓(xùn)峰,王京剛,等.回轉(zhuǎn)窯熱解氣化爐處理生活垃圾特性[J].環(huán)境科學(xué)研究,2017,30(9):1471- 1478.

    WEI Chao,XIA Xunfeng,WANG Jinggang,etal.Gasification and pyrolysis characteristics of household garbage in a rotary kiln gasifier[J].Research of Environmental Sciences,2017,30(9):1471- 1478.

    猜你喜歡
    回轉(zhuǎn)窯焦油氣化爐
    焦油渣干化處理的應(yīng)用與實(shí)踐
    冶金動力(2022年5期)2022-11-08 01:58:54
    回轉(zhuǎn)窯結(jié)構(gòu)分析
    基于ANSYS回轉(zhuǎn)窯強(qiáng)度分析
    氣化爐激冷室內(nèi)壁堆焊工藝技術(shù)
    鞍鋼鲅魚圈焦油渣回配裝置的應(yīng)用與改進(jìn)
    提高回轉(zhuǎn)窯球團(tuán)礦抗壓強(qiáng)度的實(shí)踐
    殼牌氣化爐循環(huán)氣壓縮機(jī)(K1301)聯(lián)鎖優(yōu)化
    水煤漿氣化爐小改小革
    重溶劑法TDI焦油殘渣的分析與利用
    基于停留時間分布的氣流床氣化爐通用網(wǎng)絡(luò)模型
    卢氏县| 米林县| 侯马市| 十堰市| 江油市| 石河子市| 福安市| 新化县| 怀安县| 偏关县| 腾冲县| 宁蒗| 巴楚县| 莱阳市| 曲周县| 离岛区| 桐城市| 建阳市| 丰台区| 晋州市| 鸡泽县| 江油市| 扎兰屯市| 乐东| 宜宾县| 嘉定区| 连州市| 罗源县| 肥东县| 沭阳县| 武宣县| 汉源县| 防城港市| 象山县| 洛扎县| 澄城县| 五家渠市| 沅江市| 通许县| 宿州市| 吴旗县|