• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      徑流泥沙實(shí)時自動監(jiān)測儀的研制

      2017-09-15 06:16:43展小云郭明航趙向輝
      關(guān)鍵詞:含沙量監(jiān)測儀泥沙

      展小云,郭明航,趙 軍※,趙向輝

      ·農(nóng)業(yè)水土工程·

      徑流泥沙實(shí)時自動監(jiān)測儀的研制

      展小云1,2,郭明航1,2,趙 軍1,2※,趙向輝3

      (1. 西北農(nóng)林科技大學(xué)黃土高原土壤侵蝕與旱地農(nóng)業(yè)國家重點(diǎn)實(shí)驗(yàn)室,楊凌 712100;2. 中國科學(xué)院水利部水土保持研究所,楊凌 712100;3. 西安三智科技有限公司,西安 710075)

      針對徑流泥沙過程監(jiān)測儀缺乏和監(jiān)測誤差大的狀況,研制了一種具有野外復(fù)雜條件下普遍適用的徑流泥沙高精度實(shí)時自動監(jiān)測儀,并建立了數(shù)據(jù)/站點(diǎn)管理云平臺。該儀器從徑流泥沙過程中提取驅(qū)動儀器運(yùn)轉(zhuǎn)的物理量并將其轉(zhuǎn)換為測控信號,實(shí)現(xiàn)徑流泥沙過程的實(shí)時自動監(jiān)測;通過對儀器總體結(jié)構(gòu)及各功能部件的優(yōu)化設(shè)計(jì),消減泥沙粘附和沉積,提高監(jiān)測精度。通過標(biāo)準(zhǔn)泥沙樣品驗(yàn)證了該儀器的適用性,結(jié)果表明該儀器監(jiān)測的含沙量相對誤差均值為3.67%,決定系數(shù)為0.997。土槽試驗(yàn)獲取了徑流過程中變幅較寬的徑流量和含沙量的動態(tài)過程曲線??梢?,該儀器不僅可以準(zhǔn)確地監(jiān)測徑流泥沙過程,而且創(chuàng)新了水土流失監(jiān)測技術(shù)和方法,推動了水土流失監(jiān)測的自動化和信息化。

      土壤;侵蝕;徑流;含沙量;自動化監(jiān)測

      展小云,郭明航,趙 軍,趙向輝. 徑流泥沙實(shí)時自動監(jiān)測儀的研制[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(15):112-118. doi:10.11975/j.issn.1002-6819.2017.15.014 http://www.tcsae.org

      Zhan Xiaoyun, Guo Minghang, Zhao Jun, Zhao Xianghui. Development of real-time and automatic measuring equipment for runoff and sediment[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(15): 112-118. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.15.014 http://www.tcsae.org

      0 引 言

      中國是世界上水土流失最嚴(yán)重的國家之一。2004年全國土壤侵蝕量高達(dá)16.22億 t,相當(dāng)于12.5萬km2面積上流失掉1 cm厚的表層土壤,而形成1 cm厚的土壤卻需要100年。截止2011年,全國 (未含香港、澳門特別行政區(qū)和臺灣省)土壤侵蝕面積為294.91萬km2,占國土面積的30.7%[1]。水土流失不但導(dǎo)致土壤退化,土地生產(chǎn)力降低,而且對生態(tài)環(huán)境、人類生存和社會經(jīng)濟(jì)發(fā)展帶來嚴(yán)重影響[2-4]。為實(shí)現(xiàn)生態(tài)文明建設(shè)和社會經(jīng)濟(jì)的可持續(xù)發(fā)展,中國已將水土保持確定為一項(xiàng)長期的基本國策。

      水土流失監(jiān)測是水土保持學(xué)科發(fā)展、防治水土流失和實(shí)施生態(tài)文明戰(zhàn)略的基礎(chǔ)。近年來,中國已建成738個水土保持監(jiān)測點(diǎn),在此基礎(chǔ)上水利部又制定了全國水土保持信息化規(guī)劃(2013-2020年),將“國家級水土保持監(jiān)測點(diǎn)升級”列為重點(diǎn)建設(shè)項(xiàng)目,擬開展監(jiān)測點(diǎn)數(shù)據(jù)采集智能化升級,配置自動化泥沙監(jiān)測采集設(shè)施設(shè)備。除此之外,國家野外站觀測研究網(wǎng)絡(luò)、中國生態(tài)研究網(wǎng)絡(luò)、國家水文監(jiān)測網(wǎng)絡(luò)、國家地質(zhì)環(huán)境監(jiān)測站等部門都建有流域控制站、水土流失監(jiān)測站和水文監(jiān)測站,其中徑流量和含沙量均為重要的監(jiān)測指標(biāo)。面對量大面寬的徑流泥沙監(jiān)測的迫切需要,現(xiàn)有的徑流泥沙監(jiān)測技術(shù)和儀器設(shè)備卻相形見絀。隨著現(xiàn)代科學(xué)技術(shù)的發(fā)展,人們一直試圖利用各種原理和方法以實(shí)現(xiàn)對含沙量較為準(zhǔn)確地測量。目前,含沙量的測量方法主要包括稱重法、γ射線法、振動法、超聲波法、電容法、光電法、激光法和遙感法等[5-8]。由于稱重法相對容易實(shí)現(xiàn),至今仍被廣泛應(yīng)用[9-13],但是該方法測量周期長,過程繁瑣,不能實(shí)時測量,測量結(jié)果只是隨機(jī)時間段內(nèi)的平均值,無法反映含沙量的即時變化,并且測量誤差較大[14-15]。近年來,雷廷武等[16-17]研制基于γ-射線測量含沙量的系統(tǒng),盡管該方法有很大的測量優(yōu)勢,但是由于137Cs放射源安全防護(hù)很困難,對人體危害很大,因而無法廣泛使用[18-19]。振動法測量含沙量時由于零點(diǎn)漂移嚴(yán)重,測量結(jié)果穩(wěn)定性較差[20]。Bonta[21]提出的超聲波法測量含沙量的范圍較窄,僅適合于低含沙溶液的測量[22]。電容法中由于電容受溫度影響較大,電容兩端輸出電壓隨溫度、土壤含鹽量升高而呈非線形增加趨勢,電容測量精度要達(dá)到1 PF,目前電容測量技術(shù)遠(yuǎn)不能達(dá)到,加之徑流流速的影響,使得電容法的適用條件受到很大限制[23-24]。曾為軍等[8]提出了一種基于計(jì)時法和光電法的徑流量與含沙量的測量方法,設(shè)計(jì)了坡面徑流量及含沙量同步在線檢測的自動監(jiān)測系統(tǒng),但是該方法仍然是受到泥沙比重、不同顆粒組成及泥沙沉積等狀況的嚴(yán)重影響而未能廣泛應(yīng)用[25-27]。此外,由于在坡面侵蝕過程中,徑流中泥沙粒徑的組成隨時間不斷變化,使得激光法具有了一定的測量誤差[28]。遙感法根據(jù)衛(wèi)星遙感攝影獲得的河口、河流、水庫、湖泊等地區(qū)懸浮泥沙的光譜特性影像,反演計(jì)算大面積水域水體的平均含沙量,該方法多用于大范圍低含沙量測量,不能在坡面、溝道進(jìn)行定點(diǎn)高精度的測量[29-30]。

      可見,上述方法存在各種問題:或者由于受樣品采集或元器件性能的限制,不能克服或完全適應(yīng)泥沙顆粒大小組成的不確定性以及泥沙的粘附性、沉積性的影響,造成監(jiān)測誤差大;或者由于監(jiān)測現(xiàn)場復(fù)雜性,使得儀器不能兼顧變幅較寬的徑流量和含沙量的監(jiān)測;或者由于儀器設(shè)備功能設(shè)計(jì)的缺陷,不能實(shí)時監(jiān)測徑流泥沙全過程。有鑒于此,徑流泥沙監(jiān)測亦然繼續(xù)采用幾乎沒有儀器概念可言的傳統(tǒng)的稱重法進(jìn)行徑流泥沙的監(jiān)測,而這種方法與現(xiàn)代科技發(fā)展水平極不匹配,也與當(dāng)代水土保持學(xué)科的發(fā)展和水土流失防治需求極不適應(yīng)。水土保持學(xué)術(shù)界堪憂,徑流泥沙監(jiān)測的新技術(shù)、新設(shè)備以及技能型人才缺乏,使得水土保持學(xué)科的發(fā)展存在嚴(yán)重的科學(xué)和技術(shù)危機(jī)[31]。

      因此,本研究將經(jīng)典的測量原理與現(xiàn)代科學(xué)技術(shù)結(jié)合,研制具有全自動、全過程、高精度、實(shí)時監(jiān)測的徑流泥沙監(jiān)測儀器設(shè)備,以實(shí)現(xiàn)多場景(徑流小區(qū)和流域控制站)徑流泥沙實(shí)時自動監(jiān)測。通過研制徑流泥沙自動監(jiān)測儀,不但能夠獲取徑流泥沙的過程資料,提高徑流泥沙的監(jiān)測精度,而且可以提升徑流泥沙監(jiān)測的自動化和信息化水平,推動水土保持向定量化、精準(zhǔn)化發(fā)展,提升國產(chǎn)水土保持監(jiān)測儀器設(shè)備的研發(fā)能力。

      1 測量原理及參數(shù)計(jì)算

      該監(jiān)測儀主要是基于定體積的體積-質(zhì)量轉(zhuǎn)換原理測量含沙量。相對于光電法、透射法等傳統(tǒng)的監(jiān)測方法,該方法可以完全消除泥沙顆粒大小對測量結(jié)果的影響。對于特定的徑流泥沙樣品,當(dāng)所采集的樣品體積一定時,其水、沙所占的體積比和質(zhì)量比是一定的,即一定體積的徑流泥沙樣品其總質(zhì)量等于該樣品中泥沙的質(zhì)量與水的質(zhì)量之和,總體積等于泥沙的體積與水的體積之和。即

      式中G總為徑流泥沙樣品的總質(zhì)量,kg;V總為徑流泥沙樣品的總體積,m3;V水為徑流泥沙測量樣品中水的體積,m3;V沙為徑流泥沙測量樣品中泥沙的體積,m3;ρ水為泥沙測量樣品中水的密度,kg/m3;ρ沙為泥沙測量樣品中泥沙的密度,kg/m3。

      由式(1)可見,只要準(zhǔn)確測量出徑流泥沙樣品的總質(zhì)量(G總)和總體積(V總),便可計(jì)算出水的體積(V水)和泥沙的體積(V沙)。

      根據(jù)含沙量的定義可得

      式中S為含沙量,kg/m3。

      所以,樣品的含沙量的計(jì)算公式為

      可見,只要量測出采樣時間段內(nèi),徑流泥沙的總質(zhì)量和總體積,便可求解出徑流泥沙樣品中泥沙、水的體積和相應(yīng)的質(zhì)量,繼而計(jì)算出含沙量。為了提高測量結(jié)果的準(zhǔn)確度,土壤比重用土壤比重計(jì)進(jìn)行實(shí)時修正,水的密度則取實(shí)測時徑流液溫度所對應(yīng)的水的密度。

      徑流量計(jì)算公式為

      式中Q為徑流泥沙樣品的徑流量,L/s;Δt為采集徑流泥沙樣品所用的時間,s;1 000為單位換算系數(shù)。鑒于徑流量的測定方法簡單可靠,下面不做詳細(xì)介紹和驗(yàn)證。

      2 系統(tǒng)結(jié)構(gòu)與組成

      2.1 系統(tǒng)總體結(jié)構(gòu)

      徑流泥沙自動監(jiān)測儀由3部分構(gòu)成,即樣品采集部分、樣品測量部分和站點(diǎn)/數(shù)據(jù)管理部分,其結(jié)構(gòu)及邏輯關(guān)系如圖1所示。

      圖1 儀器結(jié)構(gòu)示意圖Fig.1 Structure diagram of equipment

      2.1.1 樣品采集部分

      樣品采集首先是通過徑流診斷傳感器探測有無徑流,若徑流出現(xiàn),則利用導(dǎo)流管路連接進(jìn)樣開關(guān)裝置,使徑流導(dǎo)入樣品測量艙,進(jìn)而進(jìn)行徑流量和含沙量的測量。若徑流診斷傳感器未探測到徑流,則樣品采集的相關(guān)部件休眠。對于徑流小區(qū)而言,所采集的樣品是樣品采集期間的全部徑流。而對于流域控制站而言,所采集的樣品是全部徑流的一部分,因此,在儀器機(jī)械構(gòu)成上需要增加水位傳感器和電機(jī)等功能部件,如圖2所示。

      圖2 流域控制站采樣部分結(jié)構(gòu)示意圖Fig.2 Schematic diagram of sample component of monitoring station in watershed

      2.1.2 樣品測量部分

      樣品測量部分主要是利用連接在樣品測量艙上的溢流傳感器、稱重傳感器、進(jìn)/排樣開關(guān)裝置、測量控制器和數(shù)據(jù)采集器等功能部件完成對徑流樣品體積和質(zhì)量的精確測量,隨之將測量數(shù)據(jù)存儲到監(jiān)測儀的存儲卡并通過無線網(wǎng)絡(luò)(GMS)發(fā)送到站點(diǎn)/數(shù)據(jù)管理云平臺,如圖3所示。

      圖3 樣品測量部分結(jié)構(gòu)示意圖Fig.3 Schematic diagram of measuring component

      2.1.3 站點(diǎn)/數(shù)據(jù)管理云平臺

      站點(diǎn)/數(shù)據(jù)管理云平臺是基于“互聯(lián)網(wǎng)+”框架建立的適用于從一臺監(jiān)測設(shè)備到無數(shù)臺監(jiān)測設(shè)備的徑流泥沙監(jiān)測及其數(shù)據(jù)管理云平臺,其結(jié)構(gòu)如圖4所示。用戶可自行布設(shè)專屬的站點(diǎn)/數(shù)據(jù)管理云平臺(私有平臺),也可將監(jiān)測設(shè)備連接到公共的站點(diǎn)/數(shù)據(jù)管理云平臺(公有平臺),站點(diǎn)/數(shù)據(jù)管理云平臺通過開發(fā)站點(diǎn)管理、用戶管理、遠(yuǎn)程數(shù)據(jù)接收、數(shù)據(jù)計(jì)算與匯編、數(shù)據(jù)可視化等功能模塊,為使用者提供便捷、安全、自主的監(jiān)測站/數(shù)據(jù)管理。

      2.2 測量艙的結(jié)構(gòu)和設(shè)計(jì)

      測量艙是盛裝所采集的待測徑流泥沙樣品的部件,其容積、幾何形狀、材質(zhì)和表面處理與泥沙的粘附、沉積關(guān)系密切,而粘附、沉積的泥沙量直接影響待測樣品體積和質(zhì)量,進(jìn)而影響含沙量測量的精度和準(zhǔn)確度。所以,測量艙的容積、幾何形狀、材質(zhì)選擇、表面處理等就成為測量艙研制的重點(diǎn)。測量艙的結(jié)構(gòu)如圖5所示。

      圖4 站點(diǎn)/數(shù)據(jù)管理云平臺示意圖Fig.4 Schematic diagram of a cloud station/data management platform

      圖5 測量艙結(jié)構(gòu)示意圖Fig.5 Schematic diagram of measuring chamber

      1)容積的設(shè)計(jì)

      測量艙容積的設(shè)計(jì)主要考慮3個因素,一是所采集的樣品量對總體的代表性;二是所采集的樣品量要能反映徑流泥沙的變化過程;三是儀器完成一個測量周期需要的時間。綜合分析以上3個因素,確定測量艙容積為5 L。

      2)幾何形狀的設(shè)計(jì)

      測量艙設(shè)計(jì)為形似“葫蘆”的容器,其上、下兩端口徑較小,中部口徑較大,變徑部分為流線型圓滑過渡,不留“棱坎”。在測量艙的頸部設(shè)計(jì)一個溢流口,并連接一個溢流管,溢流口下沿所在的平面作為測量艙體積測量的上限。測量艙的下端與排樣開關(guān)裝置連接,當(dāng)排樣開關(guān)關(guān)閉時,排樣開關(guān)裝置的閥板應(yīng)處于水平狀態(tài),作為測量艙體積量測的下限。

      3)溢流口和溢流管的設(shè)計(jì)

      溢流口是自動測量過程控制和徑流泥沙體積測量的重要部分。當(dāng)徑流液到達(dá)溢流口的下沿后,后續(xù)的徑流液就會從溢流口溢出,以保證測量艙的容積是一個定值,較之測量液面水位高度來計(jì)算體積的方法大幅度提高了體積測量的精度和準(zhǔn)確度。其另一個作用是觸發(fā)溢流傳感器,進(jìn)而觸發(fā)進(jìn)/排樣開關(guān)裝置。由于溢流口和溢流管一直是開放的,當(dāng)進(jìn)樣開關(guān)關(guān)閉后,多余的徑流泥沙會從溢流管自動排出,使樣品測量艙的液面最終穩(wěn)定在溢流口下沿所在的平面,所以將溢流口下沿所在的平面作為測量艙體積測量的上限。

      4)材質(zhì)選擇與表面處理

      測量艙和徑流泥沙傳輸管線的材質(zhì)和表面處理對徑流泥沙的粘附、沉積作用影響很大。本研究選取不同的材料,如不銹鋼、鍍鋅鋼板、鋁板、有機(jī)玻璃等,噴涂不同的表面處理材料,如超疏水納米自潔防水劑、杜邦特氟龍材料、汽車面漆等,制作了多種測量艙和泥沙傳輸管線,通過對徑流泥沙的粘附性檢測,尋求泥沙粘附和沉積作用最低的材料和表面處理方法,最終確定采用汽車面漆噴涂方式處理的不銹鋼板,其幾乎無泥沙沉積和粘附。

      2.3 測控流程設(shè)計(jì)

      測控流程設(shè)計(jì)時需要考慮以下4個主要因素:

      1)徑流是隨降雨而發(fā)生的隨機(jī)事件,并且在以年為周期的時間范圍內(nèi),其發(fā)生屬于一個低頻率事件。對于徑流泥沙自動監(jiān)測儀多數(shù)時間處于休眠狀態(tài)是比較合理的選擇。而當(dāng)徑流出現(xiàn)后需要將檢測儀從休眠狀態(tài)喚醒并轉(zhuǎn)換為工作狀態(tài)。

      2)徑流一旦發(fā)生,其歷時長短是不可預(yù)知的,所以,要求監(jiān)測儀可以無限制地重復(fù)測量。

      3)選擇合理的測量結(jié)束信號,控制監(jiān)測儀在徑流結(jié)束后由工作狀態(tài)轉(zhuǎn)換為休眠狀態(tài)。

      4)為了減少殘留、稱質(zhì)量時的晃動對體積、質(zhì)量測量的影響,需要在測量流程中設(shè)計(jì)“沖洗” “空淋” “靜置”環(huán)節(jié)。

      綜合分析徑流泥沙過程的特點(diǎn)、功能部件的結(jié)構(gòu)、性能以及工作過程,設(shè)計(jì)測控流程及其控制電路如圖6和7所示。

      圖6 測控流程示意圖Fig.6 Measured and control flow diagram

      圖7 測控流程電路圖Fig.7 Measured and control circuit diagram

      3 精度和準(zhǔn)確度檢測

      為了檢測該儀器的精度和準(zhǔn)確度,進(jìn)行了標(biāo)準(zhǔn)泥沙樣品的測試試驗(yàn)。試驗(yàn)選用的是黃綿土,該土壤比重為2.65 mg/m3,含水量為10.94%。根據(jù)標(biāo)定的測量艙體積配制不同濃度的標(biāo)準(zhǔn)泥沙樣品,即0、2、4、6、8、10、20、30、40、50、60、70、80、90、100、150、200、250、300、400、500 kg/m3,每個濃度樣品重復(fù)測量3次。結(jié)果表明,含沙量的測量值和實(shí)際值回歸系數(shù)接近1,為0.95,決定系數(shù)為0.997(圖8)。相對于實(shí)際值,測量值偏小,這可能是由于配制標(biāo)準(zhǔn)泥沙樣品時的人為誤差造成的,亦或是土壤含水量測量過程中的誤差造成的。此外,分析監(jiān)測結(jié)果的相對誤差表明,相對誤差波動范圍為0.62%~14.00%,均值為3.67%。其中,低含沙量樣品(2~10 kg/m3)測量的相對誤差為7.00%,中含沙量樣品(20~90 kg/m3)測量的相對誤差為3.10%,高含沙量樣品(100~300 kg/m3)測量的相對誤差為2.61%(圖9a)。對相對誤差進(jìn)行頻率分布分析(圖9b),發(fā)現(xiàn)大部分樣本的相對誤差較小,相對誤差<10%的樣本僅占樣本總數(shù)的96.30%。以上結(jié)果表明,該監(jiān)測儀對檢驗(yàn)樣本數(shù)據(jù)的預(yù)測準(zhǔn)確度達(dá)到了較高水平,可準(zhǔn)確的監(jiān)測含沙量。

      圖8 實(shí)際含沙量與測量含沙量關(guān)系Fig.8 Relationship between actual and measured values of sediment concentration

      圖9 含沙量的相對誤差Fig.9 Relative error of sediment concentration

      4 徑流泥沙過程的實(shí)測分析

      4.1 試驗(yàn)設(shè)計(jì)

      為了驗(yàn)證該儀器對徑流泥沙過程監(jiān)測的寬泛性,2017年5月10日在黃土高原土壤侵蝕與旱地農(nóng)業(yè)國家重點(diǎn)實(shí)驗(yàn)室人工模擬降雨大廳進(jìn)行觀測試驗(yàn)。試驗(yàn)小區(qū)為可調(diào)坡度的鋼制土槽,小區(qū)規(guī)格長×寬×深=3.0 m× 1.0 m×0.5 m,土槽坡度為15°,供試土壤為黃綿土。小區(qū)布設(shè)完成后,在正式降雨試驗(yàn)進(jìn)行之前,供試小區(qū)土壤表面均勻噴水后靜置7 d,使土槽內(nèi)部土壤水分的再分配達(dá)到應(yīng)力均勻、土壤結(jié)構(gòu)穩(wěn)定。試驗(yàn)為次降雨,不設(shè)重復(fù),降雨歷時為240 min,降雨強(qiáng)度45、60、80和120 mm/h各持續(xù)60 min,從降雨開始至降雨結(jié)束對試驗(yàn)下墊面進(jìn)行徑流泥沙樣品監(jiān)測,據(jù)此獲取徑流過程中徑流量和含沙量的變化曲線。

      4.2 徑流泥沙過程分析

      圖10給出了不同降雨強(qiáng)度下徑流量和含沙量的變化曲線。由圖10可見,隨著時間的推移和降雨強(qiáng)度的增加,徑流量和含沙量均呈現(xiàn)顯著的同步增加趨勢,徑流量的波動范圍為19~127 L/s,均值為75.5 L/s,含沙量的波動范圍為4.6~275.1 kg/m3,均值為88.6 kg/m3。

      圖10 徑流量和含沙量的動態(tài)變化過程Fig.10 Dynamic change process of runoff volume and sediment concentration

      其中,在降雨強(qiáng)度為45和60 mm/h的情況下,含沙量的變化并不明顯,其波動范圍為4.6~30.5 kg/m3。當(dāng)降雨強(qiáng)度增加至80 mm/h時,水流中的含沙量在整個產(chǎn)流階段迅速增加,含沙量的均值為76.7 kg/m3。當(dāng)降雨強(qiáng)度增加至120 mm/h時,由于下墊面侵蝕溝的產(chǎn)生,水流中的含沙量均在200 kg/m3以上,最大值高達(dá)275.1 kg/m3。由此可見,本研究中的監(jiān)測儀可以監(jiān)測變幅較寬的徑流量和含沙量,其彌補(bǔ)了現(xiàn)有儀器監(jiān)測范圍小的不足,具有一定的應(yīng)用前景。

      5 結(jié) 論

      1)以獲取水土流失過程數(shù)據(jù)為核心,基于經(jīng)典的稱重法原理,結(jié)合自動化控制技術(shù)、精密傳感技術(shù)等現(xiàn)代科學(xué)技術(shù),研制了一種適用于徑流小區(qū)和流域控制站等多場景的徑流泥沙全自動、全過程、高精度、實(shí)時監(jiān)測的徑流泥沙監(jiān)測儀,并建立“互聯(lián)網(wǎng)+”框架下的徑流泥沙監(jiān)測站點(diǎn)/數(shù)據(jù)管理云平臺。相對于傳統(tǒng)方法,此方法不受徑流泥沙過程歷時長短、泥沙顆粒粒徑組成以及徑流量、含沙量大小的限制。

      2)對自行研制的監(jiān)測儀進(jìn)行精度和準(zhǔn)確度檢驗(yàn),結(jié)果表明含沙量的真實(shí)值與測量值具有較好的一致性,含沙量的測量值和實(shí)際值的線性回歸方程斜率高達(dá)0.95,測量的相對誤差均值為3.67%,該方法監(jiān)測誤差小,可有效、準(zhǔn)確地的監(jiān)測徑流泥沙含量。

      3)通過土槽模擬試驗(yàn)監(jiān)測了徑流量和含沙量的動態(tài)過程曲線,監(jiān)測到的徑流量和含沙量的變化范圍分別為19~127 L/s和4.6~275.1 kg/m3。由此可見,本研究中的監(jiān)測儀具有較高的普適性,應(yīng)用前景廣泛,可以促進(jìn)水土保持學(xué)科試驗(yàn)監(jiān)測技術(shù)的發(fā)展,籍以深化土壤侵蝕過程、機(jī)理等水土保持學(xué)科基礎(chǔ)研究,支撐水土流失防治等應(yīng)用研究。

      [1] 中華人民共和國水利部. 中國水土保持公報(bào)[R]. 中華人民共和國水利部,2013.

      [2] Pimentel D C, Kounang N. Ecology of soil erosion in ecosystems[J]. Ecosystems, 1998, 1(5): 416-426.

      [3] Lantican M A, Guerra L C, Bhuiyan S I. Impacts of soil erosion in the upper Manupali watershed on irrigated lowlands in the Philippines[J]. Paddy and Water Environment, 2003, 1(1): 19-26.

      [4] Marques M J, Bienes R, Perez-Rodriguez R, et al. Soil degradation in Central Spain due to sheet water erosion by low-intensity rainfall events[J]. Earth Surface Processes and Landforms, 2008, 33(3): 414-423.

      [5] Wren D G, Barkdoll B D, Kuhnle R A, et al. Field techniques for suspended sediment measurement[J]. Journal of Hydraulic Engineering, 2000, 126(2): 97-104.

      [6] Zhao S L, Dorsey E C, Gupta S C, et al. Automated water sampling and flow measuring devices for runoff and subsurface drainage[J]. Journal of Soil and Water Conservation, 2001, 56(4): 299-306.

      [7] Klik A, Sokol W, Steindl F. Automated erosion wheel: A new measuring device for field erosion plots[J]. Journal of Soil and Water Conservation, 2004, 59(3): 116-121.

      [8] 曾為軍,張?jiān)苽?,陳嶺,等. 基于計(jì)時與光照法的坡面徑流量及含沙量動態(tài)檢測系統(tǒng)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(24):114-123.

      Zeng Weijun, Zhang Yunwei, Chen Ling, et al. Dynamic measured system for hillslope runoff rate and sediment concentration based on time method and illumination method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(24): 114-123. (in Chinese with English abstract)

      [9] Pinson W T, Yoder D C, Buchanan J R, et al. Design and evaluation of an improved flow divider for sampling runoff plots[J]. Applied Engineering in Agriculture, 2004, 20(4): 433-437.

      [10] 葉芝菡,劉寶元,路炳軍,等. 徑流小區(qū)集流桶含沙量全深剖面采樣器的研制與試驗(yàn)[J]. 泥沙研究,2005(3):24-29.

      Ye Zhihan, Liu Baoyuan, Lu Bingjun, et al. Design and testing of the depth profile sediment sampler for runoff plots[J]. Journal of Sediment Research, 2005(3): 24-29. (in Chinese with English abstract)

      [11] 趙軍,屈麗琴,趙曉芬,等. 稱重式坡面徑流小區(qū)水流流量自動測量系統(tǒng)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2007,23(3):36-40.

      Zhao Jun, Qu Liqin, Zhao Xiaofen, et al. Automated weighting system for measuring flow rate from runoff plots[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007, 23(3): 36-40. (in Chinese with English abstract)

      [12] 曹建生,張萬軍. 小流域徑流泥沙自動采集器的試驗(yàn)研究[J].農(nóng)業(yè)工程學(xué)報(bào),2009,25(1):45-49.

      Cao Jiansheng, Zhang Wanjun. Experimental investigation on instrument for auto-sampling water from runoff and sediment in a small catchment[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(1): 45-49. (in Chinese with English abstract)

      [13] 李續(xù)峰,張興義,劉洪家. 徑流泥沙混合裝置研發(fā)[J]. 水土保持研究,2012,19(1):23-27. Li Xufeng, Zhang Xingyi, Liu Hongjia. Design of integrated equipment on runoff and sediment[J]. Research of Soil and Water Conservation, 2012, 19(1): 23-27. (in Chinese with English abstract)

      [14] Einstein H A. The bed-load function for sediment transportation in open channel flows[J]. Technical Bulletins, 1950(71): 75-81.

      [15] Guy B T, Dickinson W T, Rudra R P. The roles of rainfall and runoff in the sediment transport capacity of interrill flow[J]. Transactions of the American Society of Agricultural Engineers (Transactions of the ASAE), 1987, 30(5): 1378-1386.

      [16] 雷廷武,趙軍,袁建平,等. 利用γ射線透射法測量徑流含沙量及算法[J]. 農(nóng)業(yè)工程學(xué)報(bào),2002,18(1):18-21.

      Lei Tingwu, Zhao Jun, Yuan Jianping, et al. Determining sediment concentration in runoff flow with γ ray attenuation and the related theoretical algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2002, 18(1): 18-21. (in Chinese with English abstract)

      [17] 雷廷武,劉清坤,黃興法,等. 伽瑪射線測量徑流泥沙含量算法中質(zhì)量吸收系數(shù)優(yōu)選及其對測量誤差影響的分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2003,19(1):51-53.

      Lei Tingwu, Liu Qingkun, Huang Xingfa, et al. Optimal choice of mass absorption coefficient and analysis ofits influence on measured error in algorithm of using gamma ray to measure runoff sediment concentration[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2003, 19(1): 51-53. (in Chinese with English abstract)

      [18] 高佩玲,雷廷武,邵明安,等. 小流域土壤侵蝕及徑流過程自動測量系統(tǒng)的實(shí)驗(yàn)應(yīng)用[J]. 農(nóng)業(yè)工程學(xué)報(bào),2005,21(10):164-166.

      Gao Peiling, Lei Tingwu, Shao Ming’an, et al. Laboratory applications of an automated measuring system for soil erosion and runoff processes in small watershed[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2005, 21(10): 164-166. (in Chinese with English abstract)

      [19] 王輝,雷廷武,趙軍,等. 坡面徑流量與含沙量動態(tài)測量系統(tǒng)[J] . 農(nóng)業(yè)機(jī)械學(xué)報(bào),2005,36(1):79-82.

      Wang Hui, Lei Tingwu, Zhao Jun, et al. System for dynamic measurements of hillslope runoff rate and sediment concentration[J]. Transactions of the Chinese Society of Agricultural Machinery (Transactions of the CSAM), 2005, 36(1): 79-82. (in Chinese with English abstract)

      [20] 黃建龍,高艷雯,陳文科. 基于Lab VIEW的振動式懸移質(zhì)測沙系統(tǒng)[J]. 蘭州理工大學(xué)學(xué)報(bào),2007,33(2):46-49.

      Huang Jianlong, Gao Yanwen, Chen Wenke. Vibratory suspending sandiness measuring system based on Lab VIEW[J]. Journal of Lanzhou University of Technology, 2007, 33(2): 46-49. (in Chinese with English abstract)

      [21] Bonta J V. Water sampler and flow measurement for runoff containing large sediment particles[J]. Transactions of the American Society of Agricultural Engineers (Transactions of the ASAE), 1999, 42(1): 107-144.

      [22] 方彥軍,唐懋官. 超聲衰減法含沙量測試研究[J]. 泥沙研究,1990(2):1-12.

      Fang Yanjun, Tang Maoguan. Ultrasonic attenuation method for measuring sediment concentration[J]. Journal of Sediment Research, 1990(2): 1-12. (in Chinese with English abstract)

      [23] 李小昱,雷廷武,王為. 電容式傳感器測量水流泥沙含量的研究[J]. 土壤學(xué)報(bào),2002,39(3):429-435.

      Li Xiaoyu, Lei Tingwu, Wang Wei. Capacitance sensor measuring sediment concentration in water current[J]. Acta Pedologica Sinica, 2002, 39(3): 429-435. (in Chinese with English abstract)

      [24] 沈逸,李小昱,雷廷武,等. 電容式水流泥沙含量傳感器數(shù)據(jù)融合的研究[J]. 華中農(nóng)業(yè)大學(xué)學(xué)報(bào),2004,23(4):459-462.

      Shen Yi, Li Xiaoyu, Lei Tingwu, et al. Data fusion of capacitance sensor of sediment concentration in water current[J]. Journal of Huazhong Agricultural University, 2004, 23(4): 459-462. (in Chinese with English abstract)

      [25] Campbell C G, Laycak D T, Hoppes W, et al. High concentration suspended sediment measurements using a continuous fiber optic in-stream transmissometer[J]. Journal of Hydrology, 2005, 311(1/2/3/4): 244-253.

      [26] Downing J. Twenty-five years with OBS sensors: The good, the bad, and the ugly[J]. Continental Shelf Research, 2006, 26(17/18): 2299-2318.

      [27] 王婭娜,蔡輝,馬洪蛟,等. 紅外實(shí)時測沙儀研制及其應(yīng)用[J]. 海洋工程,2007,25(3):132-135.

      Wang Yana, Cai Hui, Ma Hongjiao, et al. Research on real-time wireless sediment measurement system and its application in annular flume[J]. The Ocean Engineering, 2007, 25(3): 132-135. (in Chinese with English abstract)

      [28] 王文堅(jiān). 新型現(xiàn)場激光測沙儀[J].水利水電快報(bào),2001(16):22-23.

      [29] 唐兆民,何志剛,韓玉梅. 懸浮泥沙濃度的測量[J]. 中山大學(xué)學(xué)報(bào):自然科學(xué)版,2003,42(增刊2):244-247.

      Tang Zhaomin, He Zhigang, Han Yumei. The measurement on suspended sediment concentration[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2003, 42(Suppl.2): 244-247.

      [30] 王艷姣. 基于懸浮泥沙影響的水深遙感方法研究[D]. 南京:南京師范大學(xué),2006.

      Wang Yanjiao. Application of Remote Sensing Technology to map Water Depth by Weakening the Influence of Suspended Sediment[D]. Nanjing: Nanjing Normal University, 2006. (in Chinese with English abstract)

      [31] Stroosnijder L. Measurement of erosion: is it possible?[J]. Catena, 2005, 64: 162-173.

      Development of real-time and automatic measuring equipment for runoff and sediment

      Zhan Xiaoyun1,2, Guo Minghang1,2, Zhao Jun1,2※, Zhao Xianghui3
      (1. State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Northwest A&F University, Yangling 712100, China; 2. Institute of Soil and Water Conservation, CAS&MWR, Yangling 712100, China; 3. Xi’an San Intelligent Technology Co’LTD, Xi’an 710075, China)

      Monitoring processes of runoff and sediment are the foundation of the dynamic assessment of soil erosion. Runoff volume and sediment concentration are 2 important hydrodynamic parameters to forecast slope runoff variation, reveal soil erosion mechanism and find out movement rule of soil in the field. However, the equipment which can be used widely to monitor precisely the runoff volume and sediment concentration at the same time is lacking. In view of the inaccuracy or the lack of equipment for automatic monitoring of runoff and sediment processes, real-time and automatic measuring equipment with high precision was explored in this study. The equipment could be applied to multi-scenario, including runoff plot and watershed. In our study, firstly, through the integration of signal sensing and automatic control technology, physical characteristics driving the operation of the equipment were extracted and converted into TT&C signals to automatically monitor runoff and sediment yield processes. On the one hand, continuous flow of runoff and sediment was discretized by optimizing the design of equipment overall structure and the functional unit. On the other hand, optical material of sampling device was used and the most reasonable shape and surface treatment of sampling device was designed, to reduce the influences of sediment adhesion and deposition on the accuracy and precision of measurement. Finally, based on “internet+”framework, a cloud station/data management platform was established, including station management, data integration, calculation and analysis, and application service. The equipment was able to get the values of runoff volume and sediment concentration synchronously, which overcame the limitation of tradition method. Furthermore, the reliability and applicability of the equipment were validated by the simulation experiment, and the results showed that the relative error of sediment concentration was averaged as 3.67%. Specifically, the relative error was averaged as 7.00%, when the sediment concentration was less than10 kg/m3, and when the sediment concentration varied from 20 to 90 kg/m3and from 100 to 300 kg/m3, the averaged relative errors were 3.10% and 2.61% respectively. The relative error greater than 10% accounted for only 3.70% of the total samples, while the relative error of the remaining 96.3% was less than 10%. The results also showed that the slope of linear regression between measured and actual sediment concentration was close to 1, and the coefficient of determination was up to 0.997. The research demonstrates that the equipment can detect precisely the dynamic processes of runoff volume and sediment concentration. We also monitored the dynamic process of runoff volume and sediment concentration through soil bin simulation experiment, and found that runoff volume varied from 19 to 127 L/s, with an average of 75.5 L/s, sediment concentration ranged from 4.6 to 275.1 kg/m3, and sediment concentration in the single rainfall was, on average, 88.6 kg/m3. The finding demonstrates that the equipment is capable of monitoring the large variation of runoff and sediment concentration, and can be used to complex field observations, and therefore, the self-designed equipment for auto-sampling water from runoff has a good prospect. This research can provide new techniques and methods for water and soil loss study, and promote the automation and informatization in water and soil loss monitoring.

      soils; erosion; runoff; sediment concentration; automatic monitoring

      10.11975/j.issn.1002-6819.2017.15.014

      S157; TP216

      A

      1002-6819(2017)-15-0112-07

      2017-04-26

      2017-07-12

      國家自然科學(xué)基金項(xiàng)目(41371278;41503078);黃土高原土壤侵蝕與旱地農(nóng)業(yè)國家重點(diǎn)實(shí)驗(yàn)室重要方向創(chuàng)新項(xiàng)目(A314021403-C3)

      展小云,女,博士,主要從事水土流失過程與水土保持研究。楊凌 西北農(nóng)林科技大學(xué)黃土高原土壤侵蝕與旱地農(nóng)業(yè)國家重點(diǎn)實(shí)驗(yàn)室,712100。Email:zhanxiaoyun2005@163.com

      ※通信作者:趙軍,男,高級工程師,主要從事科研信息化與裝備研究。楊凌 西北農(nóng)林科技大學(xué)黃土高原土壤侵蝕與旱地農(nóng)業(yè)國家重點(diǎn)實(shí)驗(yàn)室,712100。Email:zhaojun629@vip.sina.com

      猜你喜歡
      含沙量監(jiān)測儀泥沙
      泥沙做的父親
      0.6 H 層含沙量與垂線平均含沙量代表性探討
      新疆多泥沙河流水庫泥沙處理措施
      土壤團(tuán)聚體對泥沙沉降速度的影響
      基于STM32F207的便攜式氣井出砂監(jiān)測儀設(shè)計(jì)
      電子制作(2018年9期)2018-08-04 03:31:16
      一種基于數(shù)據(jù)可視化技術(shù)的便攜式物聯(lián)網(wǎng)環(huán)境監(jiān)測儀
      電子制作(2018年12期)2018-08-01 00:47:46
      PM2.5環(huán)境監(jiān)測儀設(shè)計(jì)
      電子制作(2016年23期)2016-05-17 03:53:31
      基于手機(jī)短信的智能交互式環(huán)境監(jiān)測儀的設(shè)計(jì)與實(shí)現(xiàn)
      泥沙滅火
      兒童繪本(2015年2期)2015-05-25 18:10:15
      羅源灣海洋傾倒區(qū)拋泥過程含沙量增量數(shù)值模擬
      桃园县| 都匀市| 敦化市| 浙江省| 资中县| 于田县| 温州市| 大渡口区| 高陵县| 洛川县| 临城县| 大庆市| 望奎县| 普兰店市| 永年县| 徐水县| 车致| 湟源县| 洛川县| 连江县| 泊头市| 中西区| 天柱县| 连平县| 江阴市| 微博| 琼海市| 越西县| 高唐县| 康平县| 毕节市| 宜章县| 松滋市| 新昌县| 周至县| 南郑县| 余江县| 临澧县| 涟水县| 崇文区| 龙州县|