• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      葉片進(jìn)口安放角對(duì)泵作透平外特性影響的數(shù)值模擬與驗(yàn)證

      2017-09-15 06:17:09孔繁余劉瑩瑩魏?jiǎn)⒛?/span>
      關(guān)鍵詞:液力蝸殼專用

      王 桃,孔繁余,劉瑩瑩,魏?jiǎn)⒛?/p>

      葉片進(jìn)口安放角對(duì)泵作透平外特性影響的數(shù)值模擬與驗(yàn)證

      王 桃1,2,孔繁余1※,劉瑩瑩1,魏?jiǎn)⒛?

      (1. 江蘇大學(xué)流體機(jī)械工程技術(shù)研究中心,鎮(zhèn)江 212013; 2. 西華大學(xué)能源與動(dòng)力工程學(xué)院流體及動(dòng)力機(jī)械教育部重點(diǎn)實(shí)驗(yàn)室,成都610039;3. 成都瀚能精密機(jī)械有限責(zé)任公司,成都 610039)

      為充分探究離心泵作透平專用葉輪葉片進(jìn)口安放角的確定方法,該文建立了液力透平專用葉輪葉片進(jìn)口安放角與設(shè)計(jì)流量的關(guān)系表達(dá)式;基于ANSYS BladeGen與NX軟件,分別設(shè)計(jì)了4個(gè)不同葉片進(jìn)口安放角的透平專用葉輪;在試驗(yàn)驗(yàn)證基礎(chǔ)上,通過(guò)全流場(chǎng)數(shù)值計(jì)算,分析了葉片進(jìn)口安放角對(duì)透平外性能的影響。結(jié)果表明:葉片進(jìn)口安放角從60°增大到72°、90°和105°時(shí),透平高效點(diǎn)對(duì)應(yīng)的流量分別為85、90、100和110 m3/h,4臺(tái)透平數(shù)值計(jì)算最高效率點(diǎn)流量與理論計(jì)算設(shè)計(jì)流量基本吻合,表明采用該文推導(dǎo)的設(shè)計(jì)流量與進(jìn)口安放角的關(guān)系式合理。外特性性能曲線顯示隨葉片進(jìn)口安放角增大,透平高效點(diǎn)向大流量偏移,最高效率值有所下降,且下降的速率增大。綜合考慮透平最高效率及高效區(qū)范圍,對(duì)于比轉(zhuǎn)速為193蝸殼式單級(jí)單吸離心泵反轉(zhuǎn)作透平,葉片進(jìn)口安放角宜設(shè)計(jì)在60°與90°之間。該研究可為液力透平專用葉輪設(shè)計(jì)提供參考。

      泵;葉輪;模型;離心泵作透平;葉片進(jìn)口安放角;設(shè)計(jì)流量;前彎葉片;性能預(yù)測(cè)

      王 桃,孔繁余,劉瑩瑩,魏?jiǎn)⒛? 葉片進(jìn)口安放角對(duì)泵作透平外特性影響的數(shù)值模擬與驗(yàn)證[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(15):98-104. doi:10.11975/j.issn.1002-6819.2017.15.012 http://www.tcsae.org

      Wang Tao, Kong Fanyu, Liu Yingying, Wei Qineng. Numerical simulation and validation of effects of blade inlet angle on performance of pump-as-turbine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(15): 98-104. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.15.012 http://www.tcsae.org

      0 引 言

      隨著日益增加的能源需求與環(huán)境保護(hù)的要求,水電作為可再生的清潔能源在全球范圍內(nèi)得以廣泛推廣和應(yīng)用。在微型水力發(fā)電中,若采用傳統(tǒng)的軸流式、混流式或沖擊式水輪機(jī)發(fā)電,由于較高的初期投資和運(yùn)行成本,經(jīng)濟(jì)上不可行。泵是一種可逆式旋轉(zhuǎn)機(jī)械,單級(jí)單吸離心泵反轉(zhuǎn)作透平因具有成本低,運(yùn)行維護(hù)成本少,占地空間小等優(yōu)勢(shì),在微型水電開(kāi)發(fā)與工業(yè)流程余能回收中被許多學(xué)者廣泛推薦[1-5]。

      近年來(lái),國(guó)內(nèi)外的學(xué)者主要圍繞泵作透平的選型、運(yùn)行穩(wěn)定性與性能提高等方面開(kāi)展研究[6]。泵出廠時(shí),制造商通常不提供泵在透平工況下的性能曲線,若直接選用原型泵反轉(zhuǎn)作透平,首要解決的問(wèn)題是如何選擇合適的泵,使其在透平工況運(yùn)行時(shí)能夠滿足用戶要求。雖然國(guó)內(nèi)外學(xué)者通過(guò)試驗(yàn)研究、理論推導(dǎo)與數(shù)值模擬的方法導(dǎo)出了適合一定比轉(zhuǎn)速范圍的透平性能預(yù)測(cè)表達(dá)式,但由于泵幾何型式的多樣和復(fù)雜性,預(yù)測(cè)精度還有待進(jìn)一步提高[7-13]。泵作透平在實(shí)際運(yùn)行中常產(chǎn)生振動(dòng)和噪聲,影響機(jī)組運(yùn)行的穩(wěn)定性,嚴(yán)重時(shí)會(huì)影響機(jī)組的正常開(kāi)機(jī)[14-17]。直接采用離心泵反轉(zhuǎn)作透平時(shí),除運(yùn)行穩(wěn)定性有待提高之外,透平效率通常不高于泵的效率,且高效區(qū)范圍較窄。為提高透平運(yùn)行性能,Derakhshan等[18-19]采用神經(jīng)網(wǎng)絡(luò)、基于梯度的葉片型線優(yōu)化算法,重新優(yōu)化葉型,透平效率有所提高。Giosion等[20-22]通過(guò)在葉輪進(jìn)口前添加導(dǎo)葉改善透平運(yùn)行性能。Jain等[9,23-24]均提出對(duì)透平葉片進(jìn)口邊倒圓及前、后蓋板外圓修圓,可使透平效率提高1%~4%。Doshi等[25]通過(guò)試驗(yàn)同樣指出對(duì)葉輪修圓,可提高透平效率,但提高的幅度十分有限,最高效率僅能提升1至2.5個(gè)百分點(diǎn),建議對(duì)葉片進(jìn)口角進(jìn)行重新設(shè)計(jì)以更明顯的改善透平性能。可見(jiàn),國(guó)內(nèi)外研究者主要通過(guò)優(yōu)化葉片形狀,添加導(dǎo)葉及葉輪修圓的方式提高透平性能,鮮有學(xué)者提出重新設(shè)計(jì)液力透平專用葉輪以顯著提高泵反轉(zhuǎn)作透平的性能。

      因泵反轉(zhuǎn)時(shí)蝸殼由壓水室變?yōu)橐?,由于空間尺寸限制通常不能同水輪機(jī)一樣在蝸殼與葉輪之間布置可調(diào)導(dǎo)葉,液體從蝸殼流出后直接流入葉輪進(jìn)口;又因原型泵葉輪設(shè)計(jì)時(shí)只考慮泵運(yùn)行工況,原型泵葉片的出口安放角(透平工況的進(jìn)口安放角)通常取值在推薦的22°~30°范圍[26],葉片形式通常為后彎型,若直接采用原型泵葉輪做能量轉(zhuǎn)換核心部件,效率較低的問(wèn)題不能得到根本改善。為提高透平能量特性,課題組從透平運(yùn)行工況,在不改變其他過(guò)流部件的前提下,設(shè)計(jì)了前彎葉片型式的透平專用葉輪,通過(guò)試驗(yàn)和數(shù)值分析發(fā)現(xiàn)可顯著提高離心泵作透平的效率[27]。為深入研究液力透平專用葉輪的設(shè)計(jì)理論與方法,課題組前期對(duì)液力透平專用葉輪直徑的確定方法[28]進(jìn)行了研究。文獻(xiàn)[29]設(shè)計(jì)了葉片進(jìn)、出口安放角均相同但安放角變化規(guī)律不同的3種葉片,研究了從葉輪進(jìn)口到葉輪出口葉片安放角變化規(guī)律對(duì)泵作透平性能的影響,得出了安放角按線性分布規(guī)律透平性能較好的結(jié)論。葉輪設(shè)計(jì)時(shí),葉片進(jìn)口安放角是重要參數(shù)之一。文獻(xiàn)[29]中未討論葉片進(jìn)口安放角的確定方法,也未涉及進(jìn)口安放角如何影響透平外特性的問(wèn)題。為研究葉片進(jìn)口安放角對(duì)液力透平性能的影響,楊孫圣等[30]針對(duì)5個(gè)不同進(jìn)口安放角的葉輪進(jìn)行了數(shù)值模擬,分析了進(jìn)口安放角對(duì)透平外特性的影響,并給出了葉片進(jìn)口安放角的取值建議。但文獻(xiàn)[30]中研究對(duì)象為一低比轉(zhuǎn)速原型泵葉輪,葉片形式為后彎型,且研究?jī)?nèi)容并未涉及如何從理論方法上,依據(jù)不同的設(shè)計(jì)條件,確定合理的葉片進(jìn)口安放角;其研究對(duì)象與研究核心內(nèi)容與本文均不同。因此,有必要對(duì)液力透平專用葉輪葉片進(jìn)口安放角與設(shè)計(jì)流量的關(guān)系及其對(duì)液力透平性能的影響展開(kāi)深入研究。

      本文以比轉(zhuǎn)速為193帶螺旋形蝸殼的單級(jí)單吸離心泵為原型,導(dǎo)出了葉片安放角與設(shè)計(jì)流量的關(guān)系表達(dá)式,設(shè)計(jì)了4個(gè)不同葉片進(jìn)口安放角的透平專用葉輪,分析了葉片進(jìn)口安放角對(duì)透平外性能和水力損失分布的影響,驗(yàn)證了葉片安放角與設(shè)計(jì)流量關(guān)系式的合理性,以期為泵作透平專用葉輪的設(shè)計(jì)提供參考。

      1 液力透平專用葉輪設(shè)計(jì)方法

      1.1 葉輪進(jìn)口速度矩

      透平葉輪進(jìn)口能量由蝸殼提供,若需設(shè)計(jì)出與蝸殼出流相匹配的葉片進(jìn)口安放角,首先需要掌握蝸殼出流的流動(dòng)規(guī)律。文獻(xiàn)[27]推導(dǎo)了蝸殼內(nèi)速度矩即蝸殼常數(shù)k與螺旋段進(jìn)口圓斷面幾何尺寸及包角的關(guān)系表達(dá)式,見(jiàn)式(1)。

      式中k為蝸殼常數(shù);Qr為設(shè)計(jì)計(jì)算流量,m3/s;a0為蝸殼螺旋進(jìn)口斷面中心距葉輪軸心線的距離,m;ρ0為蝸殼螺旋進(jìn)口圓斷面半徑,m;φ0為蝸殼包角,(°)。

      式(1)的推導(dǎo)過(guò)程是基于蝸殼斷面為圓形斷面,如圖1a所示;當(dāng)蝸殼為非圓形斷面時(shí),如圖1b所示,式(1)中蝸殼螺旋進(jìn)口圓斷面半徑ρ0將不能直接給出。

      為建立非圓形斷面蝸殼常數(shù)與蝸殼幾何參數(shù)的關(guān)系,可將圖1b中蝸殼斷面按照面積相等原則,計(jì)算出蝸殼螺旋進(jìn)口斷面當(dāng)量圓半徑ρ0。

      式中F為蝸殼螺旋進(jìn)口非圓形斷面面積,m2。

      以蝸殼螺旋進(jìn)口斷面高的一半(0.5H8)與0.5b0(b0為蝸殼出口高度)的交點(diǎn)為圓心,ρ0為半徑作圖,并計(jì)算出當(dāng)量圓斷面中心距葉輪軸心線的距離a0,如圖1b中ρ0與a0所示。本文以一比轉(zhuǎn)速為193的單級(jí)單吸離心泵為原型,主要參數(shù)(按透平工況命名)如表1所示。

      圖1 不同蝸殼螺旋進(jìn)口斷面形狀Fig.1 Different shapes of inlet cross section of spiral volute

      表1 比轉(zhuǎn)速為193的原型泵的主要參數(shù)Table 1 Main geometry parameters of original pump with 193 specific speed

      式中k1為蝸殼結(jié)構(gòu)系數(shù)。

      那么

      由蝸殼螺旋段進(jìn)口斷面相關(guān)幾何尺寸,計(jì)算得當(dāng)量圓半徑ρ0=0.035 m,由a0=0.1075 m,φ0=329°可得蝸殼常數(shù)k=24.83Qr。假設(shè)蝸殼與葉輪間無(wú)能量轉(zhuǎn)換,因此可得葉輪進(jìn)口速度矩vu1r1=k=24.83Qr。

      1.2 葉片進(jìn)口安放角與設(shè)計(jì)流量的關(guān)系

      葉片進(jìn)口速度三角形依據(jù)各速度大小不同,將呈現(xiàn)3種不同的型式,如圖2所示。葉輪進(jìn)口圓周速度

      式中u1為葉輪進(jìn)口圓周速度,m/s;D1為葉輪進(jìn)口直徑,m;n為葉輪轉(zhuǎn)速,r/min。

      由vu1r1=k,當(dāng)葉輪進(jìn)口直徑為D1時(shí),葉輪進(jìn)口圓周分速度

      式中vu1為進(jìn)口絕對(duì)速度的圓周分量,m/s。

      已知k=k1Qr,那么

      圖2 不同型式的進(jìn)口速度三角形Fig.2 Inlet velocity triangles with different shapes

      由圖2可知,當(dāng)β1>90°時(shí),u1<vu1;當(dāng)β1=90°時(shí),u1=vu1;當(dāng)β1<90°時(shí),u1>vu1。為了便于問(wèn)題的討論,命名進(jìn)口相對(duì)水流角β1等于90°時(shí)的流量為臨界流量Qc,此時(shí)vu1= u1,可推導(dǎo)其表達(dá)式

      式中Qc為進(jìn)口水流角為90°時(shí)的臨界流量,m3/s。

      針對(duì)本文研究對(duì)象,透平轉(zhuǎn)速n=1 500 r/min,葉輪進(jìn)口直徑D1及寬度b1與原型泵葉輪均相同,可計(jì)算Qc=99.2 m3/h。若取該臨界流量作為設(shè)計(jì)計(jì)算流量Qr,此時(shí)進(jìn)口流速三角形為唯一確定的直角三角形。新設(shè)計(jì)的透平專用葉輪葉片數(shù)取為11片,假設(shè)在設(shè)計(jì)流量下,透平葉輪工作時(shí)為無(wú)撞擊進(jìn)口,葉片的進(jìn)口安放角與進(jìn)口相對(duì)水流角相等,即βb1=β1。當(dāng)葉片進(jìn)口相對(duì)水流角β1>90°時(shí),設(shè)計(jì)

      流量大于臨界流量Qr>Qc,有

      由葉輪進(jìn)口軸面分速度

      式中vm1為進(jìn)口絕對(duì)速度的軸面分量,m/s;b1為葉片進(jìn)口寬度,m;ψ1為葉片進(jìn)口排擠系數(shù),可由公式(10)確定[26]

      式中δ1為葉片進(jìn)口邊圓周厚度,m;R1c為葉片進(jìn)口邊母線重心位置半徑,m;Z為葉片數(shù)。

      而當(dāng)葉片進(jìn)口相對(duì)水流角β1<90°時(shí),對(duì)應(yīng)的設(shè)計(jì)流

      量小于臨界流量Qr<Qc,有

      由式(11)、式(12)知,葉片進(jìn)口相對(duì)水流角與設(shè)計(jì)計(jì)算流量存在一一對(duì)應(yīng)的關(guān)系;即給定一設(shè)計(jì)流量可以計(jì)算出合理的葉片進(jìn)口安放角;反之,給定葉片進(jìn)口安放角可以反求出與該進(jìn)口安放角匹配的高效點(diǎn)流量(本文視高效點(diǎn)流量與設(shè)計(jì)計(jì)算流量相同)。本文選取了4個(gè)不同的進(jìn)口安放角,即60°,72°,90°,105°為研究對(duì)象,計(jì)算不同進(jìn)口安放角對(duì)應(yīng)的設(shè)計(jì)流量,分別為83.6,90,99.2,108.6 m3/h,并建立4個(gè)不同進(jìn)口安放角的葉輪模型,采用數(shù)值模擬的方法,與理論計(jì)算結(jié)果進(jìn)行對(duì)比,驗(yàn)證上述表達(dá)式的正確性;并且對(duì)葉片進(jìn)口安放角對(duì)透平性能的影響進(jìn)行分析。

      1.3 出口安放角的確定

      設(shè)液體流出透平葉輪時(shí)絕對(duì)速度為法向出口,即α2=90°,如圖3所示。此時(shí)出口相對(duì)水流角β2滿足式(13)。

      式中β2為出口相對(duì)水流角,(°);vm2為出口絕對(duì)速度的軸面分速度,m/s;u2為出口圓周速度,m/s;A2為葉輪出口實(shí)際軸面液流過(guò)水?dāng)嗝婷娣e,m2。

      圖3 出口速度三角形Fig.3 Outlet velocity triangle

      對(duì)上文設(shè)計(jì)流量,分別計(jì)算4個(gè)葉輪出口相對(duì)水流角。本文不考慮液體在葉輪出口處的相對(duì)滑移,設(shè)出口安放角βb2與出口相對(duì)水流角β2相等。葉片進(jìn)口安放角60°,72°,90°,105°對(duì)應(yīng)的中間流線處的出口安放角分別為40.5°,43°,45°,48°。

      1.4 透平專用葉輪模型的建立

      葉輪出口直徑、輪轂直徑、口環(huán)長(zhǎng)度、葉片進(jìn)口寬度與原型泵葉輪均相同。透平專用葉輪葉片數(shù)為11片,進(jìn)口邊厚度為5 mm,出口邊厚度為2 mm,葉片厚度按線性變化。對(duì)葉片進(jìn)、出口邊分別以厚度的1/2為半徑倒圓,葉片進(jìn)、出口安放角分別取上文數(shù)值。采用ANSYSBladeGen軟件,輸入流道幾何參數(shù),劃分葉片進(jìn)、出口邊,葉片安放角從進(jìn)口到出口按照線性規(guī)律變化,葉片包角自然形成[29],建立透平葉片三維模型。將葉片三維模型導(dǎo)入到NX軟件中,在NX軟件中完成葉輪前、后蓋板三維造型,生成完整的葉輪三維模型,如圖4所示。制作葉片進(jìn)口安放角βb1=72°的試驗(yàn)葉輪,如圖5所示。

      圖4 具有不同葉片進(jìn)口安放角的泵作透平專用葉輪三維模型Fig.4 3D models of special impellers using in turbine mode of pump-as-turbine with different blade inlet angles

      圖5 葉片進(jìn)口安放角為72°的試驗(yàn)葉輪Fig.5 Test impeller with 72° blade inlet angle

      2 泵作透平內(nèi)部流動(dòng)數(shù)值計(jì)算方案

      采用NX軟件分別對(duì)4臺(tái)裝有不同葉輪的透平進(jìn)行三維建模及裝配,建立了包括蝸殼、葉輪、尾水管、前泵腔和后泵腔5部分在內(nèi)的透平全流道三維模型,如圖6a所示,并在蝸殼進(jìn)水段與尾水管出口段分別作一定延伸以保證在數(shù)值計(jì)算中獲得較穩(wěn)定的進(jìn)、出口流態(tài)。在ANSYS ICEM中對(duì)各部件進(jìn)行網(wǎng)格劃分。與非結(jié)構(gòu)化網(wǎng)格,結(jié)構(gòu)化網(wǎng)格的生成速度快,質(zhì)量便于控制。本文選用六面體結(jié)構(gòu)化網(wǎng)格對(duì)全流道進(jìn)行網(wǎng)格劃分,同時(shí)對(duì)葉片表面、葉片進(jìn)、出口邊、蓋板表面、蝸殼隔舌、蝸殼及尾水管過(guò)流表面等進(jìn)行了邊界層劃分,圖6b為葉輪網(wǎng)格。對(duì)網(wǎng)格無(wú)關(guān)性進(jìn)行了研究,當(dāng)網(wǎng)格數(shù)在100萬(wàn)以上時(shí),透平揚(yáng)程、扭矩和效率偏差均在0.5%以內(nèi),因此本文用于計(jì)算的網(wǎng)格在100萬(wàn)以上較合適。

      本文基于ANSYS CFX軟件平臺(tái)對(duì)泵作透平的內(nèi)部流動(dòng)進(jìn)行數(shù)值計(jì)算。選用20 ℃的清水作為流體介質(zhì)。采用多重坐標(biāo)系,葉輪流場(chǎng)在旋轉(zhuǎn)坐標(biāo)系中計(jì)算,其余流道在靜止坐標(biāo)系中計(jì)算,動(dòng)靜交接面設(shè)置為Frozen Rotor模式;采用標(biāo)準(zhǔn)k-ε湍流模型,近壁區(qū)應(yīng)用標(biāo)準(zhǔn)壁面函數(shù),固壁面采用無(wú)滑移邊界條件,葉輪的旋轉(zhuǎn)速度設(shè)為1 500 r/min,過(guò)流表面粗糙度按實(shí)際加工精度設(shè)置為50 μm,收斂殘差標(biāo)準(zhǔn)為0.000 001。設(shè)置質(zhì)量流量進(jìn)口、壓力出口邊界條件,通過(guò)給定不同流量,計(jì)算得到透平不同工況運(yùn)行時(shí)的性能參數(shù)。

      圖6 泵作透平全流道三維模型及葉輪網(wǎng)格Fig.6 3D model of whole flow passage of pump-as-turbine and mesh of impeller

      3 數(shù)值計(jì)算試驗(yàn)驗(yàn)證

      為驗(yàn)證數(shù)值計(jì)算的正確性,搭建了開(kāi)式液力透平試驗(yàn)臺(tái),如圖7所示,對(duì)βb1=72°的透平專用葉輪進(jìn)行試驗(yàn)。透平所需的高壓液體由一臺(tái)增壓泵提供,透平葉輪將液體壓力能轉(zhuǎn)換為旋轉(zhuǎn)機(jī)械能。采用電渦流測(cè)功器(Electric eddy current dynamometer)測(cè)量和消耗透平產(chǎn)生的能量,通過(guò)自動(dòng)控制系統(tǒng)使透平旋轉(zhuǎn)速度恒定。在透平的進(jìn)、出口分別安裝壓力變送器以測(cè)量進(jìn)、出口壓力,在透平進(jìn)口管路中安裝渦輪流量計(jì)測(cè)透平進(jìn)口流量。通過(guò)改變?cè)鰤罕棉D(zhuǎn)速,使進(jìn)入透平的高壓液體具有不同的能量,實(shí)現(xiàn)透平進(jìn)口能量的調(diào)節(jié),得到透平不同工況運(yùn)行時(shí)的性能參數(shù),進(jìn)而繪制出透平性能曲線。

      圖7 開(kāi)式液力透平試驗(yàn)臺(tái)簡(jiǎn)圖Fig.7 Open test rig schematic of pump as turbine

      試驗(yàn)前對(duì)試驗(yàn)設(shè)備進(jìn)行標(biāo)定,試驗(yàn)參照GB3216-2005進(jìn)行,表2為試驗(yàn)所用儀器儀表及性能參數(shù)表。高效點(diǎn)時(shí),試驗(yàn)臺(tái)測(cè)量的轉(zhuǎn)速、流量、揚(yáng)程、扭矩和效率的不確定度分別為±0.07%,±0.5%,±0.72%,±0.4%,和±0.97%。

      表2 試驗(yàn)所用儀表及性能參數(shù)Table 2 Parameters of instruments used in test

      將數(shù)值模擬結(jié)果與試驗(yàn)結(jié)果進(jìn)行對(duì)比,如圖8所示。透平試驗(yàn)揚(yáng)程略高于數(shù)值計(jì)算結(jié)果,試驗(yàn)軸功率與數(shù)值計(jì)算結(jié)果差異不大,數(shù)值計(jì)算的效率較試驗(yàn)效率高。在70~140 m3/h的運(yùn)行區(qū)間,計(jì)算與試驗(yàn)效率差為3.29%~6.85%之間。數(shù)值計(jì)算的效率高于試驗(yàn)值的原因主要是計(jì)算中忽略了軸承和軸封等摩擦引起的損失。雖然數(shù)值計(jì)算與試驗(yàn)值有一定差異,但兩者的變化趨勢(shì)一致。因此本文采用的數(shù)值模擬方案可用于預(yù)估透平性能。

      圖8 透平性能數(shù)值模擬與試驗(yàn)對(duì)比Fig.8 Performance curves of pump-as-turbine obtained by experimental and numerical results

      4 結(jié)果分析

      通過(guò)對(duì)不同葉片進(jìn)口安放角的葉輪進(jìn)行全流場(chǎng)數(shù)值模擬,得到4臺(tái)透平運(yùn)行性能參數(shù),繪制外特性曲線,如圖9所示。從圖9可以看出,4臺(tái)透平外特性曲線變化趨勢(shì)一致,透平的揚(yáng)程與軸功率隨流量增大而增加,效率先上升后下降。葉片進(jìn)口安放角對(duì)透平外特性有明顯的影響,隨葉片進(jìn)口安放角增加,高效點(diǎn)向大流量偏移。表3列出了4臺(tái)裝有不同進(jìn)口安放角葉輪的透平數(shù)值計(jì)算的高效點(diǎn)性能參數(shù),葉片進(jìn)口安放角從60°增大到72°、90°和105°時(shí),透平高效點(diǎn)對(duì)應(yīng)的流量分別為85、90、100和110 m3/h。在1.2節(jié)中理論計(jì)算的設(shè)計(jì)流量分別為83.6、90、99.2和108.6 m3/h,可見(jiàn)4臺(tái)透平數(shù)值計(jì)算最高效率點(diǎn)的流量均出現(xiàn)在理論計(jì)算設(shè)計(jì)流量附近,與理論推導(dǎo)結(jié)論相符,說(shuō)明上文中論據(jù)合理,理論計(jì)算結(jié)果可信。同時(shí)表明采用本文推導(dǎo)的設(shè)計(jì)流量與進(jìn)口安放角的關(guān)系式,可以實(shí)現(xiàn)對(duì)透平專用葉輪高效點(diǎn)流量的有效預(yù)測(cè),彌補(bǔ)了傳統(tǒng)選型中對(duì)泵反轉(zhuǎn)后性能預(yù)測(cè)的不足。

      圖9 4臺(tái)不同葉片安放角葉輪的外特性曲線Fig.9 Performance curves of four pumps-as-turbines with different blade inlet angles

      表3 不同葉片進(jìn)口安放角葉輪對(duì)應(yīng)的數(shù)值預(yù)測(cè)高效點(diǎn)性能參數(shù)Table 3 Numerical predicted best efficiency points of pump-as-turbine impellers with different blade inlet angles

      從表3可知,隨著進(jìn)口安放角的增大,透平最高效率值有所下降,且下降的速率增大;當(dāng)葉片進(jìn)口安放角從60°增大到72°時(shí),最高效率僅相差0.68個(gè)百分點(diǎn),而當(dāng)葉片進(jìn)口安放角從90°增大到105°時(shí),透平最高效率僅為77.42%,下降了2.97個(gè)百分點(diǎn)。從圖9可以看出,在小于100 m3/h的流量范圍內(nèi),隨葉片安放角增大,效率越低,效率曲線越陡峭,表明在該工況范圍內(nèi),選用60°的葉片進(jìn)口安放角,透平最高效率與平均效率較其他3臺(tái)高;但在流量大于100 m3/h的工況范圍內(nèi),進(jìn)口安放角為60°的透平效率下降較其他3臺(tái)透平快,效率曲線陡峭。上述結(jié)論可以通過(guò)圖10所示的流速三角形隨流量的變化加以解釋。當(dāng)進(jìn)入透平的流量與設(shè)計(jì)計(jì)算流量不相等時(shí),進(jìn)口安放角與進(jìn)口相對(duì)水流角不等,會(huì)產(chǎn)生葉片進(jìn)口沖角。當(dāng)流量大于設(shè)計(jì)流量時(shí),對(duì)應(yīng)的軸面速度由vm1增大到1mv′,圓周分速度由vu1增大到1uv′,進(jìn)口相對(duì)水流角從β1增大到1β′,產(chǎn)生了進(jìn)口沖角Δβ。當(dāng)流量與設(shè)計(jì)流量偏離越遠(yuǎn),所產(chǎn)生的沖角越大,由此造成的沖擊漩渦等水力損失越大。因此,小流量工況下,進(jìn)口相對(duì)水流角較小,隨葉片進(jìn)口安放角增大,進(jìn)口沖角越大,葉輪內(nèi)部的水力損失越大,效率越低;反之,大流量工況下,隨著葉片安放角加大,葉輪內(nèi)的水力損失減小,效率提高。

      在泵反轉(zhuǎn)作透平的應(yīng)用中,應(yīng)結(jié)合實(shí)際情況,給出針對(duì)性強(qiáng)的透平設(shè)計(jì)方案。當(dāng)需要透平在較寬廣的工況范圍內(nèi)長(zhǎng)時(shí)間高效運(yùn)行時(shí),透平葉片進(jìn)口安放角應(yīng)設(shè)計(jì)在合理的范圍內(nèi)。針對(duì)本文案例,葉片安放角在72°時(shí),透平最高效率可達(dá)82%以上,在80~110 m3/h的流量區(qū)間,效率均高于80%,在大流量工況時(shí)效率曲線平坦,高效區(qū)較寬。因此,綜合考慮透平最高效率及高效區(qū)范圍,采用本文所述比轉(zhuǎn)速的泵作透平時(shí),葉片進(jìn)口安放角不宜超過(guò)90°,宜設(shè)計(jì)在大于60°且小于90°的范圍內(nèi)。

      圖10 進(jìn)口流速三角形隨流量的變化圖Fig.10 Velocity triangle change with flow rate at impeller inlet

      5 結(jié) 論

      1)理論上導(dǎo)出了透平專用葉輪葉片安放角與設(shè)計(jì)計(jì)算流量的關(guān)系表達(dá)式;基于ANSYS BladeGen與NX軟件,設(shè)計(jì)了4個(gè)不同葉片進(jìn)口安放角的透平專用葉輪,當(dāng)葉片進(jìn)口安放角從60°增大到72°、90°和105°時(shí),透平高效點(diǎn)對(duì)應(yīng)的流量分別為85、90、100和110 m3/h,4臺(tái)透平數(shù)值計(jì)算最高效率點(diǎn)的流量均出現(xiàn)在理論計(jì)算設(shè)計(jì)流量附近,與理論推導(dǎo)結(jié)論相符;導(dǎo)出的葉片安放角與設(shè)計(jì)計(jì)算流量關(guān)系表達(dá)式可實(shí)現(xiàn)對(duì)透平專用葉輪高效點(diǎn)流量的有效預(yù)測(cè)。

      2)隨葉片進(jìn)口安放角增大,透平最高效率值降低,且下降的速率增大;對(duì)于比轉(zhuǎn)速為193蝸殼式單級(jí)單吸離心泵反轉(zhuǎn)作透平,葉片進(jìn)口安放角宜設(shè)計(jì)在60°與90°之間。

      [1] Williams A A, Simpson R. Pico hydro-reducing technical risks for rural electrification[J]. Renewable Energy, 2009, 34(8): 1986-1991.

      [2] Elbatran A H, Yaakob O B, Ahmed Y M, et al. Operation, performance and economic analysis of low head microhydropower turbines for rural and remote areas: A review[J]. Renewable and Sustain Energy Reviews, 2015, 43(3): 40-50.

      [3] Jain S, Patel R. Investigations on pump running in turbine mode: A review of the state-of-the-art[J]. Renewable and Sustainable Energy Reviews, 2014, 30(2): 841-868.

      [4] Binama M, Su W T, Li X B, et al. Investigation on pump as turbine (PAT) technical aspects for micro hydropower schemes: A state-of-the-art review[J]. Renewable and Sustainable Energy Reviews, 2017, 79: 148-179.

      [5] Lima G M, Luvizotto E, Brentan B M. Selection and location of Pumps as Turbines substituting pressure reducing valves[J]. Renewable Energy, 2017, 109: 392-405.

      [6] 王桃,孔繁余,何玉洋,等. 離心泵用作透平的研究現(xiàn)狀[J].排灌機(jī)械工程學(xué)報(bào),2013,31(8):674-680. Wang Tao, Kong Fanyu, He Yuyang, et al. Researching status of centrifugal pump as turbine[J]. Journal of Drainage and Irrigation Machinery Engineering, 2013, 31(8): 674-680. (in Chinese with English abstract)

      [7] Xu T, Engeda A. Performance of centrifugal pumps running in reverse as turbine: Part Ⅱ- systematic specific speed and specific diameter based performance prediction[J]. Renewable Energy, 2016, 99: 188-197.

      [8] Punit S. The choice between turbine expanders and variable speed pumps as replacement for throttling devices in non-thermal process applications[J]. Energy, 2017, 123:198-217.

      [9] Jain S, Swarnkar A, Motwani K, et al. Effects of impeller diameter and rotational speed on performance of pump running in turbine mode[J]. Energy Conversion and Management, 2015, 89(1): 808-824.

      [10] Pugliese F, Paola F D, Fontana N, et al. Experimental characterization of two pumps as turbines for hydropower generation[J]. Renewable Energy, 2016, 99: 180-187.

      [11] Fecarotta O, Carravetta A, Ramos H M, et al. An improved affinity model to enhance variable operating strategy for pumps used as turbines[J]. Journal of Hydraulic Reasearch, 2016(3): 1-10.

      [12] Barbarelli S, Amelio M, Florio G. Predictive model estimating the performances of centrifugal pumps used as turbines[J]. Energy 2016, 107: 103-121.

      [13] 史廣泰,楊軍虎,苗森春. 離心泵作液力透平葉輪出口滑移系數(shù)的解析計(jì)算方法及驗(yàn)證[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,36(11):66-73. Shi Guangtai, Yang Junhu, Miao Senchun. Analytical methods and verification for determining slip factor at impeller outlet of centrifugal pumps as turbines[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 36(11): 66-73. (in Chinese with English abstract)

      [14] Su X H, Huang S, Zhang X J, et al. Numerical research on unsteady flow rate characteristics of pump as turbine[J]. Renewable Energy, 2016, 94(8): 488-495.

      [15] Yang Sunsheng, Kong Fanyu, Qu Xiaoyun, et al. Influence of blade number on the performance and pressure pulsations in a pump used as a turbine[J]. Journal of Fluids Engineering, 2012, 134(12): 1-10.

      [16] Yang Sunsheng, Liu Houlin, Kong Fanyu, et al. Effects of the radial gap between impeller tips and volute tongue influencing the performance and pressure pulsations of pump as turbine[J]. Journal of Fluids Engineering, 2014, 136(5): 1-8.

      [17] 代翠,董亮,孔繁余,等. 泵作透平振動(dòng)噪聲機(jī)理分析與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(15):114-119.

      Dai Cui, Dong Liang, Kong Fanyu, et al. Mechanism analysis of vibration and noise for centrifugal pump working as turbine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(15): 114-119. (in Chinese with English abstract)

      [18] Derakhshan S, Nourbakhsh A, Mohammadi B. Efficiency improvement of centrifugal reverse pumps[J]. ASME Journal of Fluids Engineering, 2009, 131(2): 21103-21109.

      [19] Derakhshan S, Mohammadi B. The comparison of incomplete sensitivities and genetic algorithms applications in 3D radial turbo machinery blade optimization[J]. Computers & Fluids, 2010, 39(10): 2022-2029.

      [20] Giosion D R, Henderson A D, Walker J M, et al. Design and performance evaluation of a pump-as-turbine micro-hydro test facility with incorporated inlet flow control[J]. Renewable Energy, 2015, 78(6): 1-6.

      [21] Qian Z D, Wang F, Guo Z W, et al. Performance evaluation of an axial-flow pump with adjustable guide vanes in turbine mode[J]. Renewable Energy, 2016, 99: 1146-1152.

      [22] 楊軍虎,龔朝暉,夏書(shū)強(qiáng),等. 導(dǎo)葉對(duì)液力透平性能影響的數(shù)值分析[J]. 排灌機(jī)械工程學(xué)報(bào),2014,32(2):113-118.

      Yang Junhu, Gong Zhaohui, Xia Shuqiang, et al. Numerical analysis on influence of guide vanes on performance of centrifugal pump acting as hydraulic turbine[J]. Journal of Drainage and Irrigation Machinery Engineering, 2014, 32(2): 113-118. (in Chinese with English abstract)

      [23] Singh P, Nestmann F. Internal hydraulic analysis of impeller rounding in centrifugal pumps as turbines[J]. Experimental Thermal and Fluid Science, 2011, 35(1): 121-134.

      [24] 盛樹(shù)仁. 利用水泵逆轉(zhuǎn)及水輪機(jī)回收能量的研究[J]. 流體機(jī)械,1984(6):41-45.

      Sheng Shuren. Research on energy recovery using reverse running pump and hydraulic turbine[J]. Fluid Mechinery, 1984(6): 41-45. (in Chinese with English abstract)

      [25] Doshi A, Channiwala S, Singh P. Inlet impeller rounding in pumps as turbines: An experimental study to investigate the relative effects of blade and shroud rounding[J]. Experimental Thermal and Fluid Science, 2017, 82: 333-348.

      [26] 關(guān)醒凡. 現(xiàn)代泵理論與設(shè)計(jì)[M]. 北京:中國(guó)宇航出版社,2011.

      [27] Wang Tao, Wang Chuan, Kong Fanyu, et al. Theoretical, experimental, and numerical study of special impeller used in turbine mode of centrifugal pump as turbine[J]. Energy, 2017,130: 473-485.

      [28] 王桃,孔繁余,楊孫圣,等. 泵作透平專用葉輪直徑的確定及其對(duì)透平性能的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(15):60-66.

      Wang Tao, Kong Fanyu, Yang Sunsheng, et al. Determination of special impeller diameter for pump as turbine and its effects on turbine performance[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(15): 60-66. (in Chinese with English abstract)

      [29] 王桃,孔繁余,楊孫圣,等. 葉片安放角變化規(guī)律對(duì)液力透平性能影響的研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(10):75-80.

      Wang Tao, Kong Fanyu, Yang Sunsheng, et al. Effects of the blade angle distributions on performance of pump as turbine[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(10): 75-80. (in Chinese with English abstract)

      [30] 楊孫圣,孔繁余,陳浩,等. 葉片進(jìn)口安放角對(duì)液力透平性能的影響[J]. 中南大學(xué)學(xué)報(bào):自然科學(xué)版,2013,44(1):108-113.

      Yang Sunsheng, Kong Fanyu, Chen Hao, et al. Effects of blade inlet angle on performance of pump as turbine[J]. Journal of Central South University: Science and Technology, 2013, 44(1): 108-113. (in Chinese with English abstract)

      Numerical simulation and validation of effects of blade inlet angle on performance of pump-as-turbine

      Wang Tao1,2, Kong Fanyu1※, Liu Yingying1, Wei Qineng3
      (1. Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013, China; 2. School of Energy and Power Engineering, Key Laboratory of Fluid and Power Machinery, Ministry of Education, Xihua University, Chengdu 610039, China; 3. Chengdu Alen Precision Machinery Co., Ltd., Chengdu 610039, China)

      Small and micro hydropower systems represent an attractive solution for generating electricity at low cost and with low environmental impact. The pump-as-turbine (PAT) approach is promising in this application due to its low purchase and maintenance cost. Due to that the conventional backward-curve centrifugal impellers do not effectively match the turbine’s running, the performance of the PAT is usually undesirable. Therefore, to improve significantly the performance of PAT, the method for determining the blade inlet angle that plays an important role in the energy conversion was investigated deeply, and one kind of special impeller with forward-curved blades was designed for the turbine working condition in this paper. Firstly, based on the conservation theorem of angular momentum, the relationship expression between the blade inlet angle and the design flow rate was deduced. Moreover, in order to validate the relationship expression and investigate the effects of the blade inlet angle on the performance of PAT, 4 special impellers with different blade angles were designed by using ANSYS BladeGen and NX software. The validity of numerical simulation was first confirmed through the comparison between numerical and experimental results. The 4 impellers with different blade angles were numerically investigated by use of a verified computational fluid dynamics (CFD) technique. The performance within PATs was investigated through analyzing the external characteristic curves obtained by CFD. The results show that the flow rates of 4 PATs at BEP (best efficiency point) obtained by CFD are about 85, 90, 100 and 110 m3/h while the flow rates by theoretical calculation are about 83.6, 90, 99.2 and 108.6 m3/h, respectively, as the blade inlet angle is 60°, 72°, 90° and 105°. Based on the results, the flow rate of numerical BEP is very close to that of theoretical BEP, and the flow rate of BEP increases with the enlargement of the blade inlet angles. And, the theoretical relationship expression between the blade inlet angle and the design flow rate presents the effective prediction of the turbine model operations of centrifugal pumps with special impellers. The maximum efficiency of PAT decreases with the increase of the blade inlet angle. And the drop rate of the maximum efficiency increases with the increase of the blade inlet angle. The results indicate that the calculating method of the blade inlet angle is reasonable. Smaller angle is matched with relatively lower rated flow rate while bigger angle with higher rated flow rate. The performance of PAT is better and the high efficiency range is wider when the blade inlet angle is designed in a reasonable range. Additionally, the energy loss within the impeller reaches the minimum if suitable blade inlet angle is selected. So considering the efficiency and the high efficiency range of PAT, the value of blade inlet angle is recommended in a reasonable range between 60° and 90° when the spiral volute of this high specific speed pump is used as turbine flume. This paper is very instructive to the design of the special impeller used in the PAT.

      pumps; impellers; models; centrifugal pump as turbine; blade inlet angle; design flow rate; forward curved blades; performance prediction

      10.11975/j.issn.1002-6819.2017.15.012

      TH311

      A

      1002-6819(2017)-15-0098-07

      2017-02-10

      2017-06-10

      國(guó)家自然科學(xué)基金資助項(xiàng)目(11602097、51379179);江蘇省普通高校研究生科研創(chuàng)新計(jì)劃資助項(xiàng)目(CXZZ13-0678);四川省教育廳重大培育項(xiàng)目

      王 桃,女,四川成都人,博士生,副教授,主要從事流體機(jī)械及工程研究。成都 西華大學(xué)能源與動(dòng)力工程學(xué)院,610039。

      Email:mailtowangtao@163.com

      ※通信作者:孔繁余,男,江蘇揚(yáng)州人,研究員,博士生導(dǎo)師,主要從事流體機(jī)械及工程研究。鎮(zhèn)江 江蘇大學(xué)流體機(jī)械工程技術(shù)研究中心,212013。Email:kongm@ujs.edu.cn

      猜你喜歡
      液力蝸殼專用
      焊接蝸殼泵模型開(kāi)發(fā)
      液力回收透平性能改善的研究
      體能測(cè)試專用鞋
      體能測(cè)試專用鞋
      體能測(cè)試專用鞋
      污水泵蝸殼斷裂原因分析
      液力扭轉(zhuǎn)沖擊器配合液力加壓器的鉆井提速技術(shù)研究與現(xiàn)場(chǎng)試驗(yàn)
      愛(ài)它就給它專用的設(shè)備
      傳動(dòng)系液力緩速器系統(tǒng)介紹
      蝸殼差壓法在印尼ASAHAN一級(jí)水電站的應(yīng)用
      奉化市| 宿迁市| 阿克陶县| 华容县| 长宁区| 湖北省| 光山县| 从江县| 许昌市| 湖南省| 本溪市| 无极县| 板桥市| 巴马| 濮阳市| 侯马市| 浦北县| 常州市| 贡觉县| 临清市| 长海县| 临澧县| 登封市| 治多县| 开鲁县| 高青县| 闵行区| 古丈县| 盖州市| 营口市| 彭州市| 阜新| 辰溪县| 茶陵县| 秭归县| 南京市| 大石桥市| 江油市| 报价| 开平市| 临高县|