呂曉蘭,張美娜,常有宏,雷嘵暉,楊青松
果園風(fēng)送噴霧機導(dǎo)流板角度對氣流場三維分布的影響
呂曉蘭1,張美娜1,常有宏2※,雷嘵暉1,楊青松2
(1. 江蘇省農(nóng)業(yè)科學(xué)院農(nóng)業(yè)設(shè)施與裝備研究所,南京 210014;2. 江蘇省農(nóng)業(yè)科學(xué)院園藝研究所,南京 210014)
風(fēng)送噴霧條件下,霧滴是在空氣流攜帶下進入果樹冠層的各個部位,所以噴霧機氣流場的運動和分布對霧滴的分布和穿透非常重要。為了研究果園風(fēng)送噴霧機導(dǎo)流板角度變化對外部氣流速度場三維空間分布的影響,該文采用ICEM建立幾何模型,并進行全結(jié)構(gòu)網(wǎng)格劃分,采用k-ε湍流模型和CFX求解器進行數(shù)值求解。通過變換上導(dǎo)流板角度(30°、45°、60°、90°)與下導(dǎo)流板角度(0°、10°、20°、30°),來模擬分析風(fēng)機外部流場在各工況下的空間穩(wěn)態(tài)流場、湍流狀態(tài),以及對氣流場空間分布的影響。結(jié)果表明,下導(dǎo)流板角度由0°增加至30°過程中,由于地面摩擦阻力對氣流的影響逐漸減小,同時地面摩擦阻力與兩側(cè)空氣阻力形成的夾角越來越大,因此單一氣流束逐漸分成3條氣流束,這樣的氣流分布優(yōu)于單一方向氣流對果樹枝葉的吹動效果,有利于氣流攜帶霧滴進入果樹冠層;上下導(dǎo)流板導(dǎo)向氣流主要集中在導(dǎo)流板指向區(qū)域,因此,導(dǎo)流板的角度設(shè)置應(yīng)根據(jù)樹冠高度、樹干高度來調(diào)整。通過設(shè)置合理的導(dǎo)流板角度,使得風(fēng)場分布與果樹冠形相吻合,達到仿形噴霧效果。對于行距4 m、樹高3.0~3.2 m的果園噴霧,上、下導(dǎo)流板角度均為30°;對于棚架果園,上導(dǎo)流板角度為90°(或卸掉上導(dǎo)流板),下導(dǎo)流板為30°。該研究有利于指導(dǎo)田間噴霧作業(yè)、噴霧參數(shù)調(diào)整,可達到更好的噴霧效果、減少環(huán)境污染。
農(nóng)業(yè)機械;噴霧;計算機仿真;風(fēng)送式噴霧機;導(dǎo)流板;氣流分布;三維
呂曉蘭,張美娜,常有宏,雷嘵暉,楊青松. 果園風(fēng)送噴霧機導(dǎo)流板角度對氣流場三維分布的影響[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(15):81-87. doi:10.11975/j.issn.1002-6819.2017.15.010 http://www.tcsae.org
Lü Xiaolan, Zhang Meina, Chang Youhong, Lei Xiaohui, Yang Qingsong. Influence of deflector angles for orchard air-assisted sprayer on 3D airflow distribution[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(15): 81-87. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.15.010 http://www.tcsae.org
果園風(fēng)送噴霧作業(yè)中,農(nóng)藥霧滴是在輔助氣流攜帶下進入樹冠的各個部位,風(fēng)機氣流場的空間分布與擴散對霧滴在果樹冠層中的穿透、沉積有顯著影響。因此,國內(nèi)外許多研究人員對不同風(fēng)送式噴霧機的氣流場速度分布、藥液沉積分布及影響因素進行了試驗研究,結(jié)果發(fā)現(xiàn):不同結(jié)構(gòu)的風(fēng)送式噴霧機,其氣流速度空間分布特性有很大差異,同樣條件下產(chǎn)生的藥液沉積分布特性也有很大的差異[1-2]。然而,施藥過程受很多因素影響,尤其受不可控的田間自然風(fēng)、空氣溫度和相對濕度等因素的影響[3-4]。采用傳統(tǒng)試驗方法研究有很大困難,而采用CFD技術(shù)進行研究,則可克服田間試驗中不可控因素對試驗結(jié)果的干擾,實現(xiàn)各個參數(shù)按要求改變,獲得任意條件下的試驗結(jié)果。目前國內(nèi)外研究均已證實采用CFD模擬技術(shù)能較好的模擬分析風(fēng)送噴霧內(nèi)外氣流場分布與霧滴沉積規(guī)律[5-8]。
氣流特性是衡量果園風(fēng)送噴霧機性能的主要技術(shù)指標(biāo),特別是尋求與果樹冠層參數(shù)匹配的風(fēng)機出口氣流場分布是研究的重點和難點。目前國際上主要利用基于非結(jié)構(gòu)化網(wǎng)格的有限元方法求解N-S方程和湍流方程,并結(jié)合試驗數(shù)據(jù),獲得噴霧機內(nèi)外流場的氣動特性,并建立了多種風(fēng)機氣流場CFD模型。Endalew等[9-12]建立了一個新的果園風(fēng)送噴霧CFD 模型,研究了噴霧機風(fēng)速與方向?qū)婌F氣流的影響,證實氣流逆向線性衰減。Delele等[13-15]建立了不同類型果園風(fēng)送噴霧機風(fēng)場模型,用以評價噴霧機作業(yè)性能。Dugaa等[16-20]建立了果園風(fēng)送噴霧田間飄失CFD模型,該模型能預(yù)測并減少漂移距離50%。García-Ramos等[21]采用3D超聲波風(fēng)速計針對雙風(fēng)機果園噴霧機進行了地面之上4 m空間內(nèi)氣流速度來驗證以風(fēng)機進風(fēng)量為主要參數(shù)的CFD模型,模擬值與測量值相關(guān)系數(shù)達0.859,具有良好的相關(guān)性。Salcedoa等[22]將柑橘樹體簡化成多孔介質(zhì),建立二維CFD模型,該CFD模型能夠重現(xiàn)樹冠周圍的氣流行為,且具有相同的湍流結(jié)構(gòu)。祁力鈞等[23-24]采用CFD 模擬技術(shù)建立了果園風(fēng)送噴霧機二維霧流場分布模型與溫室軌道式彌霧機的氣流速度場分布模型,并對模擬結(jié)果進行了驗證。傅澤田等[25]基于CFD模擬建立了果園風(fēng)送式噴霧機氣流場速度分布模型,研究了果園風(fēng)送式噴霧機氣流速度場速度分布特性及各因素的影響規(guī)律,揭示果園風(fēng)送式噴霧機的工作機理。王景旭等[26]則研究了靶標(biāo)周圍氣流場分布以及對冠層內(nèi)霧滴沉積分布影響規(guī)律。周良富等[27-29]采用試驗方法與計算機模擬相結(jié)合,研究了圓盤霧化器最佳的工作轉(zhuǎn)速,不同轉(zhuǎn)速下圓盤霧化器的氣流速度場,并進行試驗驗證。丁天航等[30]模擬分析了單、雙層流道設(shè)計對果園風(fēng)送噴霧機雙側(cè)流場對稱性的影響。
上述研究結(jié)果均顯示建立的CFD模型能夠直觀反應(yīng)氣流場特性,且實測值與模擬值吻合度高,具有極高的可信度。得出噴霧機外流場的氣流速度在垂直和水平2個方向呈梯度減小趨勢;有效風(fēng)速的距離和有效風(fēng)場半徑都隨噴霧機出口氣流速度增大而增大;氣流靶標(biāo)點的速度與噴霧機風(fēng)量和行駛速度有關(guān)。霧滴的穿透性、霧滴在作物冠層中的沉積量與風(fēng)機風(fēng)量正相關(guān)等重要結(jié)論。但是這些研究沒有充分展示三維氣流場隨不同作業(yè)參數(shù)變化而發(fā)生改變的規(guī)律,特別是導(dǎo)流板角度對三維風(fēng)場的分布的影響。目前國內(nèi)果園風(fēng)送噴霧機主要以傳統(tǒng)軸流風(fēng)機風(fēng)力輔助噴霧為主,氣流調(diào)節(jié)依靠導(dǎo)流板,因此本文通過模擬分析上下導(dǎo)流板不同角度、不同三維截面上氣流場分布規(guī)律,以期有效指導(dǎo)實際田間作業(yè)時導(dǎo)流板的合理調(diào)整。
本文針對Hardi Zaturn 1000型牽引式果園風(fēng)送噴霧機進行研究。如圖1所示,風(fēng)機軸線距離地面高度為0.915 m,出風(fēng)口弧面寬度為0.16 m,弧面半徑為風(fēng)機外殼半徑0.53 m,風(fēng)扇外殼底部(下導(dǎo)流板水平位置)距地面高度為0.52 m。因此,本文將風(fēng)機出風(fēng)口簡化成一寬度為0.16 m的弧面,并在弧面上部和下部分別設(shè)置導(dǎo)流板;考慮到幾何模型具有對稱特性,因此只考慮幾何模型的一半作為研究對象。考慮后續(xù)模擬研究中將加入一排果樹模型,研究側(cè)向風(fēng)對霧滴飄失的影響規(guī)律等,風(fēng)機最上端出風(fēng)口的高度為1.445 m,設(shè)定風(fēng)機的頂端射程10 m,因此風(fēng)機上部流場高度可達11.445 m,同時該噴霧機左右側(cè)有效射程(以2 m/s 為邊界)為10~15 m,因此建立外流場計算域,長度為16 m,寬度為12 m,高度為11.445 m,如圖2所示。
圖2 三維流場計算區(qū)域設(shè)置Fig.2 Setting of 3D flow field computing domain
由于本文研究上導(dǎo)流板角度α和下導(dǎo)流板角度β(角度均為導(dǎo)流板與地面的夾角)的不同組合對風(fēng)送噴霧機外部氣流場的影響,因此需要根據(jù)導(dǎo)流板與水平面角度的變化建立多個幾何模型,共計16組模型,導(dǎo)流板角度變化規(guī)律如表1所示。
表1 上下導(dǎo)流板角度組合Table 1 Angle settings of upper and lower deflectors
本文采用ICEM CFD對每個幾何模型的計算域進行全結(jié)構(gòu)化網(wǎng)格劃分,在導(dǎo)流板和出風(fēng)口附近區(qū)域進行網(wǎng)格加密,并在長、寬、高方向由近及遠對網(wǎng)格節(jié)點進行比例縮放,全局網(wǎng)格節(jié)點約為156萬。
根據(jù)風(fēng)機實際作業(yè)時出口風(fēng)速范圍15~35 m/s,本文中風(fēng)機出口風(fēng)速設(shè)置為20 m/s,由于空氣流速不大,將空氣視為不可壓縮流體,其密度為1.185 kg/m3,參考大氣壓力為1個大氣壓。本文采用CFX來計算各工況穩(wěn)態(tài)流場,其基本控制方程如式(1)~式(4)所示。在實際工程中,流體基本處于紊流狀態(tài),本文選擇κ-ε湍流模型來描述湍流,控制方程如式(5)~式(6)所示[31]。
1)質(zhì)量守恒方程
2)動量守恒方程
式中x,y,z為坐標(biāo)軸長度,m;u,v,w為3個坐標(biāo)軸對應(yīng)的速度,m/s;ρ為密度,kg/m3;μ為黏度,kg/(m·s);Fx,F(xiàn)y,F(xiàn)z為作用在流體元上單位質(zhì)量力所在3個坐標(biāo)軸的分力,m/s2。
3)湍流動能方程
4)湍流動能耗散率方程
式中μt為湍流黏性系數(shù),Pa·s;xi、xj為2個方向的長度距離,m;Gk是由平均速度梯度引起的湍動能產(chǎn)生項;C1ε、C2ε為經(jīng)驗常數(shù);δk和δε分別為與湍動能k和耗散率ε對應(yīng)的Prandt l數(shù),ui為速度,m/s。
根據(jù)風(fēng)機產(chǎn)生氣流工況,設(shè)置各邊界條件,如下所示:1)進口:速度入口,方向垂直弧面;2)出口:壓力出口,相對壓力為0;3)地面及導(dǎo)流板:Wall壁面,無滑移;4)對稱面:Symmetry對稱面。
氣流場三維截面的選取示意圖如圖3所示,在風(fēng)機外部空間流場內(nèi)以3種方向來選取截面,以顯示速度場空間分布情況。截面a:與風(fēng)機軸線垂直,經(jīng)風(fēng)機出口中心的豎直平面;截面b:與地面平行的水平面,且距地面0.25、0.915(風(fēng)機軸線高度)、1.5、2.0 m 4個截面;截面c:與風(fēng)機軸線平行垂直平面,且距離風(fēng)機軸線1、2、3、4 m位置垂直面。
圖3 氣流場三維截面的選取示意圖Fig.3 Three sections were selected in airflow 3D field
圖4為上、下導(dǎo)流板角度變化時,風(fēng)場在截面a上分布的變化。如圖4所示,上導(dǎo)流板角度由90°變?yōu)?0°的過程中,氣流在導(dǎo)流板的導(dǎo)向作用下,氣流擴散區(qū)域逐漸減小,同時導(dǎo)向氣流主要集中在導(dǎo)流板指向區(qū)域,上下導(dǎo)流板調(diào)整角度時,對中間區(qū)域氣流無明顯影響。因此上下氣流調(diào)整應(yīng)以樹冠高度為依據(jù)。因此,調(diào)整導(dǎo)流板角度時,可采用長飄帶來標(biāo)識氣流方向,上下導(dǎo)流板各系上2 m長飄帶,飄帶指向樹冠頂端及偏下20 cm即可,下飄帶則應(yīng)指向樹冠底端[29]。對于棚架種植的果樹噴霧時,由于樹冠枝葉集中在上層且交叉,上導(dǎo)流板角度應(yīng)設(shè)為90°,下導(dǎo)流板角度設(shè)為30°及以上,以確保氣流和霧滴向上噴撒到枝葉上。對于中國常規(guī)種植果園,果樹高度3.0~3.2 m,定干高度0.6 m左右,行距4 m,冠形多為紡錘形,上導(dǎo)流板角度設(shè)置為30°,下導(dǎo)流板設(shè)置為30°,可有利于農(nóng)藥霧滴集中向冠層噴施。
圖4 上下導(dǎo)流板角度變化對截面a內(nèi)氣流分布的影響Fig.4 Changes of air velocity distributions in section a with upper and lower deflector angle
由于本研究所用噴霧機下導(dǎo)流板距離地面0.52 m,當(dāng)導(dǎo)流板角度為0°時,由于地面摩擦阻力與外圍氣流反向卷吸作用,導(dǎo)流板導(dǎo)向氣流多擴散至地面區(qū)域。因此可認為,下導(dǎo)流板角度較小時,下部氣流多擴散至地面,這是引起農(nóng)藥霧滴地面流失的重要因素。當(dāng)導(dǎo)流板角度慢慢增加至30°時,導(dǎo)流板導(dǎo)向氣流主要擴散方向慢慢提升至水平及以上區(qū)域。由于不同地區(qū)、不同果樹品種定干高度有差異,果園行距有大小,因此下導(dǎo)流板角度設(shè)置應(yīng)根據(jù)具體的果園條件來調(diào)整,以風(fēng)機底端氣流脫離地面摩擦,且氣流指向冠層底端方向為宜。
圖5為不同高度的截面b內(nèi)氣流分布的變化,隨著高度的增加,氣流場在水平面內(nèi)最高風(fēng)速減小的同時,射流區(qū)域逐漸變窄,說明噴霧機上部氣流量小于下部氣流量。
圖6中下導(dǎo)流板角度由0°增加至30°過程中,由于地面摩擦阻力對氣流的影響逐漸減小,同時地面摩擦阻力與兩側(cè)空氣阻力形成的夾角越來越大,因此氣流束逐漸分成3條氣流束,這樣的氣流分布優(yōu)于單一方向氣流對果樹枝葉的吹動效果,有利于氣流攜帶霧滴進入果樹冠層。
圖5 不同高度的截面b內(nèi)氣流分布的變化Fig.5 Changes of air velocity distributions in section b at different height
圖6 下導(dǎo)流板角度變化對0.25 m高度截面b內(nèi)氣流分布的影響Fig.6 Changes of air velocity distribution in section b at height of 0.25 m with different lower deflector angles
圖7為不同距離d的截面c內(nèi)氣流分布,圖8為下導(dǎo)流板角度變化時,距離風(fēng)機軸線不同距離的垂直方向氣流垂直分布變化規(guī)律。如圖7、8所示,在距離風(fēng)機軸線1、2、3、4 m的垂線上,風(fēng)速分布高風(fēng)速區(qū)域主要集中在0.5~4.0 m之間。
圖7 距風(fēng)機軸線不同距離的截面c內(nèi)氣流分布Fig.7 Changes of air velocity distribution in section c at different distances from fan axis
下導(dǎo)流板角度逐漸增加時,最高風(fēng)速點出現(xiàn)在導(dǎo)流板指向區(qū)域和角度,在風(fēng)機出口風(fēng)速20 m/s時,下導(dǎo)流板角度為30°時,距離風(fēng)機軸線距離1 m垂直線上,最高風(fēng)速出現(xiàn)在0.8 m高度,最高值為25.5 m/s,高風(fēng)速其他區(qū)域數(shù)值幾乎無差異。這就意味著,最高風(fēng)速點出現(xiàn)的位置低于現(xiàn)有果樹冠層最厚高度位置,為進一步優(yōu)化風(fēng)送氣流分布特性,使其風(fēng)速垂直分布曲線與果樹冠層外形曲線在高度方向上吻合。需進一步優(yōu)化風(fēng)機出口導(dǎo)流板設(shè)置,在風(fēng)機出口區(qū)域,除上、下導(dǎo)流板外,中間區(qū)域同樣設(shè)置導(dǎo)流板,對氣流進行多重調(diào)整[2]。
圖8 下導(dǎo)流板角度變化時距離風(fēng)機軸線不同距離截面c中垂線上氣流分布變化規(guī)律Fig.8 Changes of air velocity distribution on vertical line cross section c at different distances from fan axis with different lower deflector angles
為驗證模擬結(jié)果的可靠性,試驗設(shè)置條件與模擬試驗相同,測量了距離風(fēng)機軸線距離d=2 m垂直線,以及距離地面高度h=0.25 m水平線上的氣流速度分布。風(fēng)機外部氣流速度實測試驗在福田雷沃重工集團車間進行,風(fēng)機出口15 m內(nèi)無障礙物。采樣點設(shè)置示意圖如圖9所示,垂直線測量高度為4 m,水平線測量長度為4 m,即以風(fēng)口為中心前后各2 m的距離。采樣點分別沿垂直、水平兩條線間隔0.2 m設(shè)置。風(fēng)速分布實地測量如圖10所示,以4.5 m 高桿作為定位標(biāo)桿,從地面向上以0.2 m為間隔在桿上做出標(biāo)識,沿坐標(biāo)位置移動高桿,實現(xiàn)風(fēng)速采樣點快速定位。拖拉機PTO 設(shè)定540 r/min轉(zhuǎn)速,風(fēng)機掛高速擋,此時風(fēng)機出口平均風(fēng)速在19.76 m/s。本試驗采用臺灣SENTRY熱球式風(fēng)速儀ST-732對采樣點進行風(fēng)速測量,記錄每個采樣點最大風(fēng)速值。
圖9 采樣點設(shè)置示意圖Fig.9 Diagram of samples setting
圖10 風(fēng)速分布實地測量Fig.10 Measurement of wind velocity distribution in field
如圖11所示,實測風(fēng)速在距離風(fēng)機軸線2 m的垂直線上分布曲線特性與CFD模擬結(jié)果吻合較好,呈單邊紡錘形,祁力鈞等[23]亦提出相同結(jié)論。水平方向氣流分布如圖12所示,實測風(fēng)速在距離風(fēng)機軸線2 m,距離地面0.25 m的平面b內(nèi)的分布曲線特性與CFD模擬曲線趨勢吻合,均隨著下導(dǎo)流板角度由0°增加至30°過程中,單一氣流束逐漸分成3條氣流束,相對高速區(qū)逐漸擴大,氣流場厚度的增加有利于風(fēng)機外部空間與冠層內(nèi)空氣的推動置換,便于枝葉的充分擾動。
圖11 風(fēng)速垂直分布Fig.11 Air velocity distribution in vertical direction
圖12 水平方向氣流分布Fig.12 Air velocity distribution in horizontal direction
由于部分采樣點的瞬時氣流不穩(wěn)定,造成采集的最大風(fēng)速不是真正某一時段的最大風(fēng)速,因此風(fēng)速的CFD模擬值普遍略大于實測值,特別是在低風(fēng)速段(≤2 m/s),部分采樣點的風(fēng)速模擬值與實測值差異性較大,這是由于氣流速度已經(jīng)淹沒于環(huán)境自然風(fēng)速中,受周邊氣流擾動顯著,造成實測值與模擬值之間的差異。然而在高風(fēng)速區(qū)域(±0.60 m區(qū)間),風(fēng)速實測值與模擬值平均相對誤差小于10%。綜上表明,本文CFD 模擬結(jié)果能夠較準(zhǔn)確模擬出風(fēng)送式噴霧機氣流速度三維分布的特征區(qū)域,模擬結(jié)果的正確性可信。
1)基于CFD模擬建立的Hardi Zaturn 1000型果園風(fēng)送式噴霧機外部氣流速度場三維空間分布模型能夠直觀反映了3個視角平面內(nèi)氣流場的分布,以及各參數(shù)變化對氣流場影響的規(guī)律,氣流三維分布特征曲線模擬值與實測值吻合較好,模擬結(jié)果的正確性可信。
2)上下導(dǎo)流板角度變化對氣流擴散的中間區(qū)域無明顯影響,僅僅使上下區(qū)域的氣流集中在導(dǎo)流板指向區(qū)域,增加了局部氣流速度,因此,導(dǎo)流板角度應(yīng)根據(jù)樹冠高度、樹干高度做調(diào)整。
3)下導(dǎo)流板角度變化對下部氣流分布影響顯著,當(dāng)下導(dǎo)流板角度由0°增加至30°,氣流受地面摩擦力逐漸減小,且地面摩擦阻力與氣流束兩側(cè)空氣阻力形成的夾角越來越大,因此氣流束逐漸分成3條氣流束,這樣的氣流分布優(yōu)于單一方向氣流對果樹枝葉的吹動效果,有利于氣流攜帶霧滴進入果樹冠層。
4)通過全因素模擬分析可知,上下導(dǎo)流板角度合理設(shè)置可有效減少氣流在地面區(qū)域和高空區(qū)域的無效流失。由于不同地區(qū)、不同果樹品種定干高度有差異,果園行距有大小,因此下導(dǎo)流板角度設(shè)置應(yīng)根據(jù)具體的果園條件來調(diào)整,以樹高為依據(jù)調(diào)整上導(dǎo)流板角度,以樹干高度來調(diào)整下導(dǎo)流板角度,以風(fēng)機底端氣流脫離地面摩擦,且氣流指向冠層底端方向為宜。
基于本文結(jié)論,建議在風(fēng)機出口區(qū)域,除上、下導(dǎo)流板外,中間區(qū)域設(shè)置導(dǎo)流板,對氣流進行多重調(diào)整,有利于使風(fēng)速垂直分布與樹冠仿形。風(fēng)機出口導(dǎo)流板優(yōu)化設(shè)置有待進一步研究。
[1] Ashenafi T D, Kris R, Donald D, et al. Spray deposition profiles in pome fruit trees: Effects of sprayer design, training system and tree canopy characteristics[J]. Crop Protection, 2015, 1(67): 200-213.
[2] Almbauer R A, Lind K , Matzer W. Determination of the influence of the driving speed on the application parameters of orchard sprayers[C]//Proceeding of Fifth European Workshop on Standard Procedure for the Inspection of Sprayers-SPISE 5, Julius Kühn Archiv, 2015, No.449.
[3] 呂曉蘭,傅錫敏,吳萍,等. 噴霧技術(shù)參數(shù)對霧滴沉積分布影響試驗[J]. 農(nóng)業(yè)機械學(xué)報,2011,42(6):70-75.
Lü Xiaolan, Fu Ximin, Wu Ping, et al. Influence of spray operating parameters on droplet deposition[J]. Transactionsof the Chinese Society of Agricultural Machinery, 2011, 42(6): 70-75. (in Chinese with English abstract)
[4] 呂曉蘭,傅錫敏,宋堅利,等. 噴霧技術(shù)參數(shù)對霧滴飄移特性的影響[J]. 農(nóng)業(yè)機械學(xué)報,2011,42(1):59-63.
Lü Xiaolan, Fu Ximin, Song Jianli, et al. Influence of spray operating parameters on spray drift[J]. Transactions of the Chinese Society of Agricultural Machinery, 2011, 42(1): 59-63. (in Chinese with English abstract)
[5] 周良富,薛新宇,賈衛(wèi)東,等. CFD技術(shù)在果樹風(fēng)送噴霧中的應(yīng)用與前景分析[J]. 排灌機械工程學(xué)報,2014,32(9):776-782.
Zhou Liangfu, Xue Xinyu, Jia Weidong, et al. Application of CFD technology in air-assisted spraying in orchard and analysis of its prospects[J]. Journal of Drainage and Irrigation Machinery Engineering (JDIME), 2014, 32(9): 776-782. (in Chinese with English abstract )
[6] 孫國祥,汪小旵,丁為民,等. 基于CFD 離散相模型霧滴沉積特性的模擬分析[J]. 農(nóng)業(yè)工程學(xué)報,2012,28(6):13-19.
Sun Guoxiang, Wang Xiaochan, Ding Weimin, et al. Simulation analysis on characteristics of droplet deposition base on CFD discrete phase model[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(6): 13-19. (in Chinese with English abstract)
[7] Baetens K, Nuyttens D, Verboven P, et al. Predicting drift from field spraying by means of 3D computational fluid dynamics model[J]. Computers and Electronics in Agriculture, 2007, 56(2): 161-173.
[8] 王景旭,祁力鈞,夏前錦. 靶標(biāo)周圍流場對風(fēng)送噴霧霧滴沉積影響的CFD模擬及驗證[J]. 農(nóng)業(yè)工程學(xué)報,2015,31(11):46-53.
Wang Jingxu, Qi Lijun, Xia Qianjin. CFD simulation and validation of trajectory and deposition behavior of droplets around target affected by air flow field in greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(11): 46-53. (in Chinese with English abstract)
[9] Endalew A M, Debaer C, Rutten N, et al. A new integrated CFD modelling approach towards air-assisted orchard spraying—Part I: Model development and effect of wind speed and direction on sprayer airflow[J]. Computers and Electronics in Agriculture, 2010, 71(1): 128-136.
[10] Endalew A M, Debaer C, Rutten N, et al. A new integrated CFD modelling approach towards air-assisted orchard spraying—Part II: Validation for different sprayer types[J]. Computers and Electronics in Agriculture, 2010, 71(1): 137-147.
[11] Endalew A M, Debaer C, Rutten N, et al. Modelling the effect of tree foliage on sprayer airflow in orchards[J]. Boundary-Layer Meteorology, 2011, 138(1): 139-162.
[12] Dekeyser D, Foque D, Endalew A M, et al. Assessment of orchard sprayers using laboratory trials[J]. Aspects of Applied Biology, 2012, 114: 395-403.
[13] Delele M A, Jaeken P, Debaer C, et al. CFD prototyping of an air-assisted orchard sprayer aimed at drift reduction[J]. Computers and Electronics in Agriculture, 2007, 55: 16-27.
[14] Delele M A, Moor A D, Sonck B, et al. Modelling and validation of the air flow generated by a cross flow air sprayer as affected by travel speed and fan speed[J]. Biosystems Engineering, 2005, 92(2): 165-174.
[15] Delele M A, Moor A D, Verboven P, et al. CFD modelling of air flow patterns from an air assisted orchard sprayer[J]. Aspects of Applied Biology, 2004, 71(2): 303-310.
[16] Dugaa A T, Delelea M A, Ruysenc K, et al. Development and validation of a 3D CFD model of drift and its application to air-assisted orchard sprayers[J]. Biosystems Engineering, 2017, 154:62-75.
[17] Dugaa A T, Dekeyser D, Ruysenc K, et al. Numerical analysis of the effects of wind and sprayer type on spray distribution in different orchard training systems[J]. Boundary-Layer Meteorology, 2015, 12(157): 517-535.
[18] Duga A T, Ruysen K, Dekeyser D, et al. CFD based analysis of the effect of wind in orchard spraying[J]. Chemical Engineering Transactions, 2015, 44: 289-294.
[19] Duga A T, Defraeye T, Nicolai B, et al. Training system dependent optimization of air assistance and nozzle type for orchard spraying by CFD modeling[C]// Association of Applied Biologists, 2014, 122: 453-458.
[20] Dekeyser D, Dugaa A T , Verbovenb P, et al. Assessment of orchard sprayers using laboratory experiments and computational fluid dynamics modeling[J]. Biosystems Engineering, 2013, 2(114): 157-169.
[21] García-Ramos F J, Malón H, Aguirre A J, et al. Validation of a CFD model by using 3D sonic anemometers to analyze the air velocity generated by an air-assisted sprayer equipped with two axial fans[J]. Sensors 2015, 15(2): 2399-2418.
[22] Salcedoa R, Granella R, Palaub G, et al. Design and validation of a 2D CFD model of the airflow produced by an airblast sprayer during pesticide treatments of citrus[J]. Computers and Electronics in Agriculture, 2015, 116(8): 150-161.
[23] 祁力鈞,王虎,張建華,等. 溫室軌道式彌霧機氣流速度場三維模擬與試驗[J]. 農(nóng)業(yè)機械學(xué)報,2013,44(2):69-74.
Qi Lijun, Wang Hu, Zhang Jianhua, et al. 3-D numerical simulation and experiment of air-velocity distribution of greenhouse air-assisted sprayer[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(2): 69-74. (in Chinese with English abstract)
[24] 祁力鈞,趙亞青,王俊,等. 基于CFD 的果園風(fēng)送式噴霧機霧滴分布特性分析[J]. 農(nóng)業(yè)機械學(xué)報,2010,41(2):62-67.
Qi Lijun, Zhao Yaqing, Wang Jun, et al. CFD simulation and experimental verification of droplet dispersion of air-assisted orchard sprayer[J]. Transactions of the Chinese Society of Agricultural Machinery, 2010, 41(2): 62-67. (in Chinese with English abstract)
[25] 傅澤田,王俊,祁力鈞,等. 果園風(fēng)送式噴霧機氣流速度場模擬及試驗驗證[J]. 農(nóng)業(yè)工程學(xué)報,2009,25(1):69-74.
Fu Zetian, Wang Jun, Qi Lijun, et al. CFD simulation and experimental verification of air-velocity distribution of air-assisted orchard sprayer[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(1): 69-74. (in Chinese with English abstract)
[26] 王景旭,祁力鈞,夏前錦. 靶標(biāo)周圍流場對風(fēng)送噴霧霧滴沉積影響的CFD 模擬及驗證[J]. 農(nóng)業(yè)工程學(xué)報,2015,31(11):46-53.
Wang Jingxu, Qi Lijun, Xia Qianjin. CFD simulation and validation of trajectory and deposition behavior of droplets around target affected by air flow field in greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(11): 46-53. (in Chinese with English abstract)
[27] 周良富,張曉辛,呂曉蘭,等. 圓盤霧化器風(fēng)力性能豎直模擬與試驗[J]. 農(nóng)業(yè)機械學(xué)報,2012,43(10):72-75.
Zhou Liangfu, Zhang Xiaoxin, Lü Xiaolan, et al. Numerical simulation and experimental study on the wind performance of the disc atomizer[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(10): 72-75. (in Chinese with English abstract)
[28] 陳發(fā)元,汪小旵,丁為民,等. 果樹噴霧用圓盤風(fēng)扇三維氣流速度場數(shù)值模擬與驗證[J]. 農(nóng)業(yè)機械學(xué)報,2010,41(8):51-55.
Chen Fayuan, Wang Xiaochan, Ding Weimin, et al. Numerical simulation and experimental verification of 3-D air velocity field of disk fan used in orchard sprayer[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(8): 51-55. (in Chinese with English abstract)
[29] Balsari P, Herbst A, Langenakens J. Advice for bush and tree crop sprayer adjustment[C]//Proceedings of the 6th workshop on Standardized Procedure for the Inspection of Sprayers in Europe(SPISE6). Quedlinburg Germany: Julius Kuhn Institute Press, 2016: 4-14.
[30] 丁天航,曹曙明,薛新宇,等. 果園噴霧機單雙風(fēng)機風(fēng)道氣流場仿真與試驗[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(14):62-68.
Ding Tianhang, Cao Shuming, Xue Xinyu, et al. Simulation and experiment on single-channel and double-channel airflow field of orchard sprayer[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(14): 62-68. (in Chinese with English abstract)
[31] 王福軍. 計算流體動力學(xué)分析-CFD 軟件原理與應(yīng)用[M].北京:清華大學(xué)出版社,2004.
Influence of deflector angles for orchard air-assisted sprayer on 3D airflow distribution
Lü Xiaolan1, Zhang Meina1, Chang Youhong2※, Lei Xiaohui1, Yang Qingsong2
(1. Institute of Agricultural Facilities and Equipment, JAAS, Nanjing 210014, China; 2. Institute of Horticulture, JAAS, Nanjing 210014, China)
Air-assisted orchard sprayers are characterized by a strong airflow that carries the pesticide droplets to the target canopy and assists the plant parts to move so as to allow the whole tree penetrated with pesticide droplets. The airflow distribution and movement characteristics are key parameters of sprayer for droplet deposition on target canopy. In order to study the 3D (three-dimensional) spatial distribution of airflow field from an air-assisted orchard sprayer, this article used ICEM CFD (Integrated Computer Engineering and Manufacturing code for Computational Fluid Dynamics) to establish a geometric model, whose whole structure was meshed, and the k-ε turbulence model and CFX solver were adopted. The effect of different environmental systems on airflow 3D distribution for air-assisted orchard sprayer was estimated, in which the upper deflector angle was set as 30°, 45°, 60°, and 90°, and the lower deflector angle was set as 0°, 10°, 20° and 30°, respectively. Results show that the 3D spatial distribution model of the airflow from air-assisted orchard sprayer can reflect the airflow distribution directly, and the simulated values of airflow characteristic curve are in good agreement with the measured values. However, in the low airflow velocity region (the velocity below 2 m/s), the simulated velocity values of some sampling points are quite different from measurements. That is caused by the perturbation of the natural wind. In the high airflow velocity region with 1.2 m width, the average relative error between the measured value and the simulated value of wind speed is less than 10%. That can confirm that the simulation results are credible. Meanwhile, airflow guided by deflectors is mainly focused in the area the deflectors pointed to, with no obvious effect on airflow diffusion in the middle area, only increasing the airflow velocity and letting airflow gather near deflector area. So the adjustment of deflector angle should be based on the height of canopy and tree trunk, through setting lower deflector angle to fit the foliage limit of the orchard, and setting upper deflector angle to point at position which is little lower than the topmost of tree canopy in the orchard. For further research, to change airflow velocity of the fan has no significant effect on airflow distribution in the airflow field, and merely increases airflow diffusion region. When the lower deflector angle increases from 0° to 30°, the effect of ground friction resistance on the airflow decreases gradually, and the angle between ground friction resistance and air resistance on both sides increases constantly, so one single air current is divided into 3 air currents gradually. This kind of air distribution on horizontal plane has advantages on blowing branches and leaves and penetrating droplets into fruit tree canopy. The airflow velocity distribution in the vertical direction considerably affects the distribution of spray droplets in canopy. The vertical profile of the airflow velocity should be even along the whole vegetation wall, and matched with the canopy shape curve. But the deflector can only adjust the upper and lower airflow, some deflectors are suggested to be fixed in the middle area for adjusting airflow distribution in vertical direction. This study found that a better effect could be achieved by setting the upper and lower deflectors angle as 30° for spraying in the Chinese general orchard where fruit trees had 3.0-3.2 m height and were planted with 4 m row spacing, and by setting the upper deflector angle of 90° (or removing), and the lower deflector angle of 30° for spraying in trellised orchard. The results can provide the reference for the spraying in the orchard, and the higher spraying efficiency and the reduction of environmental pollution can be achieved through the calibration of sprayer operational parameters.
agricultural machinery; spraying; computer simulation; air assisted sprayer; deflector; airflow velocity distribution; three dimensional
10.11975/j.issn.1002-6819.2017.15.010
S49
A
1002-6819(2017)-15-0081-07
2017-03-21
2017-06-12
國家梨產(chǎn)業(yè)技術(shù)體系(CARS-29-18),國家自然科學(xué)基金項目(31301687),江蘇省農(nóng)業(yè)自主創(chuàng)新資金項目(CX(15)1023)
呂曉蘭,女,研究員,主要從事植保機械與施藥技術(shù)研究。南京江蘇省農(nóng)業(yè)科學(xué)院農(nóng)業(yè)設(shè)施與裝備研究所,210014。
Email:lxlanny@126.com
※通信作者:常有宏,男,研究員,博士生導(dǎo)師,主要從事果園設(shè)施與農(nóng)機具研究。南京 江蘇省農(nóng)業(yè)科學(xué)院園藝研究所,210014。
Email:cyh@jaas.ac.cn