• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      基于駐波率原理的農(nóng)藥?kù)F滴沉積量檢測(cè)系統(tǒng)設(shè)計(jì)與試驗(yàn)

      2017-09-15 06:17:17吳亞壘祁力鈞高春花ElizabethMusiu
      關(guān)鍵詞:駐波極板介電常數(shù)

      吳亞壘,祁力鈞※,張 亞,高春花,李 帥,Elizabeth Musiu

      基于駐波率原理的農(nóng)藥?kù)F滴沉積量檢測(cè)系統(tǒng)設(shè)計(jì)與試驗(yàn)

      吳亞壘1,祁力鈞1※,張 亞2,高春花1,李 帥3,Elizabeth Musiu1

      (1. 中國(guó)農(nóng)業(yè)大學(xué)工學(xué)院,北京 100083; 2. 中國(guó)農(nóng)業(yè)大學(xué)信息與電氣工程學(xué)院,北京 100083;3. 華北電力大學(xué)機(jī)械工程系,保定 071051)

      為實(shí)現(xiàn)施藥后霧滴地面沉積量的快速獲取,該文提出一種基于駐波率原理的叉指型霧滴采集極板結(jié)構(gòu)。為驗(yàn)證該極板結(jié)構(gòu)的合理性,應(yīng)用三維電磁仿真軟件HFSS對(duì)此系統(tǒng)進(jìn)行電磁仿真。HFSS模型求解的結(jié)果表明,叉指型極板內(nèi)部出現(xiàn)了靜電屏蔽,極板間通過(guò)霧滴能夠?qū)崿F(xiàn)電磁耦合,可用于霧滴沉積量檢測(cè),系統(tǒng)靈敏程度將隨著極板間距的增大而減小。通過(guò)標(biāo)定試驗(yàn),建立了檢測(cè)系統(tǒng)輸出電壓與試劑溶液沉積量關(guān)系的回歸方程,測(cè)試后2種不同介電常數(shù)的胭脂紅溶液和丙三醇溶液決定系數(shù)R2分別為0.982 1和0.997 6。通過(guò)對(duì)3W-ZW10型溫室自走式噴霧機(jī)應(yīng)用測(cè)試,結(jié)果表明:該系統(tǒng)在采樣點(diǎn)上沉積量的模擬值最大相對(duì)誤差率不超過(guò)7.95%,且模擬值與實(shí)測(cè)值均方根誤差RMSE最大為0.076 7 mg/cm2,霧滴沉積檢測(cè)準(zhǔn)確率高,方便實(shí)用,可用于田間霧滴沉積率的快速測(cè)量。

      設(shè)計(jì);計(jì)算機(jī)仿真;噴霧;駐波率原理;叉指型極板探頭;霧滴沉積量測(cè)量;HFSS仿真

      吳亞壘,祁力鈞,張 亞,高春花,李 帥,Elizabeth Musiu. 基于駐波率原理的農(nóng)藥?kù)F滴沉積量檢測(cè)系統(tǒng)設(shè)計(jì)與試驗(yàn)[J].農(nóng)業(yè)工程學(xué)報(bào),2017,33(15):64-71. doi:10.11975/j.issn.1002-6819.2017.15.008 http://www.tcsae.org

      Wu Yalei, Qi Lijun, Zhang Ya, Gao Chunhua, Li Shuai, Elizabeth Musiu. Design and experiment of pesticide droplet deposition detection system based on principle of standing wave ratio[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(15): 64-71. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.15.008 http://www.tcsae.org

      0 引 言

      霧滴沉積分布特性與規(guī)律的快速、有效獲取不僅能夠減少施藥實(shí)驗(yàn)成本、降低操作難度和實(shí)驗(yàn)復(fù)雜度[1-3],而且對(duì)于評(píng)估施藥作業(yè)質(zhì)量,提高農(nóng)藥利用率有重要意義[4-6]。優(yōu)化霧滴沉積檢測(cè)技術(shù),解決田間霧滴沉積分布測(cè)量方法單一和效率不高的問(wèn)題是該領(lǐng)域?qū)W者追求的目標(biāo)[7-8]。

      王昌陵等[9]研發(fā)了一套霧滴空間質(zhì)量平衡收集裝置用于接收噴霧霧滴,采用多通道智能微氣象測(cè)量系統(tǒng)測(cè)量無(wú)人機(jī)下旋氣流場(chǎng),分析精準(zhǔn)作業(yè)高度和速度下無(wú)人機(jī)噴霧霧滴空間質(zhì)量分布和下旋氣流場(chǎng)特性及其內(nèi)在關(guān)系。張瑞瑞等[10]基于變介電常數(shù)電容器原理和傳感器網(wǎng)絡(luò)技術(shù),設(shè)計(jì)航空施藥?kù)F滴地面沉積實(shí)時(shí)監(jiān)測(cè)系統(tǒng),并探究該系統(tǒng)用于霧滴地面沉積量測(cè)量的實(shí)用性。Zhu等[11]研究了基于圖像分析技術(shù)和水敏試紙的藥液沉積分析系統(tǒng)。Salyani等[12]通過(guò)研究藥液沉積量對(duì)導(dǎo)體電阻率的影響,設(shè)計(jì)了一種基于可變電阻器原理的藥液沉積傳感器,并建立了傳感器輸出電壓與藥液沉積量關(guān)系模型。王景旭等[13]利用CFD模擬技術(shù)研究了溫室風(fēng)送式噴霧機(jī)霧滴的沉積模型。高志濤等[14]借助矢量網(wǎng)絡(luò)分析儀與HFSS電磁場(chǎng)仿真軟件對(duì)傳感器電極的阻抗特性與電場(chǎng)分布狀況進(jìn)行了分析,為實(shí)時(shí)獲取多層土壤墑情及土壤溫度提供了一種高效方法。總的來(lái)說(shuō),針對(duì)霧滴沉積量與在線快速檢測(cè)技術(shù)研究還相對(duì)較少[15-16]。

      本文基于變介電常數(shù)理論中的駐波率原理和傳感器網(wǎng)絡(luò)技術(shù),旨在設(shè)計(jì)霧滴地面沉積實(shí)時(shí)檢測(cè)系統(tǒng),以仿真試驗(yàn)分析為手段,探索電場(chǎng)的分布特性,逐步仿真優(yōu)化得到叉指型極板結(jié)構(gòu)形狀及最佳參數(shù),同時(shí)結(jié)合溫室自走式噴霧機(jī)系統(tǒng)進(jìn)行了應(yīng)用測(cè)試與試驗(yàn)驗(yàn)證,以期為實(shí)現(xiàn)在線準(zhǔn)確、快速獲取霧滴沉積分布特性提供參考。

      1 叉指型霧滴采集系統(tǒng)測(cè)量原理

      本文設(shè)計(jì)的叉指型霧滴沉積量采集系統(tǒng)基于駐波率原理,由100 MHz信號(hào)源、50 ?同軸傳輸線、高頻檢波與差分運(yùn)算放大電路、叉指型霧滴采集極板探頭及無(wú)線網(wǎng)絡(luò)傳輸裝置組成。利用駐波率法測(cè)量霧滴沉積量實(shí)際上反映的是噴霧環(huán)境下叉指型霧滴采集板探頭的特性阻抗變化。圖1為霧滴沉積量實(shí)時(shí)檢測(cè)裝置系統(tǒng)原理圖。

      當(dāng)信號(hào)源產(chǎn)生的高頻電磁波沿著傳輸線被傳送到叉指型霧滴采集探頭,由于探頭的阻抗與傳輸線的阻抗不匹配,一部分信號(hào)將被反射回來(lái)。在傳輸線上,高頻入射波與反射波疊加形成駐波,傳輸線上各點(diǎn)的電壓幅值存在變化[17-18]。

      圖1 霧滴沉積量系統(tǒng)原理圖Fig.1 Schematic diagram of droplets deposition system

      根據(jù)基本傳輸線理論[19],其等效參數(shù)均勻分布可得等效電路如圖2所示。

      圖2 測(cè)量裝置等效電路圖Fig.2 Equivalent circuit of measuring device

      其中考慮高頻狀態(tài)下分布電容、電抗的影響,在傳輸線上任意點(diǎn)處取微元dz,得其電壓與電流的微分表達(dá)式

      其瞬時(shí)解表達(dá)式為

      式中A1為高頻振蕩器的信號(hào)幅值;ρ為反射系數(shù);β為相移系數(shù);ω為信號(hào)源角頻率;z為傳輸線阻抗瞬時(shí)值。

      式中k為物質(zhì)豫馳時(shí)間;f為信號(hào)源測(cè)試頻率;λ為信號(hào)波波長(zhǎng)。

      根據(jù)駐波率測(cè)量原理,圖2中取A、B兩點(diǎn)的差動(dòng)信號(hào)作為叉指型霧滴采集板探頭變換電路的輸出,傳輸線兩端的電壓UAB表達(dá)式為

      式中ZC為同軸傳輸線的特征阻抗,?。

      本研究中ZC為50 ?的標(biāo)準(zhǔn)同軸電纜。在A1和ZL恒定的情況下,傳輸線兩端的電位差UAB只與叉指型裝置阻抗ZL有關(guān),當(dāng)ZC=ZL時(shí),傳輸線上不會(huì)產(chǎn)生駐波,傳輸線兩端電壓為0。因此,確定叉指型極板探頭的阻抗ZL尤為重要。叉指型極板探頭的檢測(cè)阻抗值ZL與導(dǎo)納Y關(guān)系如式(7)所示。

      式中ωs為叉指型極板測(cè)試角頻率,rad/s;Cs為叉指型極板總的電容,F(xiàn);Y為傳輸線導(dǎo)納;j表示虛部。

      叉指型極板探頭的阻抗特性與間隙內(nèi)鋪灑物質(zhì)的介電常數(shù)有關(guān),其電容C為

      式中ε為極板間介電常數(shù);S為平行板覆蓋面積,mm2;d為叉指型極板間距,mm。

      叉指型霧滴采集板探頭為具有一定間距d、一定寬度e、一定厚度h和一定長(zhǎng)度L的敷銅板,將多個(gè)極板并聯(lián)且等間距固定,即可用于霧滴沉積測(cè)量的叉指型極板,極板底側(cè)與樹(shù)脂板固化,樹(shù)脂板總面積S0,包括叉指型極板的表面積S1及極板間面積S2,極板間面積可以根據(jù)介質(zhì)不同,分割成空氣介質(zhì)面積S3和藥液介質(zhì)面積S4,其中:

      式中S0為樹(shù)脂板的總面積,mm2;S1和S2分別為極板上與極板間的表面積,mm2;S3和S4分別為空氣與藥液介質(zhì)的表面積,mm2。

      當(dāng)所設(shè)計(jì)叉指型極板覆蓋面積S不可變,通過(guò)極板間介電質(zhì)改變引起介電常數(shù)變化,從而改變電容器電容。設(shè)定空氣介電常數(shù)為ε1,叉指型極板間無(wú)霧滴沉降時(shí),電容量為Cz。當(dāng)叉指型極板間有霧滴沉降時(shí),因介質(zhì)變成由液滴和空氣組成的混合體,液滴的介電常數(shù)與空氣不同[10],所以電容等效介電常數(shù)值發(fā)生變化,從而電容變?yōu)镃e。施藥過(guò)程中,藥液濃度一旦固定,在忽略環(huán)境溫差變化對(duì)溶液介電常數(shù)影響時(shí),藥液的介電常數(shù)是定值,設(shè)定藥液的介電常數(shù)為ε2,電容量為

      式中Cz和Ce分別為極板間霧滴無(wú)沉降與有沉降時(shí)的電容量,F(xiàn);ε1和ε2分別為空氣與藥液的介電常數(shù)。

      施藥過(guò)程中,霧滴體積中徑較小,霧滴徑譜一致性較好,且沉積在靶標(biāo)上的藥液相對(duì)較少,由此推測(cè)其霧滴的沉積面積S4與其沉積量m在一定的沉積量范圍內(nèi)具有較好的相關(guān)性,相關(guān)系數(shù)為k*。霧滴噴施前后電壓值變化與霧滴沉積量的理論關(guān)系表達(dá)式為

      式中m為農(nóng)藥?kù)F滴沉積量,mg/cm2;k*為相關(guān)系數(shù)。

      故基于以上式(1)-式(11)公式推導(dǎo),可以通過(guò)噴霧環(huán)境下叉指型霧滴采集板探頭的特性阻抗變化來(lái)表征實(shí)際霧滴沉積量的變化,所以從理論分析來(lái)看,可以利用介電理論中的駐波率原理的電壓變化來(lái)反映噴施前后霧滴在叉指型霧滴采集板的沉積量變化。

      2 叉指型極板參數(shù)確定與電場(chǎng)分布特性研究

      選取合適的試驗(yàn)控制參數(shù)是叉指型霧滴采集板設(shè)計(jì)的關(guān)鍵,其目的是通過(guò)采集板上面藥液與空氣的混合介電常數(shù)的變化轉(zhuǎn)換為傳輸線上駐波率的變化。

      2.1 測(cè)量頻率參數(shù)的確定

      在叉指型霧滴采集極板間距固定的情況下,負(fù)載阻抗由信號(hào)源頻率和藥液與空氣混合的介電常數(shù)決定,而介電常數(shù)是與信號(hào)源頻率相關(guān),所以信號(hào)源頻率的選擇對(duì)測(cè)量結(jié)果會(huì)造成一定影響。Topp等[20]研究發(fā)現(xiàn),在1 MHz~1 GHz頻率范圍內(nèi),有效介電常數(shù)主要取決于介質(zhì)中的水分含量。

      介電常數(shù)可以分解為

      式中ε′和ε″分別為介電常數(shù)的實(shí)部和虛部。

      經(jīng)數(shù)學(xué)推導(dǎo)[21],得

      式中ε∝為電子位移極化對(duì)應(yīng)的高頻介電常數(shù);εs為靜電場(chǎng)中的介電常數(shù);τ為水常溫下的弛豫時(shí)間,s。

      由式(13)和(14)可知,當(dāng)外加電場(chǎng)的角頻率1ωτ=時(shí),ε″具有極大值;當(dāng)1τω≤時(shí),ε′趨近于εs,此時(shí)介質(zhì)沒(méi)有電導(dǎo)產(chǎn)生的損耗。水分子是一種極性很強(qiáng)的偶極子,在外電場(chǎng)作用下,水的極化程度遠(yuǎn)大于其他物質(zhì)。在微波頻段,不同波長(zhǎng)對(duì)應(yīng)水的介電常數(shù)不同[21]。水的介電常數(shù)與波長(zhǎng)的關(guān)系如圖3所示。

      圖3 水的介電常數(shù)與波長(zhǎng)的關(guān)系Fig.3 Relationship between dielectric constant of water and wavelength

      由圖3可知,當(dāng)信號(hào)源波長(zhǎng)在10 cm以上即頻率小于3 000 MHz時(shí),介電常數(shù)的實(shí)部遠(yuǎn)大于虛部。當(dāng)波長(zhǎng)為10 cm時(shí),水的ε′為77.2,空氣的介電系數(shù)為1,在此頻段內(nèi)水比空氣狀態(tài)下介電常數(shù)大很多。由于過(guò)高的頻率易受到外界電磁環(huán)境的干擾,本文綜合其他基于駐波率法測(cè)量含水率的研究,選用電磁波頻率為100 MHz的信號(hào)源[22]。

      2.2 叉指型極板電場(chǎng)仿真分析

      2.2.1 不同極板間距處電場(chǎng)分布狀況

      利用Ansoft HFSS電磁仿真軟件[23]建立了叉指型霧滴采集極板幾何模型如圖4所示。1)極板的上表面寬度e設(shè)為1 mm,上表面長(zhǎng)度L設(shè)為38 mm,側(cè)表面高度h設(shè)為100 μm,一極板末端距離另一極板設(shè)為1 mm,叉指型霧滴采集極板間距d分別設(shè)為0.5、1、3、6 mm;2)設(shè)定極板間距內(nèi)填充介質(zhì)的介電常數(shù)為18,樹(shù)脂板及輔助支架的介電常數(shù)設(shè)為4,設(shè)定叉指型銅極板為理想電場(chǎng)邊界,選取半徑為40 mm的球體作為輻射邊界的條件;3)選擇求解類(lèi)型為Driver Model,其次設(shè)置波端口激勵(lì)為集總端口激勵(lì)方式,最后添加求解設(shè)置,設(shè)定求解模型頻率為100 MHz。運(yùn)行Analyze-All,HFSS電磁軟件在叉指型霧滴采集極板上的電場(chǎng)分布狀況仿真結(jié)果如圖5所示。

      圖4 叉指型霧滴采集極板電磁模型Fig.4 Electromagnetic model of interdigitated droplet collection board

      由圖5可以看出叉指型不同間距的極板主要影響霧滴沉積區(qū)域的XY和YZ截面方向的電場(chǎng)分布,XY和YZ截面分別為電磁模型主視圖與左視圖,圖中淡黃色區(qū)域的電場(chǎng)強(qiáng)度滿(mǎn)足測(cè)試的要求。根據(jù)達(dá)到淡黃色區(qū)域的電場(chǎng)強(qiáng)度的作用進(jìn)行分析:1)0.5和1 mm間距情況下,叉指型霧滴采集極板檢測(cè)區(qū)域電場(chǎng)分布差異不明顯,且0.5和1 mm情況下XY和YZ截面上極板之間均勻分布,周?chē)妶?chǎng)緊湊,沒(méi)有出現(xiàn)分離現(xiàn)象。但是隨著極板間距的逐漸增大,電場(chǎng)分布差異性越來(lái)越明顯;2)3 mm情況下,XY截面上基本滿(mǎn)足電場(chǎng)強(qiáng)度的要求,但是出現(xiàn)了不均勻的現(xiàn)象,且YZ截面的場(chǎng)強(qiáng)不連續(xù)性也隨之顯現(xiàn);3)6 mm情況下,XY截面上不滿(mǎn)足電場(chǎng)強(qiáng)度的要求,出現(xiàn)了嚴(yán)重不均勻的現(xiàn)象,且YZ截面的場(chǎng)強(qiáng)間斷性明顯,強(qiáng)度明顯變?nèi)?。由上述現(xiàn)象發(fā)現(xiàn):0.5和1 mm間距的極板均適用于霧滴的檢測(cè),考慮到敷銅極板的加工難易程度以及噴霧中霧滴沉積量造成的系統(tǒng)靈敏度問(wèn)題。綜上所述,本文選用間距為1 mm的叉指型霧滴采集極板探頭。

      2.2.2 叉指型極板表面電場(chǎng)分布特性

      同時(shí)圖5仿真結(jié)果表明:叉指型霧滴采集極板邊緣電場(chǎng)的強(qiáng)度在水平和垂直方向上均沿著遠(yuǎn)離電極的方向而減小,電場(chǎng)的能量主要集中在兩極板探頭之間。兩電極相對(duì)的空間內(nèi)顏色最深,表現(xiàn)為紅色,具有最大強(qiáng)度的電場(chǎng),尤其是電極邊緣處。應(yīng)該注意到,兩個(gè)電極板的中心部位表現(xiàn)為電場(chǎng)最弱的藍(lán)色,這是由于帶電導(dǎo)體的靜電屏蔽現(xiàn)象造成的[24]。在兩極板相對(duì)之外的空間內(nèi),隨著遠(yuǎn)離電極的方向,電場(chǎng)顏色逐漸減弱為綠色、天藍(lán)色直至最后與遠(yuǎn)處融為一色,變成深藍(lán)。這一結(jié)果表明,電場(chǎng)能夠在兩極板間距的范圍內(nèi)實(shí)現(xiàn)耦合。

      圖5 叉指型霧滴采集極板不同間距下的電場(chǎng)強(qiáng)度分布圖Fig.5 Electric field intensity distribution of interdigitated droplet collection board under different spacing

      3 試驗(yàn)與測(cè)試

      3.1 試驗(yàn)材料

      試驗(yàn)試劑:胭脂紅試劑、自來(lái)水及丙三醇溶液。試驗(yàn)儀器:0.1~2.5 μL移液槍(上海注射器三廠Biohit proline W-103,精度0.05 μL),容量瓶、滴管、燒杯、溫濕度傳感器、德利斯公司玻璃手套箱、乳膠手套,英衡電子天平(精度0.001 g),SA-50W-12V/4A模塊,在線采集裝置,采樣濾紙規(guī)格(4 cm×4.2 cm),UV-5200分光光度計(jì)(上海元析公司),MSS-33544激光粒度儀。

      3.2 試驗(yàn)處理

      考慮到藥液不同的介電常數(shù),試驗(yàn)選取0.5 g/L胭脂紅溶液(介電常數(shù)79.2)與丙三醇溶液(介電常數(shù)47.8)。滴取前,叉指型極板表面擦拭干凈,放進(jìn)玻璃手套箱,且平置于天平上,天平與電壓示數(shù)調(diào)至初始值。試驗(yàn)開(kāi)始,利用微量移液槍連續(xù)產(chǎn)生體積為0.05 μL大小的單個(gè)霧滴進(jìn)行試驗(yàn),使霧滴充分滴落到叉指型霧滴采集極板間隙中,電壓示數(shù)趨于穩(wěn)定后停止。滴取中,不斷記錄天平與在線采集裝置中電壓的示數(shù)變化。滴取后,整個(gè)過(guò)程重復(fù)25次試驗(yàn)。溫度為(24±0.5)℃,濕度為22%±0.8%,試驗(yàn)布置(可忽略蒸發(fā)對(duì)本試驗(yàn)的影響)示意圖如圖6所示。

      圖6 實(shí)驗(yàn)室試驗(yàn)裝置示意圖Fig.6 Schematic diagram of test device in lab

      3.3 叉指型霧滴采集裝置標(biāo)定試驗(yàn)及結(jié)果分析

      試驗(yàn)在玻璃手套箱環(huán)境下進(jìn)行,為更好地定量分析叉指型霧滴采集裝置輸出電壓與滴取前后霧滴沉積量之間的關(guān)系,對(duì)所測(cè)的數(shù)據(jù)進(jìn)行多項(xiàng)式擬合,測(cè)量數(shù)據(jù)中滴取前后在線采集電壓輸出變化值Δy為自變量,滴取前后的質(zhì)量變化值Δx為因變量,繪出了如圖7所示的曲線。

      圖7 胭脂紅溶液與丙三醇溶液沉積回歸方程Fig.7 Regressive equation of carmine solution and glycerol solution in deposition

      溶液的介電常數(shù)是和溶質(zhì)的濃度有關(guān)系的[25]:1)一般果蔬農(nóng)藥稀釋倍數(shù)介于800~1 600之間[26],藥液介電系數(shù)較大且接近水的介電常數(shù)80,因此該文選用胭脂紅藥液進(jìn)行試驗(yàn);2)植保無(wú)人機(jī)噴灑多采用超低量噴霧,藥液濃度高,介電系數(shù)較小,因此選用丙三醇溶液進(jìn)行試驗(yàn)。所選的這2種用于標(biāo)定的試劑的介電常數(shù)可以代表一般農(nóng)藥的介電常數(shù)。

      圖7中2條曲線對(duì)比發(fā)現(xiàn),在相同沉積量情況下,胭脂紅溶液電壓輸出值波動(dòng)范圍較丙三醇溶液明顯,且靈敏度較好,但二者滴取前后的電壓與藥液沉積量的回歸相關(guān)性均較好,2種不同介電常數(shù)的溶液決定系數(shù)R2分別為0.982 1和0.997 6。該基于駐波率原理的霧滴沉積量檢測(cè)系統(tǒng)實(shí)時(shí)采集的數(shù)據(jù)可以用于霧滴沉積量測(cè)量,同時(shí)可用于霧滴在作物靶標(biāo)上分布參數(shù)優(yōu)化。

      3.4 應(yīng)用測(cè)試

      2017年2月15日,系統(tǒng)在中國(guó)農(nóng)業(yè)大學(xué)植保機(jī)械實(shí)驗(yàn)室3 m×6 m區(qū)域內(nèi)測(cè)試,建立直角坐標(biāo)系,區(qū)域布置在第一象限,坐標(biāo)點(diǎn)標(biāo)記(一個(gè)單位長(zhǎng)度為1 m),噴霧機(jī)由坐標(biāo)點(diǎn)(0,0)作業(yè)至(0,2)處,試驗(yàn)中噴霧機(jī)的噴霧技術(shù)參數(shù)如表1所示。

      表1 噴霧機(jī)的技術(shù)參數(shù)Table 1 Parameters of sprayer

      叉指型霧滴采集極板布置分布在(1.5,1.5)、(3,1.5)、(4.5,1.5)的3個(gè)坐標(biāo)點(diǎn)處,每塊霧滴采集極板周?chē)贾?張同樣大小的4 cm×4.2 cm濾紙,目的是在保證相同測(cè)試條件下,對(duì)4張測(cè)量結(jié)果取均值,用于與該系統(tǒng)的霧滴沉積量測(cè)量對(duì)比,試驗(yàn)布置如圖8a所示。同時(shí)本研究設(shè)計(jì)的叉指型霧滴沉積量實(shí)時(shí)在線采集系統(tǒng)由帶有AD芯片數(shù)據(jù)采集的STM32單片機(jī)、ZigBee無(wú)線數(shù)傳模塊及12V歐力能供電模塊組成,傳感器節(jié)點(diǎn)安裝如圖8b所示。

      圖8 叉指型霧滴采集板安裝與試驗(yàn)布置Fig.8 Interdigitated droplet collector installation and test arrangement

      噴施液體選用0.5 g/L胭脂紅溶液,試驗(yàn)過(guò)程重復(fù)6次,分別得到18組采集樣本,噴霧測(cè)試環(huán)境溫度24°,濕度為22%,同時(shí)在此條件下利用激光粒度儀分別對(duì)不同噴霧距離處的霧滴體積中徑大小進(jìn)行9次測(cè)定,取均值?;谠诓ㄩL(zhǎng)為508 nm下吸光度隨胭脂紅溶液濃度增大而增大的規(guī)律,本文借鑒了吸光度測(cè)量法在霧滴沉積量上的方法[27-31],見(jiàn)式(15)。利用模擬方法與吸光度法分別對(duì)18組采集樣本進(jìn)行計(jì)算,試驗(yàn)結(jié)果見(jiàn)表2。

      式中βdep為霧滴沉積量,mg/cm2;ρsmpl為待測(cè)樣品的濃度讀數(shù);ρblk為空白對(duì)照的濃度讀數(shù);Vii為用于洗脫濾紙收集的胭脂紅的稀釋液的體積,L;ρspray為藥箱內(nèi)胭脂紅噴灑液濃度,g/L;Acol為濾紙面積,cm2;Fcal為校正因子。

      為評(píng)估系統(tǒng)測(cè)量法和吸光度法對(duì)于霧滴沉積量檢測(cè)的效果,將不同噴霧距離處的模擬值和實(shí)測(cè)值進(jìn)行比較(如表2所示),式(16)表述均方根誤差RMSE,反映了模擬值距偏離真實(shí)值的離散度與精密度,為進(jìn)一步分析采樣點(diǎn)偏差程度,式(17)表述采樣點(diǎn)中最大相對(duì)測(cè)量誤差emax[32]。式中Xmodel,i為使用系統(tǒng)法所獲得的霧滴沉積量(簡(jiǎn)稱(chēng)“模擬值”),mg/cm2;Xobs,i為使用吸光度法所獲得霧滴沉積量(簡(jiǎn)稱(chēng)“實(shí)測(cè)值”),mg/cm2;N為所對(duì)應(yīng)噴霧距離處的樣本數(shù)。

      表2 在噴霧距離1.5、3、4.5 m處模擬值與實(shí)測(cè)值試驗(yàn)結(jié)果Table 2 Results of simulated values and measured values at spray distance of 1.5,3,4.5 m

      將6次采集的試驗(yàn)樣本篩選,并以不同噴霧距離處?kù)F滴粒徑大小分布進(jìn)行歸類(lèi),以采樣濾紙吸光度法獲得的數(shù)據(jù)為參考指標(biāo),結(jié)合激光粒度儀對(duì)不同距離處的霧滴大小測(cè)定結(jié)果,由試驗(yàn)分析可知,表2中距離在1.5 m處時(shí),霧滴體積中徑VMD在136.5至288.7 μm之間,采樣點(diǎn)均方根誤差RMSE為0.076 7 mg/cm2(系統(tǒng)的模擬值),最大相對(duì)測(cè)量誤差4.56%,按照Miller PH模型,1.5 m處由于距離噴嘴口較近,產(chǎn)生較多大粒徑霧滴,一方面由于動(dòng)量較大,撞擊樹(shù)脂板較濾紙產(chǎn)生反彈作用更為明顯,另一方面由于采集板表面光滑,使得霧滴在樹(shù)脂板上鋪展面積相對(duì)較大,阻抗發(fā)生變化,使得氣液混合介電系數(shù)高于試驗(yàn)標(biāo)定數(shù)值;距離在3 m處時(shí),霧滴體積中徑VMD在84.2至112.5 μm之間,采樣點(diǎn)均方根誤差RMSE為0.025 5 mg/cm2,最大相對(duì)測(cè)量誤差僅2.65%,原因是霧滴體積中徑減小,一方面動(dòng)能急劇減少,反彈作用趨于減弱,另一方面,該粒徑下的霧滴粘連情況減少,鋪展面積符合標(biāo)定試驗(yàn)要求,在樹(shù)脂板上的沉積性趨于平穩(wěn);距離在4.5 m處時(shí),霧滴體積中徑VMD在23.5至50.8 μm之間,采樣點(diǎn)均方根誤差RMSE為0.056 4 mg/cm2,最大相對(duì)測(cè)量誤差7.95%,因?yàn)椴蓸狱c(diǎn)距離噴嘴口較遠(yuǎn),霧滴粒徑很小,一方面該粒徑下霧滴鋪展性較差,使得氣液混合介電系數(shù)低于試驗(yàn)標(biāo)定數(shù)值,另一方面液膜較薄,蒸發(fā)因素影響顯著。

      系統(tǒng)模擬值與吸光度實(shí)測(cè)值在噴霧距離1.5、3、4.5 m處的霧滴沉積量測(cè)量對(duì)比,系統(tǒng)模擬值均小于吸光度實(shí)測(cè)值,這與采集板的表面材料屬性相關(guān)性較大,霧滴易在其表面形成彈跳、飛濺,而霧滴相對(duì)容易在濾紙表面附著。另外,霧滴的蒸發(fā)也是重要的影響因素,需對(duì)系統(tǒng)采集頻率進(jìn)行校正,減少系統(tǒng)測(cè)量誤差。

      綜上所述,本文所設(shè)計(jì)的霧滴采集系統(tǒng)可以適用于300 μm粒徑范圍內(nèi)不同霧滴大小的沉積量測(cè)定,滿(mǎn)足霧滴噴霧質(zhì)量檢測(cè)的應(yīng)用需求。

      4 結(jié) 論

      1)本文理論推導(dǎo)了霧滴沉積量與叉指型采集系統(tǒng)參數(shù)的回歸關(guān)系和計(jì)算方程,進(jìn)一步證明了利用變介電常數(shù)駐波率原理進(jìn)行霧滴沉積量測(cè)量的可行性。

      2)針對(duì)叉指型霧滴采集系統(tǒng)測(cè)試頻率與極板間距進(jìn)行了深入研究,借助HFSS三維電磁仿真軟件,對(duì)4種不同間距的極板進(jìn)行了仿真與電場(chǎng)特性分析,最終確定了極板的間距,并闡釋了銅極板內(nèi)部靜電屏蔽的機(jī)理。

      3)從實(shí)驗(yàn)室標(biāo)定與應(yīng)用測(cè)試結(jié)果可以得出,設(shè)計(jì)的叉指型霧滴采集系統(tǒng)在300 μm粒徑范圍內(nèi)具有可行性,參照吸光度法與系統(tǒng)測(cè)量法的均方根誤差RMSE最大為0.076 7 mg/cm2及其最大相對(duì)測(cè)量誤差不超過(guò)7.95%,分析表明,霧滴沉積趨勢(shì)結(jié)果基本一致,可以用于霧滴沉積量的測(cè)量。

      4)提出的利用駐波率法叉指型霧滴采集系統(tǒng)可實(shí)現(xiàn)對(duì)溫室中霧滴沉積量的實(shí)時(shí)檢測(cè),具有較高的可靠性,同時(shí)對(duì)于大田霧滴噴霧質(zhì)量的檢測(cè)及研究霧滴分布特性與規(guī)律(如霧滴分布變異系數(shù)、有效幅寬等測(cè)量等方面)具有較大的實(shí)際意義。

      [1] Qin W C, Xue X Y, Zhou L X, et al. Effects of spraying parameters of unmanned aerial vehicle on droplets deposition distribution of maize canopies[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(5): 50-56.

      [2] Wang S, Dorr G J, Khashehchi M, et al. Performance of selected agricultural spray nozzles using particle image velocimetry[J]. Journal of Agricultural Science & Technology, 2015, 17(3): 601-613.

      [3] 莽璐,祁力鈞,冀榮華,等. 溫室自動(dòng)變量施藥系統(tǒng)設(shè)計(jì)[J].中國(guó)農(nóng)業(yè)大學(xué)學(xué)報(bào),2009,14(4):114-118.

      Mang Lu, Qi Lijun, Ji Ronghua, et al. Design of variable rate spray system in greenhouse[J]. Journal of China Agricultural University, 2009, 14(4): 114-118. (in Chinese with English abstract)

      [4] 廖娟,臧英,周志艷,等. 作物航空噴施作業(yè)質(zhì)量評(píng)價(jià)及參數(shù)優(yōu)選方法[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(增刊2):38-46.

      Liao Juan, Zang Ying, Zhou Zhiyan, et al. Quality evaluation method and optimization of operating parameters in crop aerial spraying technology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(Supp.2): 38-46. (in Chinese with English abstract)

      [5] 邱白晶,閆潤(rùn),馬靖,等. 變量噴霧技術(shù)研究進(jìn)展分析[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(3):59-72.

      Qiu Baijing, Yan Run, Ma Jing, et al. Research progress analysis of variable rate sprayer technology[J]. Transactions of the Chinese Society of Agricultural Machinery, 2015, 46(3): 59-72. (in Chinese with English abstract)

      [6] 張京,何雄奎,宋堅(jiān)利,等. 無(wú)人駕駛直升機(jī)航空噴霧參數(shù)對(duì)霧滴沉積的影響[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2012,43(12):94-96.

      Zhang Jing, He Xiongkui, Song Jianli, et al. Influence of spraying parameters of unmanned aircraft on droplets deposition[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(12): 94-96. (in Chinese with English abstract)

      [7] Wang Z H, Wang F P, Fan J R, et al. The spraying field characteristics and distribution of deposition of droplets of electrostatic oiler[J]. Journal of Engineering and Technology Research, 2016, 8(4): 31-46.

      [8] 陳盛德,蘭玉彬,李繼宇,等. 小型無(wú)人直升機(jī)噴霧參數(shù)對(duì)雜交水稻冠層霧滴沉積分布的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(17):40-46.

      Chen Shengde, Lan Yubin, Li Jiyu, et al. Effect of spray parameters of small unmanned helicopter on distribution regularity of droplet deposition in hybrid rice canopy[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(17): 40-46. (in Chinese with English abstract)

      [9] 王昌陵,何雄奎,王瀟楠,等. 無(wú)人植保機(jī)施藥?kù)F滴空間質(zhì)量平衡測(cè)試方法[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(11):54-61.

      Wang Changling, He Xiongkui, Wang Xiaonan, et al. Testing method of spatial pesticide spraying deposition quality balance for unmanned aerial vehicle[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(11): 54-61. (in Chinese with English abstract)

      [10] 張瑞瑞,陳立平,蘭玉彬,等. 航空施藥中霧滴沉積傳感器系統(tǒng)設(shè)計(jì)與實(shí)驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(8):123-127.

      Zhang Ruirui, Chen Liping, Lan Yubin, et al. Development of a deposit sensing system for aerial spraying application[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(8): 123-127. (in Chinese with English abstract)

      [11] Zhu H P, Salyani M, Fox R D. A portable scanning system for evaluation of spray deposit distribution[J]. Co-mputers and Electronics in Agriculture, 2011, 76(1): 38-43.

      [12] Salyani M, Serdynski J. Development of a sensor for spray deposition assessment[J]. Transactions of the Asae, 1990, 33(5): 1464.

      [13] 王景旭,祁力鈞,夏前錦. 靶標(biāo)周?chē)鲌?chǎng)對(duì)風(fēng)送噴霧霧滴沉積影響的CFD模擬及驗(yàn)證[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(11):46-53.

      Wang Jingxu, Qi Lijun, Xia Qianjin. CFD simulation and validation of trajectory and deposition behavior of droplets around target affected by air flow field in greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(11): 46-53. (in Chinese with English abstract)

      [14] 高志濤,劉衛(wèi)平,趙燕東,等. 多層土壤剖面復(fù)合傳感器設(shè)計(jì)與性能分析[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(1):108-117.

      Gao Zhitao, Liu Weiping, Zhao Yandong, et al. Design and performance analysis of composite sensor for multilayer soil profile[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(1): 108-117. (in Chinese with English abstract)

      [15] Giles D K, Downey D, Crowe T G. Digital device and technique for sensing distribution of spray desposition[J]. Transactions of the Asae, 2005, 48(6): 2085-2093.

      [16] 祁力鈞,馬偉. 一種作物根區(qū)土壤肥藥注施靶標(biāo)在線預(yù)測(cè)定點(diǎn)方法:CN104076711A[P]. 2014-10-01.

      [17] 劉賀,趙燕東. 基于駐波原理的短探針小麥莖水分傳感器[J].農(nóng)業(yè)工程學(xué)報(bào),2011,27(11):140-144.

      Liu He, Zhao Yandong. Wheat stem moisture sensor using short probes based on SWR principle[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(11): 140-144. (in Chinese with English abstract)

      [18] 岳志勤,姚志明,宋巖,等. 同軸電纜轉(zhuǎn)接中特性阻抗的錯(cuò)位補(bǔ)償計(jì)算方法[J]. 現(xiàn)代應(yīng)用物理,2014,5(1):64-70.

      Yue Zhiqin, Yao Zhiming, Song Yan, et al. Calculation of impedance compensation for design of coaxial cable connectors[J]. Modern Applied Physics, 2014, 5(1): 64-70. (in Chinese with English abstract)

      [19] 趙燕東,高超,張新,等. 基于駐波率原理的植物莖體水分無(wú)損檢測(cè)方法研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(1):310-316.

      Zhao Yandong, Gao Chao, Zhang Xin, et al. Non-destruc-tive measurement of plant stem water content based on standing wave ratio[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(1): 310-316. (in Chinese with English abstract)

      [20] Topp G C, Davis J L, Annan A P. Electromagnetic determination of soil water content using TDR: I. Applications to wetting fronts and steep gradients1[J]. Soil Science Society of America Journal, 1982, 46(4): 672-678.

      [21] 白陳祥. 基于駐波原理的喬木莖干含水率檢測(cè)方法研究[D].北京:北京林業(yè)大學(xué),2008.

      Bai Chenxiang. The Study on Measurement of Stem Water Content Based on Standing Wave Theory[D]. Beijing: Beijing Forestry University, 2008. (in Chinese with English abstract)

      [22] 王海蘭,張新,盛文溢,等. 基于TDT原理的灌木水分傳感器探頭設(shè)計(jì)與實(shí)驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(5):259-264.

      Wang Hailan, Zhang Xin, Sheng Wenyi, et al. Experiment research on shrubs moisture sensor probe structure by TDT principle[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(5): 259-264. (in Chinese with English abstract)

      [23] Singh A K, Gangwar R K, Kanaujia B K. Wideband and compact slot loaded annular ring microstrip antenna using L-probe proximity-feed for wireless communications[J]. International Journal of Microwave & Wireless Technologies, 2015, 1(7): 1-9.

      [24] 王巧利. 基于介電原理的淺層土壤水分測(cè)量方法研究[D].北京:北京林業(yè)大學(xué),2015.

      Wang Qiaoli. Topsoil Moisture Measurement Using a Directric Constant Method[D]. Beijing: Beijing Forestry University, 2015. (in Chinese with English abstract)

      [25] 徐士鳴,劉歡,吳曦,等. KI/LiCl/LiBr-水-乙醇三元體系電導(dǎo)率特性研究[J]. 大連理工大學(xué)學(xué)報(bào),2017,57(1):23-28.

      Xu Shiming, Liu Huan, Wu Xi, et al. Study of conductivity charcteristics of ternary solutions KI/LiCl/Li Br-water-ethanol[J]. Journal of Dalian University of Technology, 2017, 57(1): 23-28. (in Chinese with English abstract)

      [26] 傅澤田,祁力鈞,王秀. 農(nóng)藥噴施技術(shù)的優(yōu)化[M]. 北京:中國(guó)農(nóng)業(yè)科學(xué)技術(shù)出版社,2002.

      [27] 邱白晶,王立偉,蔡?hào)|林,等. 無(wú)人直升機(jī)飛行高度與速度對(duì)噴霧沉積分布的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(24):25-32.

      Qiu Baijing, Wang Liwei, Cai Donglin, et al. Effects of flight altitude and speed of unmanned helicopter on spray deposition uniform[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(24): 25-32. (in Chinese with English abstract)

      [28] Qin W C, Xue X Y, Cui L F, et al. Optimization and test for spraying parameters of cotton defoliant sprayer[J]. International Journal of Agricultural & Biological Engineering, 2016, 9(4): 63-72.

      [29] 祁力鈞,杜政偉,冀榮華,等. 基于GPRS的遠(yuǎn)程控制溫室自動(dòng)施藥系統(tǒng)設(shè)計(jì)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(23):51-57.

      Qi Lijun, Du Zhengwei, Ji Ronghua, et al. Design of remote control system for automatic sprayer based on GPRS in greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(23): 51-57. (in Chinese with English abstract)

      [30] Xue X Y, Tu K, Qin W C, et al. Drift and deposition of ultra-low altitude and low volume application in paddy field[J]. International Journal of Agricultural & Biological Engineering, 2014, 7(4): 23-28.

      [31] 王沛,祁力鈞,李慧,等. 植物葉片表面結(jié)構(gòu)對(duì)霧滴沉積的影響分析[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2013,44(10):75-79.

      Wang Pei, Qi Lijun, Li Hui, et al. Influence of plant leafsurface structures on droplet deposition[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(10): 75-79. (in Chinese with English abstract)

      [32] 李明,趙春江,李道亮,等. 日光溫室黃瓜葉片濕潤(rùn)傳感器校準(zhǔn)方法[J]. 農(nóng)業(yè)工程學(xué)報(bào),2010,26(2):224-230.

      Li Ming, Zhao Chunjiang, Li Daoliang, et al. Calibration method of leaf wetness sensor for cucumber in solar greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(2): 224-230. (in Chinese with English abstract)

      Design and experiment of pesticide droplet deposition detection system based on principle of standing wave ratio

      Wu Yalei1, Qi Lijun1※, Zhang Ya2, Gao Chunhua1, Li Shuai3, Elizabeth Musiu1
      (1. College of Engineering, China Agricultural University, Beijing 100083, China; 2. College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China; 3. Department of Mechanical Engineering; North China Electric Power University, Baoding 071051, China)

      In order to realize the rapid acquisition of droplet deposition after application, this study proposed an interdigitated droplet collecting board structure based on standing wave ratio principle. The purpose of this study was to quickly and effectively obtain the characteristics and regularity of the droplet deposition distribution. On one hand, the system could reduce the experiment cost, the difficulty of operation and the complexity of the experiment. On the other hand, the system was important to evaluate the quality of pesticide application and improve the utilization rate of pesticide. Optimized droplet deposition detection technology could solve the problem of single measurement method and low efficiency of droplet deposition distribution in field, which was a goal pursued by scholars in this research field. Based on the principles of standing wave ratio and sensor network technology, the real-time detection system of droplet deposition on the ground was designed. The droplet distribution characteristics of the electric field were explored by the method of simulation, and then the optimal parameters of the interdigitated droplet collecting board were obtained. At the same time, combined with the greenhouse self-propelled sprayer system, the application test and verification test were carried out to obtain the distribution characteristics of droplet deposition accurately and quickly. The real-time detection system of droplet deposition in the greenhouse could be realized by using the method of standing wave ratio, and the reliability was very high. At the same time, the system had great practical significance in the field of droplet spray quality detection and regularity research. In order to verify the rationality of the interdigitated droplet collecting board structure, the electromagnetic simulation of the system was carried out by using the three-dimensional electromagnetic simulation software HFSS (high frequency structure simulator). The device took the STM32 single chip microcomputer as its core to build the ZigBee network, and the signal of the droplet collection sensor was transmitted to the remote terminal based on LabView2014 through the RS232 serial port, which realized the real-time monitoring of the droplet deposition. The results of the HFSS model showed that the electrostatic shielding appeared inside the interdigitated droplet collection board. The electromagnetic coupling could be realized by the droplets between the boards, which could be used to detect the droplet deposition. The sensitivity of the system would be decreased with the board spacing broadening. The regression equation of the relationship between the output voltage of the detection system and the deposition amount of the reagent solution was established through the calibration experiment. The determination coefficients under 2 different dielectric constants were 0.982 1 and 0.997 6 respectively. The 3W-ZW10 type self-propelled sprayer application test in greenhouse showed that the maximum relative error rate of the simulated value of the deposition amount of the system at the sampling point was not more than 7.95%. The RMSE (root mean square error) of the measured value was 0.076 7 mg/cm2. The detection accuracy of droplet deposition was high. The droplet deposition amount detection system can be used for rapid measurement of field droplet deposition rate based on the principle of standing wave ratio. From the laboratory calibration and application test results, it can be concluded that the design of the interdigitated droplet collection system is feasible within the range of 300 μm particle size. The proposed real-time detection method of droplet deposition in greenhouse based on the standing wave ratio is suitable for the detection of the droplet spray quality and the characteristics of droplet distribution. This research can provide reference for the measurement of droplet deposition.

      design; computer simulation; spraying; standing wave ratio principle; interdigitated droplet collection board probe; droplets deposition quantity measurement; HFSS simulation

      10.11975/j.issn.1002-6819.2017.15.008

      TP212.9; S491

      A

      1002-6819(2017)-15-0064-08

      2017-03-03

      2017-07-16

      科技部國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目“地面與航空高工效施藥技術(shù)及智能化裝備”(2016YFD0200700);科技部國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目“現(xiàn)代果園智能化精細(xì)生產(chǎn)管理技術(shù)裝備研發(fā)”(2017YFD0701400)

      吳亞壘,男,博士生,研究方向?yàn)橹饕獜氖轮脖C(jī)械研究。北京中國(guó)農(nóng)業(yè)大學(xué)工學(xué)院,100083。Email:kevin_wuyalei@cau.edu.cn

      ※通信作者:祁力鈞,男,博士,教授,研究方向?yàn)閺氖轮脖C(jī)械研究。北京 中國(guó)農(nóng)業(yè)大學(xué)工學(xué)院,100083。Email:qilijun@cau.edu.cn

      猜你喜歡
      駐波極板介電常數(shù)
      血液動(dòng)力學(xué)中血管流激波與駐波的相互作用
      一種新型微球聚焦測(cè)量極板設(shè)計(jì)及應(yīng)用*
      無(wú)鉛Y5U103高介電常數(shù)瓷料研究
      電子制作(2017年20期)2017-04-26 06:57:40
      電容器與帶電粒子在電場(chǎng)中的運(yùn)動(dòng)測(cè)試題
      燃料電池雙極板制備工藝及其熱壓機(jī)設(shè)計(jì)研究
      低介電常數(shù)聚酰亞胺基多孔復(fù)合材料的研究進(jìn)展
      DAM型10kW中波廣播發(fā)射機(jī)駐波故障分析
      低介電常數(shù)聚酰亞胺薄膜研究進(jìn)展
      關(guān)于鉛酸蓄電池中正極板柵溶解問(wèn)題的研究
      傾斜角對(duì)蜂窩結(jié)構(gòu)等效介電常數(shù)影響分析
      镇赉县| 屏东市| 忻城县| 长岭县| 化德县| 云梦县| 泾源县| 崇文区| 正宁县| 慈利县| 南靖县| 保亭| 镇平县| 广东省| 洛南县| 江都市| 修文县| 清镇市| 德钦县| 临海市| 普陀区| 沁阳市| 那坡县| 呼伦贝尔市| 康乐县| 齐齐哈尔市| 大丰市| 东台市| 准格尔旗| 威海市| 噶尔县| 庄浪县| 砀山县| 梁山县| 达拉特旗| 正镶白旗| 潞西市| 辽阳县| 鹤庆县| 竹溪县| 思南县|