• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      蛋胚成活性分揀機(jī)器人真空吸盤裝置設(shè)計(jì)與試驗(yàn)

      2017-09-15 07:44:03劉衍聰中國(guó)石油大學(xué)華東機(jī)電工程學(xué)院青島266580濱州學(xué)院電氣工程學(xué)院濱州256600
      關(guān)鍵詞:氣流負(fù)壓真空

      黃 超,劉衍聰,伊 鵬(. 中國(guó)石油大學(xué)(華東)機(jī)電工程學(xué)院,青島 266580;2. 濱州學(xué)院電氣工程學(xué)院,濱州 256600)

      蛋胚成活性分揀機(jī)器人真空吸盤裝置設(shè)計(jì)與試驗(yàn)

      黃 超1,2,劉衍聰1※,伊 鵬1
      (1. 中國(guó)石油大學(xué)(華東)機(jī)電工程學(xué)院,青島 266580;2. 濱州學(xué)院電氣工程學(xué)院,濱州 256600)

      為解決168枚蛋盤自動(dòng)分揀裝置在分揀過(guò)程中,存在蛋胚跌落、胚漿吸出等問(wèn)題,結(jié)合國(guó)內(nèi)外現(xiàn)有蛋胚分揀技術(shù),以負(fù)壓控制靈活的真空發(fā)生器為核心,設(shè)計(jì)一種具有獨(dú)立負(fù)壓控制回路的真空吸盤裝置。通過(guò)對(duì)蛋胚吸持過(guò)程的氣流場(chǎng)分析,采用蛋胚與吸盤無(wú)接觸時(shí)的懸浮力和接觸時(shí)的負(fù)壓吸力對(duì)比分析,優(yōu)化吸盤緩沖機(jī)構(gòu),降低了吸持負(fù)壓要求。對(duì)負(fù)壓控制回路的真空發(fā)生器、儲(chǔ)能器、吸盤、氣管等器件進(jìn)行性能試驗(yàn)和連接優(yōu)化設(shè)計(jì),構(gòu)成具有168路獨(dú)立的負(fù)壓回路的真空吸盤裝置。按照分析和設(shè)計(jì)制作樣機(jī),進(jìn)行蛋胚分揀試驗(yàn)和負(fù)壓系統(tǒng)的供壓性能驗(yàn)證,每路獨(dú)立負(fù)壓回路,實(shí)現(xiàn)了穩(wěn)定低壓供應(yīng),降低了耗氣量,在負(fù)壓為-20 kPa時(shí),胚蛋可靠吸持率為99.89%,無(wú)跌落和胚漿吸出現(xiàn)象,為類似分揀設(shè)計(jì)提供數(shù)據(jù)參考。

      疫苗;分揀;機(jī)器;改進(jìn);蛋胚負(fù)壓系統(tǒng);真空吸盤;真空發(fā)生器

      0 引 言

      “雞胚法”是生物疫苗制造業(yè)的主要生產(chǎn)方式,即將毒種注入雞胚(蛋胚)中,使毒種伴隨雞胚的發(fā)育自然繁殖,雞胚繼續(xù)發(fā)育3 d左右,每枚大約含有8~12 mL的半成品抗原[1-2]。蛋胚孵化培養(yǎng)9~11 d后,向蛋胚注射毒種(俗稱接種)。接種后繼續(xù)孵化2~3 d,進(jìn)行尿囊液提?。ㄋ追Q收獲)。在流感疫苗接種和收獲前,均需要對(duì)蛋胚進(jìn)行成活性檢測(cè),同時(shí)剔除死胚和弱胚蛋,即是蛋胚分揀。

      蛋胚成活性自動(dòng)檢測(cè)、自動(dòng)分揀以及蛋盤自動(dòng)裝卸機(jī)械手,成為疫苗制造行業(yè)不可或缺的蛋胚自動(dòng)檢測(cè)分揀成套設(shè)備。法國(guó)、美國(guó)、荷蘭等國(guó)家已實(shí)現(xiàn)蛋胚成活性自動(dòng)識(shí)別和分揀,其設(shè)備主要包含蛋盤自動(dòng)裝卸機(jī)構(gòu)、蛋胚成活性識(shí)別部分、蛋胚自動(dòng)分揀部分。國(guó)外設(shè)備的識(shí)別部分,一次完成42枚蛋胚的識(shí)別,因此分揀機(jī)構(gòu)也完成42枚蛋胚分揀。國(guó)內(nèi)蛋胚成活性識(shí)別研究有單寶明實(shí)現(xiàn)的單枚圖像識(shí)別方法,徐彥偉等實(shí)現(xiàn)的單枚多信息融合識(shí)別技術(shù),電子科技集團(tuán)41所采用42枚胚蛋識(shí)別方式已產(chǎn)品化[3-6]。為了匹配胚蛋識(shí)別速度,提高胚蛋分揀效率,本文設(shè)計(jì)一種單次分揀168枚分揀裝置。

      以42枚蛋胚分揀的真空泵提供負(fù)壓方式,采用擴(kuò)展方式用于168枚蛋盤分揀。在試驗(yàn)測(cè)試時(shí),出現(xiàn)漏撿、跌落和胚漿吸出現(xiàn)象。通過(guò)對(duì)供氣管線的負(fù)壓檢測(cè),發(fā)現(xiàn)存在的問(wèn)題主要有:負(fù)壓管路增多,負(fù)壓管線增長(zhǎng)造成管路之間的負(fù)壓不均,導(dǎo)致分揀時(shí)蛋胚吸出胚漿,蛋胚吸持不住、或者分揀盤移動(dòng)時(shí)蛋胚跌落等分揀問(wèn)題。為解決上述問(wèn)題,設(shè)計(jì)以真空發(fā)生器為核心的蛋胚成活性分揀機(jī)器人真空吸盤裝置。

      1 蛋胚分揀機(jī)器人吸盤裝置

      1.1 蛋胚分揀執(zhí)行結(jié)構(gòu)

      真空吸盤裝置是蛋胚成活性分揀機(jī)器人的重要組成部分,真空吸盤裝置完成蛋胚的吸持、移位、落盤的功能。裝置由氣動(dòng)控制系統(tǒng)和蛋胚分揀執(zhí)行機(jī)構(gòu)2部分組成。氣動(dòng)控制系統(tǒng)由蓄能器、真空發(fā)生器、電磁換向閥、真空吸盤和管線構(gòu)成,完成蛋胚的吸持。蛋胚分揀執(zhí)行機(jī)構(gòu)主要由分揀支架、4個(gè)平行升降氣缸、同步帶傳動(dòng)模組、傳動(dòng)帶、分揀盤組成,完成蛋胚的移位,如圖1所示。

      蛋胚分揀執(zhí)行機(jī)構(gòu),是驅(qū)動(dòng)分揀盤完成蛋胚分揀的自動(dòng)裝置。蛋盤在傳送帶的帶動(dòng)下,定位至真空分揀盤下方。4個(gè)平行氣缸驅(qū)動(dòng)真空分揀盤下降,吸盤和待分揀蛋胚耦合、吸持,氣缸縮回帶動(dòng)分揀盤上升,在同步帶傳動(dòng)模組的驅(qū)動(dòng)下,真空分揀盤定位至蛋胚回收處,將蛋胚落盤,周而復(fù)始完成蛋胚的分揀[7-11]。分揀盤吸持蛋胚在同步帶傳動(dòng)模組的驅(qū)動(dòng)下,沿導(dǎo)軌實(shí)現(xiàn)一個(gè)勻加減速和勻速的平動(dòng)。兼顧分揀效率與分揀裝置的平穩(wěn)性,控制系統(tǒng)驅(qū)動(dòng)分揀盤在啟停時(shí)的慣性不足以引起分揀裝置的晃動(dòng),經(jīng)試驗(yàn)測(cè)試確定勻加減速的時(shí)間是300 ms,勻速是1 m/s,因此分揀盤吸持蛋胚徑向加減速度為

      3.3 m/s2。升降部分采用氣缸,調(diào)整氣缸的節(jié)流閥,控制氣缸的加減速度為6.4 m/s2。

      圖1 蛋胚分揀執(zhí)行機(jī)構(gòu)Fig.1 Egg embryo sorting actuating mechanism

      1.2 蛋胚分揀氣動(dòng)系統(tǒng)

      蛋胚分揀氣動(dòng)系統(tǒng)的4個(gè)平行升降氣缸,是蛋胚分揀執(zhí)行機(jī)構(gòu)的一部分,完成蛋胚分揀盤的升降功能。氣動(dòng)系統(tǒng)的主要功能是產(chǎn)生負(fù)壓,驅(qū)動(dòng)吸盤吸持蛋胚。為解決168枚分揀的負(fù)壓回路增加,導(dǎo)致負(fù)壓不均的問(wèn)題,采用真空發(fā)生器產(chǎn)生負(fù)壓,實(shí)現(xiàn)獨(dú)立回路負(fù)壓控制方式,解決回路之間的相互影響,負(fù)壓系統(tǒng)采用空氣壓縮機(jī)和真空發(fā)生器產(chǎn)生負(fù)壓,替代真空泵提供負(fù)壓方式。負(fù)壓氣動(dòng)回路由空氣壓縮機(jī)、儲(chǔ)能器、電磁換向閥、節(jié)流閥、真空發(fā)生器、管線和真空吸盤組成,每一路真空吸盤均有獨(dú)立的電磁換向閥控制通斷,實(shí)現(xiàn)168枚蛋盤每個(gè)蛋位的獨(dú)立控制,達(dá)到任意蛋位分揀的目的。負(fù)壓氣動(dòng)回路如圖2所示。

      圖2 蛋胚分揀氣動(dòng)系統(tǒng)Fig.2 Pneumatic system of egg embryo sorting

      蛋胚分揀負(fù)壓系統(tǒng)由168路獨(dú)立負(fù)壓回路組成,每路蛋胚吸持能力受儲(chǔ)能器的高壓氣體供給能力,真空發(fā)生器的負(fù)壓特性,吸盤的吸持能力,連接管線的響應(yīng)能力的影響。參考待分揀蛋胚的質(zhì)量,確定蛋胚吸持臨界負(fù)壓,以此為設(shè)計(jì)依據(jù),對(duì)以上4個(gè)方面進(jìn)行分析、試驗(yàn)、設(shè)計(jì)。

      2 蛋胚分揀機(jī)器人吸盤裝置關(guān)鍵部件及參數(shù)

      2.1 蛋胚吸持負(fù)壓值的確定及緩沖改進(jìn)

      在蛋胚和吸盤氣流場(chǎng)組成的氣固兩相流體系統(tǒng)中,當(dāng)吸盤接近蛋胚時(shí),蛋胚在吸盤附近會(huì)與氣流場(chǎng)產(chǎn)生復(fù)雜的相互耦合作用,在吸盤較遠(yuǎn)處,蛋胚對(duì)吸盤氣流的影響較小,此時(shí)可以忽略氣流場(chǎng)與蛋胚之間的相互耦合作用。蛋胚受到吸盤口垂直向上的氣流作用,蛋胚受到的力有向上的繞流阻力R(N)、浮力F(N)和向下的重力G(N)。假設(shè)蛋胚為球形,則根據(jù)流體力學(xué)知識(shí)得[12-16]

      式中Cd為阻尼系數(shù),其與蛋胚形狀、表面狀態(tài)和雷諾數(shù)有關(guān),阻尼系數(shù)參照三維旋轉(zhuǎn)橢球體長(zhǎng)短軸比例小于2∶1時(shí),層流Cd阻尼系數(shù)為0.27[17-20];ρ為空氣的密度,標(biāo)準(zhǔn)狀況(25 ℃,101 kPa)下為1.169 kg/m3;ds為胚蛋的半徑,m(測(cè)試100枚胚蛋的平均直徑為42 mm,測(cè)試時(shí)胚蛋的大頭向上);vt為作用在蛋胚上的氣流速度,m/s。

      對(duì)于球型胚蛋浮力

      式中sρ為蛋胚的密度,蛋胚的平均密度為1 100 kg/m3。m為蛋胚的質(zhì)量(kg);

      式(1)、(2)和(3)代入式(4)可得吸起球型蛋胚的臨界氣流速度為

      當(dāng)吸盤的氣流速度大于胚蛋吸起臨界氣流速度時(shí),胚蛋克服重力的阻礙,當(dāng)距離吸孔某處氣流速度大于蛋胚臨界氣流速度時(shí),蛋胚即開始被吸起,隨著被吸起的蛋胚越來(lái)越接近吸孔,吸孔處氣流場(chǎng)與蛋胚之間將產(chǎn)生復(fù)雜的耦合作用,蛋胚加速運(yùn)動(dòng)至吸盤口上,此時(shí)由吸盤內(nèi)部靜負(fù)壓提供吸力平衡蛋胚的重力。

      由于蛋胚是不規(guī)則的球形,因此隨著蛋胚在氣流方向上投影面積的變化,受到的繞流阻力R也不斷變化,所以對(duì)于蛋胚,臨界氣流速度為一個(gè)范圍值。蛋胚懸浮臨界氣流速度通過(guò)試驗(yàn)測(cè)得為10~12 m/s,按照吸盤入口處氣流速度為12 m/s,進(jìn)行胚蛋吸持試驗(yàn)發(fā)現(xiàn)。分揀接種前的蛋胚,不存在吸力不足胚蛋跌落,而在分揀入庫(kù)胚蛋(接種后的蛋胚),發(fā)現(xiàn)有胚漿被吸出現(xiàn)象(因接種后蛋胚氣室處留有針孔)。

      蛋胚吸起時(shí),蛋胚與吸盤存在接觸和非接觸2種情況,當(dāng)?shù)芭吲c吸盤非接觸時(shí),是高速氣流對(duì)蛋胚向上的繞阻力將蛋胚吸起,需要大負(fù)壓。當(dāng)?shù)芭吲c吸盤接觸時(shí),是吸盤內(nèi)外壓力差將蛋胚吸起,需求負(fù)壓小。若存在這2種情況,選取大負(fù)壓,蛋胚吸持后,蛋胚內(nèi)的壓力大于吸盤內(nèi)的壓力,胚漿流出。為了解決這一現(xiàn)象,需要在吸持前,每枚蛋胚都能與吸盤接觸,降低系統(tǒng)負(fù)壓。分揀盤安裝吸盤后,如圖3a吸盤的高度一致,蛋盤與分揀盤平行,每個(gè)蛋位到對(duì)應(yīng)的吸盤高度一樣。由于蛋胚大小不一,分揀時(shí),部分蛋胚與吸盤非接觸。因此優(yōu)化吸盤安裝方式,采用圖3b的安裝方式,蛋胚的高度不一,由緩沖桿來(lái)彌補(bǔ),在分揀時(shí),每枚蛋胚均能與吸盤接觸,極大地降低了氣動(dòng)系統(tǒng)的負(fù)壓值。

      圖3 吸盤安裝機(jī)構(gòu)示意圖Fig.3 Schematic diagram of sucker mounting mechanism

      改進(jìn)吸盤吸持方式后,吸盤需要產(chǎn)生的吸力為

      式中d為吸盤的有效內(nèi)徑(m);P0為環(huán)境大氣壓力(101.3 kPa);P為吸盤入口區(qū)域的氣體平均壓力(Pa);g為重力加速度(9.8 m/s2)。即采用緩沖桿吸持胚蛋時(shí),需要的負(fù)壓值為P-P0=89.108- 101.3=-12.192 kPa。

      2.2 真空發(fā)生器的特性分析及選擇

      空氣壓縮機(jī)產(chǎn)生的高壓氣體,經(jīng)電磁換向閥,直連真空發(fā)生器,避免由于連接氣管的氣體喘流帶來(lái)的壓降。依據(jù)分揀執(zhí)行機(jī)構(gòu)的控制特性,蛋胚在分揀過(guò)程中受到的軸向加速度為6.4 m/s2,徑向加速度為3.3 m/s2。因此吸盤不僅需要提供克服蛋胚重力的吸力,還需提供克服蛋胚加速運(yùn)動(dòng)的吸力,克服加速軸向最小力吸力為0.062 5× 6.4=0.4 N,徑向最小吸力為0.062 5×3.3=0.2 N。軸向吸力需同時(shí)克服蛋胚重力0.062 5×9.8=0.61 N,因此吸盤需要負(fù)壓值為-12.192×(1+6.4/9.8)=-19.8 kPa,真空發(fā)生器的型號(hào)選擇需滿足蛋胚吸持所需負(fù)壓值。電磁換向閥采用德力西4V210-08,真空發(fā)生器采用德力西CV-15HS,空氣壓縮機(jī)采用5 L的捷順JS3001,對(duì)真空發(fā)生器的供氣壓力與負(fù)壓關(guān)系進(jìn)行試驗(yàn),將真空發(fā)生器負(fù)壓端連接吸盤,通過(guò)給真空發(fā)生器提供壓力為100~700 kPa的高壓氣體,在真空發(fā)生器的負(fù)壓端連接壓力表,測(cè)試吸盤開口和耦合蛋胚時(shí)真空發(fā)生器負(fù)壓端的壓力值。試驗(yàn)結(jié)果如圖4所示。吸盤與蛋胚耦合時(shí)的最大負(fù)壓為-58 kPa,吸盤開口時(shí)的最大負(fù)壓為-47 kPa,負(fù)壓值均大于蛋胚吸持所需壓力-12.192 kPa。蛋胚與吸盤緊密接觸,所需吸持負(fù)壓值為-12.192 kPa。由于蛋胚表面斑點(diǎn)、黏著污物的影響,吸盤與蛋胚之間存在縫隙,降低了吸盤的吸力,為了安全吸持,將吸持負(fù)壓提高至-20 kPa。由圖4所示真空發(fā)生器在吸盤開口、吸持蛋胚時(shí),只要供氣壓力大于240 kPa,產(chǎn)生的負(fù)壓大于-20 kPa,滿足蛋胚吸持壓力,因此蓄能器的供氣壓力不能小于240 kPa。

      圖4 真空發(fā)生器吸持特性Fig. 4 Vacuum generator suction characteristics

      2.3 吸盤選擇及吸持力影響分析

      吸盤的形狀及尺寸,決定了蛋胚在吸持轉(zhuǎn)移過(guò)程的可靠性。蛋胚的吸持不僅與負(fù)壓值有關(guān),還與吸盤與蛋胚的耦合情況有關(guān)。蛋胚分揀過(guò)程分為蛋胚垂直吸持和水平移動(dòng),因此吸持綜合力包含了蛋胚的垂直吸力和徑向力[21-26]。垂直吸力主要克服胚蛋的自重和吸盤變形的反作用力,徑向力主要克服吸盤水平運(yùn)動(dòng)時(shí)的加減加速度帶來(lái)的沖擊。

      試驗(yàn)采用2種吸盤進(jìn)行,吸盤選取能夠耦合蛋胚的氣室,蛋胚的氣室最大截面直徑宜為30~35 mm,因此選擇吸盤1為最小孔徑為12 mm、耦合吸盤外徑34 mm,吸盤2為最小孔徑為15 mm、耦合吸盤外徑為30 mm。在負(fù)壓值為-20 kPa,分別測(cè)試胚蛋吸持時(shí),所能承受的最大軸向力和最大徑向力。挑揀大小不同的胚蛋30枚,在同一個(gè)吸盤控制位,采取更換吸盤的方式進(jìn)行試驗(yàn),試驗(yàn)測(cè)得軸向力和徑向力如圖5所示。

      經(jīng)試驗(yàn)測(cè)試吸盤1的最小軸向吸持力為1.12 N,最小徑向吸持力為0.22 N。吸盤2的最小軸向吸持力為1.72 N,最小徑向吸持力為0.15 N。綜合軸向和徑向吸持力需求,選擇吸盤1。

      圖5 不同吸盤的吸力特性Fig.5 Suction characteristic of different sucker

      2.4 儲(chǔ)能器的容積設(shè)計(jì)

      蛋胚分揀過(guò)程中,真空發(fā)生器需要提供持續(xù)的負(fù)壓,因此要求儲(chǔ)能器能夠提供足夠流量的高壓氣體。儲(chǔ)能器容積設(shè)計(jì),按照氣體能量守恒方程進(jìn)行計(jì)算。電磁換向閥啟動(dòng)后,壓力管道內(nèi)容積為V1、初始?jí)毫镻1的氣體,與儲(chǔ)氣罐內(nèi)容積為V2、壓力為P2的氣體相互擴(kuò)散混合,若平衡后的壓力達(dá)到啟動(dòng)壓力P,則可求得儲(chǔ)能器容積

      蛋胚分揀時(shí),需要負(fù)壓不小于-20 kPa,參照?qǐng)D6真空發(fā)生器的負(fù)壓與流量關(guān)系,在負(fù)壓值為-20 kPa時(shí),所需高壓氣體的流量為45 L/min,蛋胚吸持等待時(shí)間、氣缸上升時(shí)間、分揀盤在同步帶傳動(dòng)模組驅(qū)動(dòng)下行走1.3 m耗時(shí)之和t=3.5 s。由圖4真空發(fā)生器的特性知,蛋胚可靠吸持負(fù)壓為-20 kPa時(shí),真空發(fā)生器的供氣壓力應(yīng)為0.24 MPa,與廠家提供的參考供氣壓力0.4 MPa進(jìn)行耗氣量對(duì)比試驗(yàn)。由測(cè)試真空發(fā)生器的參數(shù)知,當(dāng)真空發(fā)生器產(chǎn)生-20 kPa壓力時(shí),真空發(fā)生器的耗氣量為45 L/min,胚蛋從吸持到分揀完成耗時(shí)t=3.5 s,因此一路吸盤完成一個(gè)分揀循環(huán),需要2.625 L的高壓氣體,即蓄能器的容量不能小于441 L。

      圖6 真空發(fā)生器供氣量與負(fù)壓特性Fig.6 Characteristics of vacuum generator air supply and negative pressure

      2.5 氣管長(zhǎng)度與吸持響應(yīng)時(shí)間的關(guān)系試驗(yàn)分析

      氣管越短,真空吸盤越能夠快速吸持蛋胚,減少分揀盤等待時(shí)間,提高分揀效率。同時(shí)吸盤將胚蛋放回回收框時(shí),電磁換向閥動(dòng)作,切斷真空發(fā)生器的高壓進(jìn)氣,使得負(fù)壓腔壓力升高,大于胚蛋吸持的臨界負(fù)壓,胚蛋落下。由于待分揀蛋盤的寬度為500 mm,考慮蛋盤傳送機(jī)構(gòu)的邊沿,吸盤固定板需要水平移動(dòng)600 mm。如果將真空發(fā)生器固定在吸盤固定板上,將增加其轉(zhuǎn)動(dòng)慣量,降低其靈活性,增加設(shè)備功耗。為了兼顧吸盤的動(dòng)態(tài)響應(yīng)特性和整機(jī)的效率,將真空發(fā)生器固定在桁架的中上方,抽氣管的長(zhǎng)度約為600 mm。

      因此需要對(duì)氣管長(zhǎng)度與吸持響應(yīng)時(shí)間進(jìn)行試驗(yàn),啟動(dòng)空氣壓縮機(jī),達(dá)到額定氣壓時(shí),啟動(dòng)電磁換向閥,對(duì)真空發(fā)生器供高壓氣體,使得真空發(fā)生器能夠提供穩(wěn)定負(fù)壓。為了精確測(cè)量氣管長(zhǎng)度對(duì)吸盤響應(yīng)時(shí)間的影響,在真空發(fā)生器與吸盤氣管之間設(shè)有直通電磁閥,當(dāng)直通電磁閥開啟時(shí),氣管開始進(jìn)入負(fù)壓,使得吸盤吸持胚蛋。調(diào)整真空吸盤與胚蛋耦合、更換不同長(zhǎng)度的氣管,測(cè)試對(duì)同一個(gè)胚蛋吸持的響應(yīng)時(shí)間。試驗(yàn)采用CANEN750D相機(jī)拍攝,依據(jù)播放幀數(shù)確定吸持響應(yīng)時(shí)間。控制系統(tǒng)同時(shí)控制直通換向閥和相機(jī),作為計(jì)時(shí)的起點(diǎn),當(dāng)三層硅膠吸盤,吸起胚蛋脫離蛋盤至最高位置時(shí)為時(shí)間結(jié)束點(diǎn)。圖7為氣管長(zhǎng)度與吸持響應(yīng)時(shí)間的關(guān)系,在管線在600 mm長(zhǎng)時(shí),響應(yīng)時(shí)間為10 ms,負(fù)壓系統(tǒng)的最長(zhǎng)管線為600 mm,因此分揀盤下降吸持蛋胚的等待時(shí)間不能低于10 ms。

      圖7 氣管長(zhǎng)度與吸持響應(yīng)特性(負(fù)壓0.025 MPa)Fig.7 Characteristics of tracheal length and suction response (Negative pressure of 0.025 MPa)

      3 胚蛋分揀試驗(yàn)

      為了驗(yàn)證分揀機(jī)器人真空吸盤裝置的有效性和可靠性,采用多種模式分揀測(cè)試。2017年3月分揀試驗(yàn)在某生物疫苗廠的照蛋間進(jìn)行為期7 d的性能測(cè)試,驗(yàn)證負(fù)壓系統(tǒng)負(fù)壓值選取的合理性。依據(jù)最大待分揀率50%,人工挑選待分揀蛋胚隨機(jī)放置蛋盤中,分別按照-15、-20、-25 kPa的負(fù)壓值分揀80盤蛋胚,驗(yàn)證不同情況下的分揀性能。當(dāng)分揀機(jī)構(gòu)接收分揀信息后,步進(jìn)電機(jī)驅(qū)動(dòng)機(jī)構(gòu)帶動(dòng)分揀盤[27-30],定位至蛋位上方。吸盤下壓胚蛋,真空吸盤發(fā)生微形變,使得吸盤和胚蛋有效耦合。按照待分揀蛋位信息,打開對(duì)應(yīng)蛋位的直動(dòng)式電磁換向閥,使得真空發(fā)生器工作,產(chǎn)生負(fù)壓吸起胚蛋。升降聯(lián)動(dòng)氣缸抬起吸盤后,在步進(jìn)電機(jī)驅(qū)動(dòng)機(jī)構(gòu)的帶動(dòng)下平移至回收框上方,將胚蛋放下。真空吸盤裝置測(cè)試如圖8a所示。

      圖8 真空吸盤裝置測(cè)試及應(yīng)用Fig.8 Testing and application of vacuum suction device

      試驗(yàn)結(jié)果表明(表1),在負(fù)壓為-15 kPa時(shí),無(wú)胚漿吸出,但蛋胚跌落率較高;負(fù)壓為-25 kPa時(shí),無(wú)蛋胚跌落,但胚漿吸出率較高;負(fù)壓為-20 kPa時(shí),無(wú)蛋胚跌落,胚漿吸出率低。因此蛋胚分揀負(fù)壓值設(shè)置為-20 kPa,蛋胚分揀成功率99.89%,胚蛋吸持中跌落率為0,滿足蛋胚分揀的需求,與理論計(jì)算值接近。采用儲(chǔ)能器集中供高壓,真空發(fā)生器獨(dú)立控制方式,縮短了負(fù)壓回路長(zhǎng)度,有效解決了真空腔的壓力不均,所導(dǎo)致的胚蛋吸力不足而跌落和負(fù)壓過(guò)大吸出胚漿的現(xiàn)象。每個(gè)蛋位吸盤采用緩沖機(jī)構(gòu),有效解決了因蛋胚高度不一帶來(lái)的吸盤與蛋胚耦合問(wèn)題。經(jīng)試驗(yàn),真空分揀裝置的蛋胚分揀性能滿足高效可靠蛋胚分揀要求。同時(shí)將該裝置安裝在6自由度機(jī)械人上如圖8b所示,用于錯(cuò)位分揀。分揀機(jī)器人真空吸盤裝置,替代了人工分揀,結(jié)合識(shí)別機(jī)構(gòu),實(shí)現(xiàn)了蛋胚檢測(cè)和分揀的自動(dòng)化,提高了胚蛋的分揀效率。

      表1 接種蛋胚分揀測(cè)試結(jié)果Table 1 Inoculated egg embryo sorting test results

      4 結(jié) 論

      1)采用高壓儲(chǔ)能器驅(qū)動(dòng)真空發(fā)生器提供負(fù)壓,每個(gè)吸盤獨(dú)立負(fù)壓回路控制,解決了集中負(fù)壓式帶來(lái)的壓力不均,避免了胚蛋吸持時(shí)的跌落和無(wú)法吸持現(xiàn)象。

      2)通過(guò)對(duì)氣管的動(dòng)態(tài)響應(yīng)性、真空發(fā)生器性能、吸盤形狀、儲(chǔ)能器容積等影響負(fù)壓回路供壓因素分析,優(yōu)化了負(fù)壓回路,采用皺褶式吸盤和吸盤緩沖桿,使吸盤和蛋胚在吸持前,能夠很好地耦合,降低了蛋胚吸持負(fù)壓值,解決了蛋胚吸持時(shí)的胚漿吸出問(wèn)題,也提高了系統(tǒng)的動(dòng)態(tài)響應(yīng)性。

      3)蛋胚成活性分揀機(jī)器人真空吸盤裝置接收待分揀蛋位信息,完成蛋胚定位、吸持、落盤整個(gè)分揀過(guò)程中,在負(fù)壓為-20 kPa時(shí),蛋胚分揀成功率99.89%,胚蛋吸持中跌落率為0,胚漿吸出率極低,滿足生產(chǎn)需求。

      [1] 閆峰,張輝. 孵化溫濕度對(duì)雞胚尿囊液的影響[J]. 中國(guó)獸醫(yī)雜志,2011,47(1):28-30. Yan Feng, Zhang Hui. The incubation temperature and humidity effects on chicken embryo allantoic fluid[J]. Chinese Journal of Veterinary Medicine, 2011, 47(1): 28-30. (in Chinese with English abstract)

      [2] 張彥杰,賈玲霞,李愛芬,等. 禽流感H9亞型SD696株疫苗生產(chǎn)工藝改進(jìn)試驗(yàn)[J]. 中國(guó)獸藥雜志,2011,45(1):45-48. Zhang Yanjie, Jia Lingxia, Li Aifen, et al. Experiment of improve technological processon avian influen za virus(H9) strain SD696 vaccine production[J]. Chinese Journal of Veterinary Medicine, 2011, 45(1): 45-48. (in Chinese with English abstract)

      [3] 單寶明. 基于機(jī)器視覺的疫苗制備中胚蛋成活性檢測(cè)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2010,41(5):178-203. Shan Baoming. Hatching egg fertility detection in vaccine preparation based on machine vision[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(5): 178-203. (in Chinese with English abstract)

      [4] 劉川來(lái),呼進(jìn)國(guó). 疫苗制造中接毒SPF胚蛋成活性無(wú)損檢測(cè)系統(tǒng)[J]. 中國(guó)科技論文,2013,8(7):711-716. Liu Chuanlai, Hu Jinguo. Non-destruxtive detection of the survival of inoculated SPF eggs in vaccine production[J]. China Science Paper, 2013, 8(7): 711-716. (in Chinese with English abstract)

      [5] 楊簡(jiǎn),石瑩,劉海燕,等. 基于DSP和模糊神經(jīng)網(wǎng)絡(luò)種蛋識(shí)別系統(tǒng)[J]. 中國(guó)農(nóng)機(jī)化學(xué)報(bào),2014,35(5):175-178. Yang Jian, Shi Ying, Liu Haiyan, et al. Unfertilized eggs verification system based on DSP system and fuzzy neural networks [J]. Journal of Chinese Agricultural Mechanization, 2014, 35(5): 175-178. (in Chinese with English abstract)

      [6] 徐彥偉,徐愛軍,頡潭成,等. 基于多信息融合的疫苗制備中雞蛋胚體分揀系統(tǒng)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(2):20-26. Xu Yanwei, Xu Aijun, Xie Tancheng, et al. Automatic sorting system of egg embryo in biological vaccines production based on multi-information fusion[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(2): 20-26. (in Chinese with English abstract)

      [7] 劉立晶,劉忠軍,楊學(xué)軍,等. 氣流輸送式小麥免耕播種機(jī)設(shè)計(jì)和試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2011,42(2):54-57.Liu Lijing, Liu Zhongjun, Yang Xuejun, et al. Design and test on pneumatic no-till wheat planter[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(2): 54-57. (in Chinese with English abstract)

      [8] 秦紅斌,張吉鑫,陳國(guó)良,等. 一種新型真空吸盤裝置[J].真空科學(xué)與技術(shù)學(xué)報(bào),2017,37(1):12-16. Qin Hongbin, Zhan Jixin, Chen Guoliang. Design optimization of vacuum sucker for high precision flexible assembly fixture of autoglass[J]. Chinese Journal of Vacuum Science and Technology, 2017, 37(1): 12-16. (in Chinese with English abstract)

      [9] 韓志,謝晶,潘迎捷,等. 食品冷卻抽真空過(guò)程流場(chǎng)影響參數(shù)分析[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2010,41(9):118-121. Han Zhi, Xie Jing, Pan Yingjie, et al. Parameters analysis on flow performance in food vaccuum izing process[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(9): 118-121. (in Chinese with English abstract)

      [10] 趙佳樂,賈洪雷,姜鑫銘,等. 大豆播種機(jī)偏置雙圓盤氣吸式排種器[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2013,44(8):78-83. Zhao Jiale, Jia Honglei, Jiang Xinming, et al. Suction type offset double disc seed metering device of soybean seeder[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(8): 78-83. (in Chinese with English abstract)

      [11] 胡小靜,頡潭成,毛恒軒,等. 自動(dòng)分揀雞蛋平臺(tái)氣動(dòng)系統(tǒng)研究[J]. 機(jī)床與液壓,2014,42(2):68-70. Hu Xiaojing, Xie Tancheng, Mao Hengxuan, et al. Research on pneumatic system of automatic sorting eggs platform[J]. Machine Tool&Hydraulics, 2014, 42(2): 68-70. (in Chinese with English abstract)

      [12] 趙立新,鄭立允,王玉果,等. 振動(dòng)氣吸式穴盤播種機(jī)的吸種性能研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2003,19(4):122-125. Zhao Lixin, Zheng Liyun, Wang Yuguo, et al. Seed suction performance of vibrational air-suction tray seeder [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2003, 19(4):122-125. (in Chinese with English abstract)

      [13] 孫文策. 工程流體力學(xué)[M]. 大連:大連理工大學(xué)出版社,2007.

      [14] Meng Deyuan, Tao Guoliang, Ban Wei, et al. Adaptive robust output force tracking control of pneumatic cylinder while maximizing/minimizing its stiffness[J]. Journal of Central South University, 2013, 20(6): 1510-1518.

      [15] 齊龍,譚祖庭,馬旭,等. 氣動(dòng)振動(dòng)式勻種裝置工作參數(shù)的優(yōu)化及試驗(yàn)[J]. 吉林大學(xué)學(xué)報(bào)工學(xué)版,2014,44(6):1684-1690. Qi Long, Tan Zuting, Ma Xu, et al. Optimization and test of operational parameters of pneumatic vibration uniform-seeds device[J]. Journal of Jilin University Engineering and Technology Edition, 2014, 44(6): 1684-1690. (in Chinese with English abstract)

      [16] 黃衛(wèi)星. 工程流體力學(xué)[M]. 北京:化學(xué)工業(yè)出版社,2010. [17] 楊洲,陳朝海,段潔利,等. 荔枝壓差預(yù)冷包裝箱內(nèi)氣流場(chǎng)模擬與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2012,43(10):215-217. Yang Zhou, Chen Chaohai, Duan Jieli, et al. Simulation and experiment of airflow field in cartons of pressure-difference pre-cooling for litchi[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(10): 215-217. (in Chinese with English abstract)

      [18] 焦洋洋,劉強(qiáng),王素娟. 真空夾具系統(tǒng)的設(shè)計(jì)[J]. 真空科學(xué)與技術(shù)學(xué)報(bào),2014,34(3):225-229. Jiao Yangyang, Liu Qiang, Wang Sujuan. Novel type of fixture clamping by negative pressure[J]. Chinese Journal of Vacuum Science and Technology, 2014, 34(3): 225-229. (in Chinese with English abstract)

      [19] 張世偉,溫燕修,韓進(jìn). 真空拾取器拾取動(dòng)作響應(yīng)時(shí)間與影響因素的研究[J]. 真空科學(xué)與技術(shù)學(xué)報(bào),2010,30(1):92-95. Zhang Shiwei, Wen Yanxiu, Han Jin. Response time of vacuum sucking discs[J]. Chinese Journal of Vacuum Science and Technology, 2010, 30(1): 92-95. (in Chinese with English abstract)

      [20] 孔瓏. 兩相流體力學(xué)[M]. 北京:高等教育出版社,2004.

      [21] 龔智強(qiáng),陳進(jìn),李耀明,等. 吸盤式精密排種裝置吸種過(guò)程氣流場(chǎng)中種子受力研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(6):92-98. Gong Zhiqiang, Chen Jin, Li Yaoming, et al. Seed force in airflow field of vacuum tray precision seeder device during suction process of seeds[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(6): 92-98. (in Chinese with English abstract)

      [22] 陳書法,張石平,李耀明. 壓電型振動(dòng)氣吸式穴盤育苗精量播種機(jī)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(增刊1):15-20. Chen Shufa, Zhang Shiping, Li Yaoming. Design and experiment of piezoelectric type vibration air-suction precision seeder withholey tray[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(Supp.1): 15-20. (in Chinese with English abstract)

      [23] 金波,林龍賢. 果蔬采摘欠驅(qū)動(dòng)機(jī)械手爪設(shè)計(jì)及其力控制[J]. 機(jī)械工程學(xué)報(bào),2014,50(19):1-8. Jin Bo, Lin Longxian. Design and force control of an underactuated robotic hand for fruit and vegetable picking[J]. Journal of Mechanical Engineering, 2014, 50(19): 1-8. (in Chinese with English abstract)

      [24] Gasparetto A, Zanotto V. Optimal trajectory planning for industrial robots[J]. Advances in Engineering Software, 2010, 41: 548-556.

      [25] 楊玉維,趙新華,孫啟湲,等. 基于多體動(dòng)力學(xué)特性的機(jī)械手時(shí)間最優(yōu)軌跡規(guī)劃[J]. 機(jī)械工程學(xué)報(bào),2014,50(7):8-14. Yang Yuwei, Zhao Xinhua, Sun Qiyuan, et al. Trajectory optimization of manipulator for minimum working time based on multi-body dynamic characters[J]. Journal of Mechanical Engineering, 2014, 50(7): 8-14. (in Chinese with English abstract)

      [26] 紀(jì)超,馮青春,袁挺,等. 溫室黃瓜采摘機(jī)器人系統(tǒng)研制及性能分析[J]. 機(jī)器人,2011,33(6):726-730. Ji Chao, Feng Qingchun, Yuan Ting, et al. Development and performance analysis on cucumber harvesting robot system ingreenhouse[J]. Robot, 2011, 33(6): 726-730. (in Chinese with English abstract)

      [27] Hayashi S, Shigematsu K, Yamamoto S, et al. Evaluation of a strawberry-harvesting robot in a field test[J]. Biosystems Engineering, 2010, 105(2): 160-171.

      [28] 楊慶華,張立彬,鮑官軍,等. 氣動(dòng)柔性彎曲關(guān)節(jié)的特性及其神經(jīng)PID控制算法研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2004,20(4):88-91. Yang Qinghua, Zhang Libin, Bao Guanjun, et al. Investigation of the characteristics of pneumatic flexiblebending joint and its neural PID controlling algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2004, 20(4): 88-91. (in Chinese with English abstract)

      [29] 姬偉,羅大偉,李俊樂,等. 果蔬采摘機(jī)器人末端執(zhí)行器的柔順抓取力控制[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(9):19-26. Ji Wei, Luo Dawei, Li Junle, et al. Compliance grasp force control for end-effector of fruit-vegetable picking robot[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(9): 19-26. (in Chinese with English abstract)

      [30] 王明順,關(guān)守平. 一種分類機(jī)械手的研制與開發(fā)[J]. 東北大學(xué)學(xué)報(bào):自然科學(xué)版,2006,27(9):957-960. Wang Mingshun, Guan Shouping. Research and development of a sorting manipulator[J]. Journal of Northeastern University Natural Science, 2006, 27(9): 957-960. (in Chinese with English abstract)

      Design and test of vacuum suction device for egg embryo activity sorting robot

      Huang Chao1,2,Liu Yancong1※,Yi Peng1
      (1. College of Mechanical and Electronic Engineering, China University of Petroleum,Qingdao 266580, China; 2. College of Electrical Engineering Binzhou University, Binzhou 256600, China)

      There are problems such as egg embryo falling and embryo aspiration in the sorting process of the 168-egg tray automatic sorting devices. In order to solve these problems, combined with the existing egg embryo sorting technology in China and abroad, we take the vacuum generator with negative pressure control as the core to design a vacuum chuck with independent negative control circuits. Based on the theoretical analysis of airflow fields during the process of holding egg embryo, the levitation force of the egg embryo and the suction cup is compared with the negative pressure suction at the time of contact, and the suction cup is optimized. At the time of holding, the sucker can be a good coupling with the egg embryo, so as to reduce the suction negative pressure. Meanwhile, the influencing factors of the vacuum sucker airflow field, such as the relationship between the length of the negative pressure trachea and the response time of the negative pressure, the performance of the vacuum generator, the shape of the sucker, the force of suction, the capacity of the accumulator and the amount of negative pressure, are analyzed theoretically and tested, thus allowing to optimize the control mode of the gas path. Through the analysis of the airflow field, the high pressure accumulator is used to drive the vacuum generator to provide negative pressure, and each sucker is controlled independently. The negative pressure balance of the vacuum sucker is achieved by using single point negative pressure generation and single point control. This method eliminates the negative pressure difference between the pipelines caused by the centralized negative pressure supply of the vacuum pumps, and it also prevents the egg embryo from falling and the leakage phenomenon caused by negative pressure unloading near the negative pressure pipeline when a pipe leaks. The vacuum generator’s independent circuit for the control of negative pressure also limits the negative pressure, thus reducing the negative pressure circuit’s negative pressure fluctuations, improving the reliability of the system support, and also solving the problem of embryo aspiration caused by an excessive negative partial pressure in the centralized negative pressure supply mode. Through the egg embryo holding kinetics, combined with the mobile control system requirements of the sucker device, the axial and radial forces required to suck the eggs are analyzed, and the pleated suction cup and the buffer rod of sucker are used, so the sucking disc and egg embryo can be well coupled before being sucked. It can also reduce the critical flow rate, so as to reduce the critical negative pressure of egg embryo. This solves the problem of germplasm aspiration during egg absorption, improves the dynamic response of the system, and reduces energy consumption. According to the analysis and design of the prototype, the egg sorting test and pressure supply performance verification of the negative pressure system are carried out. Each independent negative pressure circuit achieves a stable negative pressure supply, therefore reducing the amount of air consumption. The reliable embryo egg absorption rate is 99.89%, without any egg embryo falling nor embryo aspiration phenomenon.

      vaccines; sorting; machinery; improvement; egg embryo; negative-pressure system; vacuum sucker; vacuum generator

      10.11975/j.issn.1002-6819.2017.16.036

      TH69

      A

      1002-6819(2017)-16-0276-07

      黃 超,劉衍聰,伊 鵬. 蛋胚成活性分揀機(jī)器人真空吸盤裝置設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(16):276-282.

      10.11975/j.issn.1002-6819.2017.16.036 http://www.tcsae.org

      Huang Chao, Liu Yancong, Yi Peng. Design and test of vacuum suction device for egg embryo activity sorting robot[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(16): 276-282. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.16.036 http://www.tcsae.org

      2017-03-25

      2017-08-07

      國(guó)家自然科學(xué)基金項(xiàng)目(51405512);山東省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2016GNC112015);山東省自然基金(面上)項(xiàng)目(ZR2013EEM031)

      黃超,男(漢族),山東臨沂人,博士生,講師,主要研究方向?yàn)橹悄芸刂婆c檢測(cè)、智能機(jī)械。青島 中國(guó)石油大學(xué)(華東)機(jī)電工程學(xué)院,266580。Email:hc8247@163.com

      ※通信作者:劉衍聰,男(漢族),山東淄博人,博士,教授,博士生導(dǎo)師,主要研究方向工程圖學(xué)、智能機(jī)械。青島 中國(guó)石油大學(xué)(華東)機(jī)電工程學(xué)院,266580。Email:liuycupc@163.com

      猜你喜歡
      氣流負(fù)壓真空
      警惕安全監(jiān)管“真空”
      《真空與低溫》征稿說(shuō)明
      真空與低溫(2022年6期)2023-01-06 07:33:20
      氣流的威力
      早早孕負(fù)壓吸引人工流產(chǎn)術(shù)的臨床探討
      一種手術(shù)負(fù)壓管路腳踏負(fù)壓控制開關(guān)的研制
      固體運(yùn)載火箭變軌發(fā)動(dòng)機(jī)噴管氣流分離研究
      飛片下的空氣形成的“超強(qiáng)高速氣流刀”
      基于停留時(shí)間分布的氣流床氣化爐通用網(wǎng)絡(luò)模型
      一種抽真空密煉機(jī)
      罕見病的“政策真空”
      安图县| 安庆市| 田林县| 绵竹市| 永靖县| 台东市| 区。| 榆中县| 龙山县| 南昌县| 改则县| 奉新县| 寿光市| 保康县| 铁岭市| 革吉县| 祁阳县| 吴江市| 鸡东县| 金山区| 凤凰县| 拜泉县| 民和| 光泽县| 莱阳市| 镇平县| 锡林郭勒盟| 基隆市| 天津市| 铅山县| 邻水| 达尔| 牙克石市| 上高县| 大理市| 淮阳县| 玉龙| 延长县| 恩平市| 湘阴县| 宁安市|