董良秀,李小華,張 瑾,張小雷,胡 超,蔡憶昔,邵珊珊(江蘇大學(xué)汽車與交通工程學(xué)院,鎮(zhèn)江 212013)
HZSM-5和MCM-41分子篩催化劑比例對(duì)油菜秸稈熱解的影響
董良秀,李小華※,張 瑾,張小雷,胡 超,蔡憶昔,邵珊珊
(江蘇大學(xué)汽車與交通工程學(xué)院,鎮(zhèn)江 212013)
選取油菜秸稈為原料,利用不同比例均勻混合的HZSM-5/MCM-41進(jìn)行在線催化熱解油菜秸稈制備生物油試驗(yàn),根據(jù)生物油有機(jī)相的理化特性、FT-IR、GC-MS分析和催化劑的BET分析結(jié)果,研究HZSM-5與MCM-41的混合比例對(duì)生物油品質(zhì)的影響規(guī)律。結(jié)果表明隨著混合催化劑中MCM-41質(zhì)量分?jǐn)?shù)的增加,生物油有機(jī)相產(chǎn)率、密度、運(yùn)動(dòng)黏度及O質(zhì)量分?jǐn)?shù)先減少后增加,C質(zhì)量分?jǐn)?shù)及高位熱值先升高后降低,1,8-二甲基萘、對(duì)二甲苯、甲基萘等芳香烴類物質(zhì)的選擇性呈現(xiàn)先增加后減少的變化趨勢(shì),生物油有機(jī)相中羰基類物質(zhì)的質(zhì)量分?jǐn)?shù)先減少后增加,酸性物質(zhì)持續(xù)減少。當(dāng)HZSM-5與MCM-41以1:1混合時(shí),生物油產(chǎn)率為18.68%,高位熱值高達(dá)34.31 MJ/kg,生物油中烴類物質(zhì)的質(zhì)量分?jǐn)?shù)為53.83%,羰基類物質(zhì)的質(zhì)量分?jǐn)?shù)為6.35%?;旌洗呋瘎┗钚噪SMCM-41質(zhì)量分?jǐn)?shù)增加逐漸提高,當(dāng)MCM-41質(zhì)量分?jǐn)?shù)超過50%時(shí),混合催化劑的催化活性趨于穩(wěn)定。
秸稈;催化劑;熱解;生物油;HZSM-5;MCM-41
生物質(zhì)能是綠色植物通過光合作用轉(zhuǎn)換和儲(chǔ)存下來的太陽能[1],也是唯一一種具有碳源的可再生能源。中國(guó)生物質(zhì)資源量巨大,主要為農(nóng)作物秸稈,目前對(duì)生物質(zhì)的處理方式大多為直接焚燒[2-3],對(duì)環(huán)境污染嚴(yán)重且浪費(fèi)資源,而采用快速熱解及催化裂解技術(shù)將這些生物質(zhì)資源轉(zhuǎn)化成液體燃料和化學(xué)品[4-5],作為化石燃料的替代燃料,可以減少石油等化石資源的消耗,保護(hù)生態(tài)環(huán)境[6]。目前石油工業(yè)中主要采用沸石類分子篩催化劑對(duì)生物油進(jìn)行催化裂解[7-8]。沸石類分子篩的酸性位點(diǎn)具有催化活性,能促進(jìn)生物油組分的脫氧、脫羰基和脫羧基作用[9-11]。Adjaye等[12]使用HZSM-5作為催化劑,考察了催化生物油生產(chǎn)烴類的過程,結(jié)果表明,使用HZSM-5時(shí),生物油中烴類產(chǎn)品的質(zhì)量產(chǎn)率為27.9%(以未催化的生物油為基準(zhǔn)),且生物油中含有較多的芳香烴。Vtolo等[13]利用HZSM-5為催化劑對(duì)生物油進(jìn)行催化裂解改性研究,試驗(yàn)中發(fā)現(xiàn)催化劑的結(jié)焦嚴(yán)重,如果通過縮短氣體停留時(shí)間
的辦法來減緩催化劑的失活,會(huì)導(dǎo)致生物油中的氧不能有效脫除。鮑衛(wèi)仁等[14]以MCM-41/SBA-15分子篩作催化劑,對(duì)木屑熱解蒸汽進(jìn)行催化裂解,發(fā)現(xiàn)MCM-41單獨(dú)催化可使熱解油中氧的質(zhì)量分?jǐn)?shù)降低,長(zhǎng)鏈化合物所占比例明顯減小。為解決HZSM-5易結(jié)焦失活的問題,劉莎等[15]將HZSM-5、MCM-41分層布置,進(jìn)行了催化熱解油菜秸稈的研究,結(jié)果表明,協(xié)同催化所得精制生物油有機(jī)相中烴類物質(zhì)含量較高,催化劑表面焦炭沉積減少。在此基礎(chǔ)上,本研究綜合兩種催化劑的優(yōu)勢(shì),將HZSM-5與MCM-41以質(zhì)量比為9∶1、7∶3、1∶1、3∶7及1∶9的比例均勻混合催化油菜秸稈制備生物油,并與HZSM-5、MCM-41單獨(dú)催化得到的精制油的有機(jī)相進(jìn)行對(duì)比,研究HZSM-5與MCM-41混合催化作用機(jī)理,為生物質(zhì)的高效轉(zhuǎn)化利用提供參考。
1.1 試驗(yàn)原料
1.1.1 生物質(zhì)原料
將油菜秸稈粉碎篩分并干燥備用[15]。油菜秸稈中水分、揮發(fā)分、灰分、固定碳質(zhì)量分?jǐn)?shù)分別為6.12%、72.84%、3.69%、17.35%。C、H、O、N、S的質(zhì)量分?jǐn)?shù)分別為42.22%、5.53%、51.77%、0.41%、0.07%。高位熱值為15.92 MJ/kg。
1.1.2 HZSM-5/MCM-41混合催化劑的制備
將硅鋁比為50的HZSM-5、MCM-41研磨篩分至粒徑為0.9~1.6 mm,HZSM-5為微孔結(jié)構(gòu),孔容和比表面積分別為0.2和342 m2/g;MCM-41為介孔結(jié)構(gòu),孔容和比表面積分別為0.65和791 m2/g。將2種催化劑按質(zhì)量比均勻混合得到ZMCM(HZSM-5和MCM-41的混合催化劑),ZMCM-10%表示的是質(zhì)量分?jǐn)?shù)為90% HZSM-5與10%MCM-41混合,其余類推,分別為ZMCM-30%、ZMCM-50%、ZMCM-70%和ZMCM-90%。
1.2 試驗(yàn)裝置及過程
生物質(zhì)在線催化熱解系統(tǒng)如圖1所示。該系統(tǒng)主要由熱解反應(yīng)器、催化裝置、溫控裝置、冷阱、氮?dú)馄考罢婵毡玫冉M成。熱解反應(yīng)器內(nèi)徑為60 mm,高度為1.5 m,催化裝置內(nèi)徑為42 mm。利用孔徑為0.125 mm的不銹鋼絲網(wǎng)桶封裝催化劑,并在過濾器中放置100目的不銹鋼絲網(wǎng),以過濾隨熱解氣流出的雜質(zhì)。試驗(yàn)時(shí)將生物質(zhì)和催化劑分別置于熱解爐和催化裝置中,油菜秸稈質(zhì)量為(150±0.5)g,催化劑床層高度為3cm[16]。先將催化劑加熱至500 ℃活化1 h,再將生物質(zhì)以20 ℃/min的升溫速率加熱至500 ℃,保溫45 min,整個(gè)試驗(yàn)過程將冷阱溫度控制在-20 ℃,真空泵壓力為5 kPa[17-18]。
圖1 生物質(zhì)在線催化熱解系統(tǒng)示意圖Fig.1 Schematic diagram of catalytic pyrolysis system
油菜秸稈裂解得到的熱解氣通過催化反應(yīng)裝置進(jìn)行催化提質(zhì)后經(jīng)充分冷凝液化后收集生物油,并利用集氣袋收集不可冷凝氣體。試驗(yàn)結(jié)束后,關(guān)閉真空泵并通入N2,防止熱解產(chǎn)物與空氣發(fā)生反應(yīng)而導(dǎo)致精制生物油品質(zhì)發(fā)生改變[19]。待系統(tǒng)冷卻后,取出收集試管。試管內(nèi)的液相產(chǎn)物出現(xiàn)明顯的分層,上層為油相,下層為水相,使用二氯甲烷(CH2Cl2)對(duì)液相產(chǎn)物進(jìn)行萃取分離,將CH2Cl2萃取液在40℃恒溫水浴條件下蒸去二氯甲烷得到生物油有機(jī)相。將真空熱解制取的生物油有機(jī)相記為Y0,HZSM-5單獨(dú)催化所得精制生物油有機(jī)相樣品記為Y1,ZMCM-10%、ZMCM-30%、ZMCM-50%、ZMCM-70%和ZMCM-90%催化所得精制生物油有機(jī)相樣品分別記為Y2、Y3、Y4、Y5、Y6,MCM-41單獨(dú)催化所得生物油有機(jī)相樣本記為Y7。為確保試驗(yàn)結(jié)果的準(zhǔn)確性,相同條件下進(jìn)行3次試驗(yàn),結(jié)果取平均值。試驗(yàn)前分別稱量油菜秸稈、收集試管及集氣袋質(zhì)量,試驗(yàn)結(jié)束后以油菜秸稈質(zhì)量為基準(zhǔn),分別稱量系統(tǒng)中熱解殘?zhí)康馁|(zhì)量、收集試管質(zhì)量以及集氣袋質(zhì)量來分別計(jì)算固相、液相及氣相產(chǎn)物產(chǎn)率。
1.3 生物油有機(jī)相分析
采用pH計(jì)(PHS-3型)、氧彈式量熱儀(ZDHW-5G型)分別測(cè)定pH值和熱值;利用比重管、毛細(xì)管黏度計(jì)分別測(cè)定生物油有機(jī)相的密度和運(yùn)動(dòng)黏度。利用元素分析儀(EA-3000型)測(cè)定生物油有機(jī)相各元素含量。
利用FT-IR(Cary670型傅里葉變換紅外光譜儀)對(duì)生物油有機(jī)相的化學(xué)結(jié)構(gòu)進(jìn)行分析,以32次/s的速率在4000~400 cm-1波數(shù)范圍內(nèi)進(jìn)行掃描。
利用GC-MS對(duì)生物油有機(jī)相成分進(jìn)行分析。色譜柱為HP-5毛細(xì)管柱,以氦氣為載氣。使用70 eV電子轟擊230 ℃的離子源。升溫程序:40 ℃下保持2 min,以20 ℃/min的速率升至100 ℃,再以10 ℃/min的速率升至250 ℃,保持5 min。
1.4 催化劑BET分析
采用比表面積分析儀(Builder SSA4300型)測(cè)定催化劑的比表面積和孔容。稱取0.12~0.20 g試樣在預(yù)處理器上升溫至280 ℃,冷卻后進(jìn)行液氮吸、脫附試驗(yàn)。由BET和BJH模型分別求得比表面積和孔容。
2.1 HZSM-5和MCM-41混合比例對(duì)生物油產(chǎn)率的影響
經(jīng)催化熱解后,各項(xiàng)產(chǎn)率分布隨混合比例的變化如圖2所示。
圖2 催化熱解產(chǎn)物產(chǎn)率隨混合比例的變化Fig.2 Products yield of catalytic pyrolysis with different mixing ratios
由圖2可見,隨著混合催化劑中MCM-41質(zhì)量分?jǐn)?shù)的增加,氣相產(chǎn)率先緩慢增長(zhǎng)再減少,液相產(chǎn)率先緩慢降低后增加,生物油有機(jī)相的產(chǎn)率先減少后增加。其中,ZMCM-50%催化裂解得到的液相產(chǎn)率為29.5%,生物油產(chǎn)率為18.68%,氣相產(chǎn)率為45.9%。催化提質(zhì)過程中,熱解氣中含氧物質(zhì)中的氧經(jīng)催化裂解主要轉(zhuǎn)化為H2O,液相產(chǎn)物包括生物油有機(jī)相及水分。MCM-41本身具有較大的孔徑,因此,隨著MCM-41質(zhì)量分?jǐn)?shù)的逐漸增加,促進(jìn)了裂解氣的脫水反應(yīng)[20-21],且大量中間裂解產(chǎn)物進(jìn)入HZSM-5孔道發(fā)生二次裂解并減緩催化劑結(jié)焦失活[22-23],使得HZSM-5脫氧作用逐漸增強(qiáng),產(chǎn)生更多的水分,生物油有機(jī)相逐漸減少。隨著MCM-41質(zhì)量分?jǐn)?shù)逐漸高于HZSM-5,因?yàn)镸CM-41脫水效果不明顯,混合催化劑裂解產(chǎn)生的H2O逐漸減少,脫氧效果逐漸降低,生物油有機(jī)相產(chǎn)率逐漸升高。多次熱解得到的固體產(chǎn)物變化不明顯,表明油菜秸稈熱解均較為完全。
2.2 HZSM-5和MCM-41混合比例對(duì)生物油有機(jī)相理化特性的影響
生物油有機(jī)相理化性質(zhì)如表1所示。由表1可見,隨著混合催化劑中MCM-41混合比例的增加,生物油有機(jī)相的密度先降低后升高,其中,Y4的密度較低,為0.94 g/cm3,燃料噴射霧化效果較好;隨著MCM-41比例的增加,有機(jī)相的pH值呈升高趨勢(shì),腐蝕性降低,其中,Y7的pH值較高,為5.54;有機(jī)相的運(yùn)動(dòng)黏度隨MCM-41比例的增加呈先降低后升高的趨勢(shì),其中,Y4的運(yùn)動(dòng)黏度較低,為5.06 mm2/s,生物油流動(dòng)性較好;隨著MCM-41比例的增加,有機(jī)相中C質(zhì)量分?jǐn)?shù)和高位熱值呈先增加后減少趨勢(shì),O的質(zhì)量分?jǐn)?shù)呈現(xiàn)相反的變化趨勢(shì),Y4的C、O質(zhì)量分?jǐn)?shù)分別為78.98%、12.81%,對(duì)應(yīng)的高位熱值較高,為34.21 MJ/kg。
表1 不同混合比例生物油有機(jī)相理化特性Table 1 Physicochemical properties of bio-oil with different mixing ratios
2.3 HZSM-5和MCM-41混合比例對(duì)生物油有機(jī)相成分組成的影響
2.3.1 混合比例對(duì)生物油中有機(jī)物種類的影響
不同比例混合的HZSM-5和MCM-41催化熱解得到的生物油有機(jī)相紅外光譜圖如圖3所示。
圖3 不同混合比例生物油有機(jī)相紅外光譜圖Fig.3 Infrared spectroscopy of refined bio-oils with different mixing ratios
由圖3可見,各生物油有機(jī)相均顯示出6個(gè)較一致的吸收峰,表明各有機(jī)相中均存在較多種類的官能團(tuán),有機(jī)物種類也較多。3 600~3 200 cm-1范圍內(nèi)的O-H鍵伸縮振動(dòng)峰,表明有機(jī)相中均含有醇類或酚類化合物;3 000~2 800 cm-1范圍內(nèi)的C-H鍵伸縮振動(dòng)峰,表明存在芳香族化合物;1 900~1 650 cm-1范圍內(nèi)的C=O雙鍵的振動(dòng)吸收峰,是羧酸類物質(zhì)及醛酮類物質(zhì)的特征峰;1 600~1 550 cm-1范圍內(nèi)的C=C雙鍵的振動(dòng)吸收峰,C=C鍵屬于苯環(huán)架構(gòu),表明各精制生物油有機(jī)相中均含有芳香族類物質(zhì);1 300~1 100cm-1范圍內(nèi)的特征吸收峰表明醚類、酯類物質(zhì)的存在;600~900 cm-1范圍內(nèi)的吸收峰為烯烴類或取代芳烴類化合物??梢?,各精制油有機(jī)相中均含有羧酸類物質(zhì)、醛酮類物質(zhì)、烴類物質(zhì)、醇酚類物質(zhì)及醚酯類有機(jī)物。
2.3.2 混合比例對(duì)生物油中主要產(chǎn)物的影響
利用GC-MS對(duì)生物油有機(jī)相成分進(jìn)行分析,統(tǒng)計(jì)歸納結(jié)果如表2所示。有機(jī)相中主要成分可分為“目標(biāo)產(chǎn)物”烴類物質(zhì)和“非目標(biāo)產(chǎn)物”含氧物質(zhì)。由表2可看出,隨著MCM-41比例的增加,混合催化劑對(duì)烴類物質(zhì)(主要為芳烴類物質(zhì),如1-亞甲基-2-丙烯基苯,對(duì)二甲苯,1,8-二甲基萘、甲基萘等)的選擇性呈現(xiàn)出先增加后減小的變化趨勢(shì)。含氧物質(zhì)如2-甲氧基苯酚,2-甲氧基-甲基苯酚等隨著MCM-41比例的增加呈現(xiàn)出先減少后增加的變化趨勢(shì)。HZSM-5具有較強(qiáng)的芳構(gòu)化性能及脫氧性能,可以將氧以H2O、CO2和CO的形式去除,但HZSM-5的孔道較小,大分子很難進(jìn)入,會(huì)在其外表面沉積炭化,形成焦炭,使催化劑結(jié)焦失活而喪失催化性能。隨著MCM-41質(zhì)量分?jǐn)?shù)的增加,利用MCM-41較大的孔道將熱解氣中難以進(jìn)入HZSM-5的長(zhǎng)鏈化合物裂解成短鏈化合物,這些小分子物質(zhì)進(jìn)入HZSM-5孔道,并在孔道內(nèi)的酸性位點(diǎn)上進(jìn)行芳構(gòu)化、低聚反應(yīng)及脫氧作用,從而生成更多的烴類物質(zhì)。由于MCM-41芳構(gòu)化性能較弱,當(dāng)混合催化劑中MCM-41的質(zhì)量分?jǐn)?shù)超過50%時(shí),隨著HZSM-5的質(zhì)量分?jǐn)?shù)不斷減少,混合催化劑的整體芳構(gòu)化能力逐漸減弱,生成的芳烴類物質(zhì)隨之減少,導(dǎo)致生物油中含氧化合物增加。
2.3.3 混合比例對(duì)產(chǎn)物組成的影響
HZSM-5和MCM-41混合比例對(duì)有機(jī)相產(chǎn)物組成的影響如圖4所示。
由圖4可知,當(dāng)MCM-41的混合比例低于50%時(shí),隨著混合催化劑中MCM-41質(zhì)量分?jǐn)?shù)的增加,生物油中烴類物質(zhì)的質(zhì)量分?jǐn)?shù)呈升高趨勢(shì)。當(dāng)HZSM-5和MCM-41混合比例為1∶1時(shí),烴類物質(zhì)含量高達(dá)53.83%,此時(shí)有足量的MCM-41將大分子物質(zhì)裂解,使更多的小分子有機(jī)物進(jìn)入HZSM-5的孔道,在HZSM-5的酸性位點(diǎn)上發(fā)生芳構(gòu)化、低聚及縮合反應(yīng),從而生成更多的芳香烴類物質(zhì)。當(dāng)MCM-41的混合比例高于50%時(shí),隨著混合催化劑中MCM-41的增加,生物油中烴類物質(zhì)逐漸減少至19.92%。
隨著混合催化劑中MCM-41的增加,生物油中酸類物質(zhì)的質(zhì)量分?jǐn)?shù)由2.42%持續(xù)減少至0.24%,由于MCM-41(n(Si)/(Al)=50)的活性位點(diǎn)較多,脫羧基性能較好,隨著MCM-41質(zhì)量分?jǐn)?shù)的增加,更多的熱解氣進(jìn)入MCM-41的孔道進(jìn)行脫羧基作用,使得有機(jī)相產(chǎn)物中的酸類物質(zhì)含量不斷減少。
表2 不同混合比例生物油有機(jī)相主要產(chǎn)物Table 2 Main products of bio-oil organic phase with different mixing ratios
圖4 不同ZMCM混合比例對(duì)有機(jī)相產(chǎn)物組成的影響Fig.4 Effect on composition of organic with different ZMCM mixing ratios
羰基類物質(zhì)(主要是醛酮)的反應(yīng)活性較高,當(dāng)生物油中羰基類物質(zhì)含量較高時(shí),生物油的熱穩(wěn)定性降低?;旌洗呋瘎┲蠱CM-41質(zhì)量分?jǐn)?shù)為10%時(shí),對(duì)應(yīng)生物油中羰基類物質(zhì)質(zhì)量分?jǐn)?shù)為17.31%,當(dāng)MCM-41的混合比例逐漸增加到50%時(shí),生物油中羰基類物質(zhì)的質(zhì)量分?jǐn)?shù)逐漸減小至6.35%。當(dāng)MCM-41的混合比例超過50%時(shí),隨著MCM-41混合比例的升高,生物油中羰基類物質(zhì)的質(zhì)量分?jǐn)?shù)逐漸升高至18.9%。因?yàn)殡S著混合催化劑中MCM-41質(zhì)量分?jǐn)?shù)的增加,MCM-41脫羧基作用可得到羰基類物質(zhì),HZSM-5的酸性位點(diǎn)可將羰基脫除生成烴類物質(zhì)[25],使羰基類物質(zhì)的質(zhì)量分?jǐn)?shù)降低,生物油的熱穩(wěn)定性提高。隨著MCM-41質(zhì)量分?jǐn)?shù)的繼續(xù)增加,無足量的HZSM-5將經(jīng)MCM-41脫羧基得到的羰基物質(zhì)芳構(gòu)化成烴類物質(zhì),使得生物油中的羰基類物質(zhì)持續(xù)增加。
2.4 HZSM-5和MCM-41混合比例對(duì)催化劑活性的影響
對(duì)催化熱解前后混合催化劑的比表面積和孔容進(jìn)行測(cè)定,并對(duì)使用前后混合催化劑孔容和比表面積的變化率進(jìn)行計(jì)算,結(jié)果如表3所示。由表3可知,當(dāng)混合催化劑中MCM-41的質(zhì)量分?jǐn)?shù)低于50%時(shí),隨著MCM-41質(zhì)量分?jǐn)?shù)的增加,催化前后的混合催化劑的孔容和比表面積的變化率均持續(xù)減小,當(dāng)MCM-41的質(zhì)量分?jǐn)?shù)超過50%時(shí),催化前后的混合催化劑的孔容和比表面積的變化率分別穩(wěn)定在37%和42%左右。當(dāng)混合催化劑中MCM-41質(zhì)量分?jǐn)?shù)低于50%時(shí),隨著混合催化劑中MCM-41質(zhì)量分?jǐn)?shù)的增加,沉積在HZSM-5表面的焦炭逐漸減少,催化劑的孔容和比表面積的變化率也逐漸降低,混合催化劑的吸附能力和催化活性隨之提高[26]。當(dāng)MCM-41質(zhì)量分?jǐn)?shù)高于50%后,MCM-41允許更多的大分子進(jìn)入孔道,并在催化重整后退出孔道[27],生成的焦炭較少,且不同混合比例的催化劑中均有足量MCM-41將大分子裂解成小分子,HZSM-5表面焦炭沉積和孔道堵塞現(xiàn)象均較少發(fā)生,使得催化前后混合催化劑的孔容和表面積的變化率也趨于穩(wěn)定,催化劑活性也趨于穩(wěn)定。
表3 催化熱解前后的表面物理參數(shù)
Table 3 Surface physical parameters of with different mixing ratios before and after catalytic pyrolysis
孔容Pore volume/(cm3·g-1) 比表面積Specific surface area/(m2·g-1)樣品Samples 催化前Before catalytic催化后After catalytic變化率Change rate/%催化前Before催化后After catalytic變化率Change rate/% HZSM-5 0.20 0.11 45 342 79.12 76.87 ZMCM-10%0.28 0.16 42.86 435.43 167.89 61.44 ZMCM-30%0.33 0.20 39.40 503.25 223.72 55.54 ZMCM-50%0.43 0.27 37.20 561.41 322.98 42.46 ZMCM-70%0.56 0.35 37.50 723.14 416.42 42.44 ZMCM-90%0.59 0.37 37.29 752.46 435.54 42.12 MCM-410.65 0.41 36.90 791 464.35 41.3
2.5 MCM-41和HZSM-5混合比例對(duì)催化裂解反應(yīng)途徑的影響
HZSM-5和MCM-41催化熱解油菜秸稈的催化反應(yīng)路徑如圖5所示。由圖5可見,催化熱解過程主要分為真空熱解以及催化提質(zhì)過程。真空熱解過程中,油菜秸稈受熱分解為熱解氣、水、焦炭和小分子氣體。催化提質(zhì)過程中,反應(yīng)途徑主要有以下3種:
1)熱解氣在負(fù)壓作用下直接進(jìn)入生物油收集管路經(jīng)冷凝形成生物油。
2)熱解氣在MCM-41的催化作用下,通過脫羧基、開環(huán)聚合等作用裂解為醛、酮等小分子物質(zhì)[28],這些小分子物質(zhì)一部分進(jìn)入HZSM-5孔道發(fā)生分解、脫氧以及低聚反應(yīng),通過脫羰基、脫羥基、芳構(gòu)化及脫氧作用生成烴類物質(zhì)及H2O、CO2和CO等,另一部分直接冷凝形成生物油。
3)熱解氣首先進(jìn)入HZSM-5的孔道,小分子物質(zhì)可在HZSM-5的酸性位點(diǎn)上進(jìn)行脫氫裂解、低聚、環(huán)化等反應(yīng),生成的催化裂解氣部分進(jìn)入MCM-41孔道進(jìn)行催化作用,部分直接經(jīng)冷凝后形成液相產(chǎn)物;而大量大分子物質(zhì)無法進(jìn)入HZSM-5的孔道,易在外表面形成焦炭堵塞孔道。
催化提質(zhì)過程均伴隨著這3種反應(yīng)途徑的交叉進(jìn)行。當(dāng)MCM-41質(zhì)量分?jǐn)?shù)較小時(shí),較多的熱解氣通過途徑3進(jìn)行催化反應(yīng),此時(shí)HZSM-5易結(jié)焦失活,HZSM-5脫氫、芳構(gòu)化等催化性能降低,催化劑失活后,熱解氣進(jìn)行路徑1的概率增加,熱解氣中氧不能有效脫除,生物油中氧含量升高。隨著混合催化劑中MCM-41質(zhì)量分?jǐn)?shù)的增加,熱解氣中更多的大分子物質(zhì)會(huì)先進(jìn)入MCM-41的孔道裂解為小分子,再通過HZSM-5進(jìn)行催化反應(yīng),使得HZSM-5表面的焦炭沉積現(xiàn)象減少,催化活性提高,催化提質(zhì)后的液相產(chǎn)物中含有較多的烴類物質(zhì)。當(dāng)MCM-41比例過高時(shí),更多的熱解氣經(jīng)過MCM-41的脫羧基反應(yīng)生成較多的醛、酮類含氧化合物,使得生物油有機(jī)相中氧含量增加。
圖5 油菜秸稈在HZSM-5和MCM-41上的催化裂解反應(yīng)途徑Fig.5 Catalytic cracking reaction pathway of rape straw on HZSM-5 and MCM-41
利用均勻混合HZSM-5和MCM-41催化熱解油菜秸稈制備生物油,并對(duì)有機(jī)相的理化特性及成分組成進(jìn)行分析,得到以下結(jié)論:
1)混合催化熱解得到的生物油有機(jī)相產(chǎn)率隨MCM-41質(zhì)量分?jǐn)?shù)的增加先減少后增加;ZMCM-50%催化裂解得到的生物油有機(jī)相產(chǎn)率為18.68%。
2)隨著混合催化劑中MCM-41質(zhì)量分?jǐn)?shù)的增加,生物油有機(jī)相的密度和運(yùn)動(dòng)黏度先減少后增加,高位熱值先提高后降低,ZMCM-50%催化所得生物油的高位熱值高達(dá)34.31 MJ/kg。
3)隨著混合催化劑中MCM-41質(zhì)量分?jǐn)?shù)的增加,混合催化劑對(duì)1,8-二甲基萘、對(duì)二甲苯,甲基萘等芳香烴類物質(zhì)的選擇性呈現(xiàn)先增加后減少的變化趨勢(shì)。
4)隨著混合催化劑中MCM-41質(zhì)量分?jǐn)?shù)的增加,烴類物質(zhì)的質(zhì)量分?jǐn)?shù)先增加后減少,羰基類物質(zhì)的質(zhì)量分?jǐn)?shù)先減少后增加,酸性物質(zhì)持續(xù)減少。ZMCM-50%催化制得生物油中烴類物質(zhì)含量為53.83%,羰基類物質(zhì)質(zhì)量分?jǐn)?shù)為6.35%。
5)混合催化劑中MCM-41質(zhì)量分?jǐn)?shù)小于50%時(shí),混合催化劑的催化活性隨著混合催化劑中MCM-41質(zhì)量分?jǐn)?shù)的增加而逐漸提高,當(dāng)MCM-41質(zhì)量分?jǐn)?shù)超過50%時(shí),催化活性趨于穩(wěn)定。
[1] Czernik S, Bridgwater A V. Overview of application of biomass fast pyrolysis Oil[J]. Energy&Fuels, 2004, 18(2): 590-598.
[2] Park H J, Jeon J K, Suh D J, et al. Catalytic vapor cracking for improvement of bio-Oil quality[J]. Catal Surv Asia, 2011, 15(3): 161-180.
[3] 王久臣,戴林,田宜水,等. 中國(guó)生物質(zhì)能產(chǎn)業(yè)發(fā)展現(xiàn)狀及趨勢(shì)分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2007,23(9):276-282. Wang Jiucheng, Dai Lin, Tian Yishui, et al. Analysis of the development status and trends of biomass energy industry in China[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2007, 23(9): 276282. (in Chinese with English abstract)
[4] Bertero M, Garc J R, Falco M, et al. Hydrocarbons from bio-oils: Performance of the matrix in FCC catalysts in the immediate catalytic upgrading of different raw bio-oils[J]. Waste Biomass Valo, 2016, 8(7): 267-275.
[5] Pang C H, Gaddipatti S, Tucker G, et al. Relationship between thermal behaviour of lignocellulosic components and properties of biomass[J]. Bioresource Technology, 2014, 172(2): 312-320.
[6] 朱錫鋒,鄭冀魯,郭慶祥,等. 生物質(zhì)熱解油的性質(zhì)、精制與利用[J]. 中國(guó)工程科學(xué),2005,7(9):83-88. Zhu Xifeng, Zheng Jilu, Guo Qingxiang, et al. Properties, purification and utilization of biomass pyrolysis oil[J]. Engineering Sciences, 2005, 7(9): 83-88. (in Chinese with English abstract)
[7] Vichaphund S, Aht-Ong D, Sricharoenchaikul V, et al. Effect of synthesis time on physical properties and catalytic activities of synthesized HZSM-5 on the fast pyrolysis of Jatropha waste[J]. Res Chem Intermed, 2014, 40(7): 2395–2406.
[8] Horne P A, Williams P T. Upgrading of biomass-derived pyrolysis vapours over zeolite ZSM-5 catalyst: effect of catalyst dilution on product yields[J]. Fuel, 1996, 75(9): 1043-1050.
[9] Sannaa, Rahman N A A. Conversion of Microalgae Bio-Oil Into Bio-Diesel[M]. New York: Springer International Publishing, 2015. 493-510.
[10] Li Xinbao, Zhao Yuan, Wang Shurong, et al. DFT-D2study on the adsorption of bio-oil model compounds in HZSM-5: C1–C4carboxylic acids[J]. Catal Lett, 2016, 146(10): 2015-2024.
[11] 宋薔,于鳳文,王佳,等. La/P/Ni改性分子篩催化裂解生物油模型化合物[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(1):284-289. Song Qiang, Yu Fengwen, Wang Jia, et al. Catalytic pyrolysis of bio-oil model compounds over La/P/Ni modified ZSM-5[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2016, 32(1): 284-289. (in Chinese with English abstract)
[12] Adjaye J D, Bakhshi N. Production of hydrocarbons by catalytic upgrading of a fast pyrolysis bio-oil Part Ⅱ: Comparative catalyst performance and reaction pathways[J]. Fuel Processing Technology, 1995, 45(3): 185-202.
[13] Vitolo S, Seggiania M, Fredianib P. Catalytic upgrading of pyrolytic oils over HZSM-5 zeolite: Behaviour of the catalyst when used in repeated upgrading-regenerating cycles[J]. Fuel, 2001, 80(1): 17-26.
[14] 鮑衛(wèi)仁,薛曉麗,曹青,等. MCM-41/SBA-15中孔分子篩對(duì)生物質(zhì)熱解油的催化裂解研究[J]. 燃料化學(xué)學(xué)報(bào),2006,34(6):675-679. Bao Weiren, Xue Xiaoli, Cao Qin, et al. Study on catalytic pyrolysis of biomass pyrolysis oil by mesoporous molecular sieve MCM-41/SBA-15[J]. Journal of Fuel Chemistry and Technology, 2006, 34(6): 675-679. (in Chinese with English abstract)
[15] 劉莎,蔡憶昔,樊永勝,等. HZSM-5/MCM-41協(xié)同催化對(duì)油菜秸稈熱解的影響[J]. 燃料化學(xué)學(xué)報(bào),2016,44(10): 1195-1202.Liu Sha, CaiYixi, Fan Yongsheng, et al. Synergistic catalysis of MCM-41 and HZSM-5 on rape straw pyrolysis[J]. Journal of Fuel Chemistry and Technology, 2016, 44(10): 1195-1202. (in Chinese with English abstract)
[16] 樊永勝,蔡憶昔,李小華,等. 油菜秸稈真空熱解蒸氣在線催化提質(zhì)研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(12):234-240.Fan Yongsheng, Cai Yixi, Li Xiaohua, et al. Catalytic upgrading of pyrolytic vapors from rape straw vacuum pyrolysis[J]. Trans Chin Soc Agric Mach, 2014, 45(12): 234-240. (in Chinese with English abstract)
[17] Vaish B, Srivastava V, Singh A, et al. Exploring untapped energy potential of urban solid waste[J]. Energ Ecol Environ, 2016, 34(6): 675-679.
[18] Katikaneni S P R, Adjaye J D, Bakhshi N N. Performance of aluumino phate molecular sieve catalysts for the production of hydrocarbons from wood-derived and vegetable oil[J]. Energy & Fuels, 1995, 86(9): 1065-1078.
[19] 樊永勝,蔡憶昔,李小華,等. 真空熱解工藝對(duì)生物油產(chǎn)率的影響研究[J]. 林產(chǎn)化學(xué)與工業(yè),2014,34(1):79-85. Fan Yongsheng, Cai Yixi, Li Xiaohua, et al. Influence of process parameters on bio-oil yield by vacuum pyrolysis[J]. Chem Ind Forest Prod, 2014, 34(1): 79-85. (in Chinese with English abstract)
[20] Iliopoulou E F, Antonakou E V, Karakoulia S A. Catalytic conversation of biomass pyrolysis products by mesoporous materials: Effect of steam stability and acidity of Al-MCM-41 catalysts[J]. Chemical Engineering Journal, 2007, 134(1): 51-57.
[21] Rsdlein D, Piskorz J, Majerski P. Method of producing slow-release nitrogenous organic fertilizer from biomass: US567627-A[P]. 2007-10-14.
[22] 姜健準(zhǔn),亢宇,張明森. ZSM-5/MCM-41復(fù)合分子篩的制備及對(duì)乙醇脫水的催化活性[J]. 化工進(jìn)展,2012,31(1):112-116. Jiang Jianya, Kang Yu, Zhang Mingsen. Preparation of ZSM-5/MCM-41 composite molecular sieve and its catalytic performance on the dehydration of ethanol[J]. Chemical Industry and Engineering Progress, 2012, 31(1): 112-116. (in Chinese with English abstract)
[23] 陳軍,丁富新,張鑾,等. Zn/HZSM-5丙烷芳構(gòu)化催化劑反應(yīng)與再生過程的穩(wěn)定性[J]. 清華大學(xué)學(xué)報(bào):自然科學(xué)版,2000,40(10):36-39. Chen Jun, Ding Fuxin, Zhang Luan, et al. Stability of Zn/HZSM-5 propane aromatization catalyst in Reaction and regeneration processes[J]. Journal of Tsinghua University: Science and Technology, 2000, 40(10): 36-39. (in Chinese with English abstract)
[24] Ikura M, Mirmiran S, Stanciulescu M. Pyrolysis liquid-in-diesel oil microemulsions: U.S.A, 5820640[P]. 2003-10-13.
[25] Li Hangsheng, He Shichao, Ma Ke, et al. Micro-mesoporous composite molecular sieves H-ZSM-5/MCM-41 for methanol to dimethyl ether: Effect of SiO2/Al2O3ratio in H-ZSM-5[J]. Applied Catalysis, A General, 2013, 450(2): 152-159.
[26] Kantarelis E, Yang W, Blasiak W. Effect of zeolite to binder ratio on product yields and composition during catalytic steam pyrolysis of biomass over transition metal modified HZSM-5[J]. Fuel, 2014, 122: 119-125.
[27] Rahimpour M R, Jafari M, Iranshahi D. Progress in catalytic naphtha reforming process: A review[J]. Applied Energy, 2013, 109(2): 79-93.
[28] Na Jindan, Liu Guozhu, Zhou Tianyou, et al. Synthesis and catalytic performance of ZSM-5/MCM-41 zeolites with varying mesopore size by surfactant-directed recrystallization[J]. Catal Lett, 2013, 143(3): 267-275.
Effects of HZSM-5 and MCM-41mixing ratios on rape straw catalytic pyrolysis
Dong Liangxiu, Li Xiaohua※, Zhang Jin, Zhang Xiaolei, Hu Chao, Cai Yixi, Shao Shanshan
(School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang, 212013, China)
In recent years, the number of fossil fuels is decreasing sharply, and the harmful gases produced by fossil fuel combustion endanger human health and pollute the environment, people are devoted to looking for the alternative fuels of fossil fuels. Biomass energy is a good choice, it is renewable and clean. But the biomass was always burned directly, it is a great waste of biomass sources. In order to reduce the waste of biomass resources and protect the environment, we studied the rapid pyrolysis and catalytic cracking technology to convert the biomass to liquid fuel, which we called the liquid bio-oil. Choosing rape straw as biomass raw materials, HZSM-5 and MCM-41 were used to catalyze the rape straw pyrolysis with different mixing ratios. The experimental instruments include electronic controller, catalytic reactor, pyrolysis reactor, vacuum pump, cold trap, cooling tower, bio-oil collector and connecting pipe. The rape straws were placed in the pyrolysis reactor, the catalysts were replaced in the catalytic reactor, the vacuum pump pressure was controlled at 5kPa and the temperature of the cooling tower was set to -20 ℃. According to the physical and chemical properties, FT-IR and GC-MS analysis results of organic oil and the BET analysis results of catalysts, we studied the effect of HZSM-5 and MCM-41 mixing ratios on the quality of bio-oil. The results showed that with the increase of MCM-41 content, the yield of bio-oil organic phase decreased first and then increased. The density, oxygen content and kinematic viscosity of refined organic oil decreased first and then increased,while carbon content and calorific value increased first and then decreased, when HZSM-5 and MCM-41 were mixed with 1:1, the higher calorific value was 34.31 MJ/kg. The organic phase of refined oil showed six obvious absorption peaks, respectively, they were the absorption peaks of alcohols or phenols, aromatic compounds, acids and aldehydes, ketones, carboxylates, esters and substituted aromatic compounds. The mass fraction of aromatic hydrocarbon increased first and then decreased, while the mass fraction of carbonyl compounds showed the opposite trend, the mass fraction of acids was continuously reduced. With the increase of MCM-41 content, the catalytic activity and absorption capacity of mixed catalysts improved and tended to be stable when the mass fraction of MCM-41 was 50%. From these analysis results, we can speculate the catalytic cracking reaction mechanism of rape straw on HZSM-5 and MCM-41. Because of the large specific surface area and pore size of mesoporous molecular sieve MCM-41, most of the macromolecules in its pore channels can be decomposed into small molecules such as aldehydes, ketones and other small molecules by decarboxylation, dehydroxylation and ring-opening polymerization in the pore channels. These small molecules re-entered the pores of the microporous molecular sieve HZSM-5, and generated aromatic hydrocarbons, H2O, CO2and CO through the decarbonylation, aromatization and deoxidation, and then the oxygen content in organic phase decreased, aromatic substances content increased, the acidity reduced, so that the quality of bio-oil was improved. This study could provide the experimental basis and the theoretical basis for the efficient utilization of biomass.
straw; catalytics; pyrolysis; bio-oils; HZSM-5; MCM-41
10.11975/j.issn.1002-6819.2017.16.032
TK6
A
1002-6819(2017)-16-0241-07
董良秀,李小華,張 瑾,張小雷,胡 超,蔡憶昔,邵珊珊. HZSM-5和MCM-41分子篩催化劑比例對(duì)油菜秸稈熱解的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(16):241-247.
10.11975/j.issn.1002-6819.2017.16.032 http://www.tcsae.org Dong Liangxiu, Li Xiaohua, Zhang Jin, Zhang Xiaolei, Hu Chao, Cai Yixi, Shao Shanshan. Effects of HZSM-5 and MCM-41 mixing ratios on rape straw catalytic pyrolysis[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(16): 241-247. (in Chinese with English abstract)
doi:10.11975/j.issn.1002-6819.2017.16.032 http://www.tcsae.org
2017-01-16
2017-06-25
國(guó)家自然科學(xué)基金(51276085);江蘇省普通高校研究生科研創(chuàng)新計(jì)劃(KYLX_1039);江蘇省高校優(yōu)勢(shì)學(xué)科建設(shè)項(xiàng)目(PDPA)
董良秀,女,江蘇常州人,主要從事動(dòng)力機(jī)械燃料供給與調(diào)節(jié)的研究。鎮(zhèn)江 江蘇大學(xué)汽車與交通工程學(xué)院,212013
Email:2464740124@qq.com
※通信作者:李小華,男,博士,副教授,主要從事發(fā)動(dòng)機(jī)新能源開發(fā)及排放控制研究。鎮(zhèn)江 江蘇大學(xué)汽車與交通工程學(xué)院,212013
Email:lixiaohua@ujs.edu.cn