辛明金,陳天佑,張 強(qiáng),焦晉康,白雪衛(wèi),宋玉秋※,趙 瑞,魏 臣(. 沈陽農(nóng)業(yè)大學(xué)工程學(xué)院,沈陽 0866; . 沈陽農(nóng)業(yè)大學(xué)園藝學(xué)院,沈陽 0866;. 沈陽中光電子有限公司,沈陽 007)
含稻秸蔬菜育苗基質(zhì)塊成型工藝參數(shù)優(yōu)化
辛明金1,陳天佑1,張 強(qiáng)1,焦晉康1,白雪衛(wèi)1,宋玉秋1※,趙 瑞2,魏 臣3
(1. 沈陽農(nóng)業(yè)大學(xué)工程學(xué)院,沈陽 110866; 2. 沈陽農(nóng)業(yè)大學(xué)園藝學(xué)院,沈陽 110866;3. 沈陽中光電子有限公司,沈陽 110027)
為了確定黃瓜育苗塊成型的最優(yōu)工藝參數(shù),以育苗基質(zhì)和水稻秸稈的混合物為原料,育苗塊的抗破壞強(qiáng)度和尺寸穩(wěn)定性為成型質(zhì)量檢測指標(biāo),采用四元二次回歸通用旋轉(zhuǎn)組合試驗(yàn)設(shè)計(jì)結(jié)合響應(yīng)面法,探討了原料含水率、壓力、秸稈長度和秸稈含量對育苗塊成型的影響,建立了黃瓜育苗塊成型特性參數(shù)與各因素之間的回歸模型。綜合分析表明,各因素對育苗塊抗破壞強(qiáng)度的影響主次順序?yàn)椋簤毫?秸稈長度>含水率=秸稈含量,在交互作用中,含水率與秸稈含量、壓力與秸稈長度、秸稈長度與秸稈含量對育苗塊抗破壞強(qiáng)度的影響顯著(P<0.05);各因素對育苗塊尺寸穩(wěn)定性的影響主次順序?yàn)椋航斩捄?含水率>壓力>秸稈長度,含水率與秸稈長度的交互作用對育苗塊尺寸穩(wěn)定性的影響較顯著(P<0.05)。利用Design-Expert8.0.6軟件得出理論最優(yōu)工藝參數(shù),并考慮試驗(yàn)的可操作性,對理論最優(yōu)工藝參數(shù)進(jìn)行調(diào)整及試驗(yàn)驗(yàn)證,得到最優(yōu)工藝參數(shù):含水率為21%,壓力為4.5 kN,秸稈長度為10 mm,秸稈質(zhì)量分?jǐn)?shù)為12%,該組合條件下的育苗塊抗破壞強(qiáng)度為23.03 N,尺寸穩(wěn)定性為82.83%。分析表明,優(yōu)化后育苗塊的理化特性符合黃瓜育苗的農(nóng)藝要求。該研究可為黃瓜育苗塊成型機(jī)工藝參數(shù)優(yōu)化提供理論和實(shí)踐依據(jù)。
基質(zhì);模型;秸稈;育苗塊;抗破壞強(qiáng)度;尺寸穩(wěn)定性;響應(yīng)面法
辛明金,陳天佑,張 強(qiáng),焦晉康,白雪衛(wèi),宋玉秋,趙 瑞,魏 臣. 含稻秸蔬菜育苗基質(zhì)塊成型工藝參數(shù)優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(16):219-225. doi:10.11975/j.issn.1002-6819.2017.16.029 http://www.tcsae.org
Xin Mingjin, Chen Tianyou, Zhang Qiang, Jiao Jinkang, Bai Xuewei, Song Yuqiu, Zhao Rui, Wei Chen. Parameters optimization for molding of vegetable seedling substrate nursery block with rice straw[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(16): 219-225. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.16.029 http://www.tcsae.org
蔬菜育苗技術(shù)能提高蔬菜抗旱、抗寒、抗病蟲害能力,同時(shí)秧苗質(zhì)量高,能達(dá)到高產(chǎn)、穩(wěn)產(chǎn)的目的,而且縮短蔬菜田間生產(chǎn)期,提高土地利用率[1-3]。傳統(tǒng)育苗所使用的缽體材料為塑料、再生紙等。為免去脫缽環(huán)節(jié)、減少塑料污染及節(jié)約成本[4-8],白曉虎等[9-11]利用秸稈作為育苗缽材料,實(shí)現(xiàn)了缽苗一體栽植,秧苗不緩苗或緩苗期較短,栽植成活率高。秸稈纖維為可降解物質(zhì),入土腐爛后,育苗缽將被分解,能增加土壤有機(jī)質(zhì),改善土壤的理化特性,提高土壤肥力[12-13];同時(shí)蔬菜根系可形成一個(gè)環(huán)狀多孔性蓬松層,既可吸納、集聚雨水,又能有效改善蔬菜根系的水、氣環(huán)境。
純秸稈基質(zhì)持水孔隙小,水氣比偏低,pH值和EC值偏高,為滿足蔬菜根系對水、氣、肥等要求,缽體材料選取育苗基質(zhì)和秸稈的混合物[14-15],同時(shí)增大缽的體積,壓制成育苗塊。曹紅亮等[16]以稻草和玉米芯為調(diào)理料,牛糞為主體原料,研究了土壤添加量、原料含水率、成型壓力以及成型溫度等操作因素對基質(zhì)塊成型品質(zhì)的影響。劉洋等[17]以泥炭為原料,研究了物料裝填量、成型壓力、粒度配比和水分含量對壓制成型泥炭營養(yǎng)塊的密度和抗壓強(qiáng)度的影響。趙瑞等[18-19]利用草炭為原料,通過試驗(yàn)得出育苗基質(zhì)與黃瓜育苗塊的體積比為3:1時(shí),育苗塊的總孔隙度、通氣孔隙、持水孔隙、持水量等有利于蔬菜育苗。
成型育苗塊不僅要滿足蔬菜栽培的理化特性的要求,還應(yīng)滿足貯運(yùn)的機(jī)械強(qiáng)度要求[17]。尺寸穩(wěn)定性影響育苗塊的容重、總孔隙度等物理特性,抗破壞強(qiáng)度是衡量機(jī)械強(qiáng)度的重要指標(biāo)之一。因此,本研究以育苗基質(zhì)和水稻秸稈的混合物為原料,通過采用通用旋轉(zhuǎn)組合試驗(yàn)設(shè)計(jì)結(jié)合響應(yīng)面法分析原料含水率、壓力、秸稈長度和秸稈含量對黃瓜育苗塊抗破壞強(qiáng)度和尺寸穩(wěn)定性的影響,并優(yōu)化育苗塊的最佳工藝參數(shù)。
1.1 試驗(yàn)材料與儀器
試驗(yàn)基質(zhì)選取由沈陽凡農(nóng)園藝資材有限公司生產(chǎn)、沈陽農(nóng)業(yè)大學(xué)蔬菜種苗研發(fā)室監(jiān)制的育苗基質(zhì)(主要成分有草炭、蛭石、緩釋劑等)。主要試驗(yàn)設(shè)備有WDW-200型微機(jī)控制電子萬能試驗(yàn)機(jī)、CP423S電子天平、101-OA型數(shù)顯式電熱恒溫干燥箱、量筒、攪拌器等。
本試驗(yàn)于2016年6月期間,在沈陽農(nóng)業(yè)大學(xué)物料實(shí)驗(yàn)室內(nèi)進(jìn)行。室溫為26 ℃,空氣相對濕度為35%。
1.2 試驗(yàn)方法
1.2.1 原料含水率調(diào)節(jié)
按照含水率的“烘干法”標(biāo)準(zhǔn),利用101-OA型數(shù)顯式電熱恒溫干燥箱將育苗基質(zhì)烘干6~8 h,測定基質(zhì)的含水率并計(jì)算特定含水率下的加水量。使用針管和量筒加水,并用玻璃棒進(jìn)行攪拌。根據(jù)試驗(yàn)要求配制不同含水率的材料,用打碎機(jī)將其攪拌均勻并密封保存48 h,使水分均勻。
1.2.2 壓制工藝
利用WDW-200型微機(jī)控制電子萬能試驗(yàn)機(jī)控制壓力(如圖1所示),設(shè)置加載的速度為50 mm/min,保壓時(shí)間為10 s,測試速度為10 mm/min[18-19]。壓制育苗塊前,在工作筒內(nèi)添加50 g育苗基質(zhì),操作WDW-200型微機(jī)控制電子萬能試驗(yàn)機(jī),使工作橫梁帶動壓頭向下運(yùn)動,工作筒內(nèi)的育苗基質(zhì)和秸稈混合物被壓制成育苗塊,預(yù)計(jì)尺寸穩(wěn)定性為85%。根據(jù)壓制黃瓜育苗塊的壓縮比要求(3:1),調(diào)整壓縮比為60:17[18-19]。壓制完成后,手動去掉插板,將育苗塊推出進(jìn)行下一循環(huán)。壓制后的育苗塊如圖2所示。
圖1 育苗塊成型試驗(yàn)系統(tǒng)Fig.1 Experimental system for seedling nursery block densification
圖2 育苗塊Fig.2 Seedling nursery block
1.2.3 成型質(zhì)量檢測指標(biāo)
1)抗破壞強(qiáng)度的測定
根據(jù)預(yù)試驗(yàn),選定試驗(yàn)機(jī)的量程為0~30 mm。試驗(yàn)先執(zhí)行加載程序,育苗塊從與橫梁上的上壓板接觸到完全破壞后,系統(tǒng)自動卸載,試驗(yàn)結(jié)束。育苗塊變形(壓頭位移)與育苗塊受力關(guān)系曲線由電腦自動記錄并保存(圖3)。當(dāng)育苗塊被破碎時(shí),作用力曲線有一個(gè)峰值,這個(gè)峰值作為育苗塊的抗破壞強(qiáng)度。
圖3 測試力與位移曲線Fig.3 Force-displacement curve
2)尺寸穩(wěn)定性的測定
壓制成型后,測量并記錄壓縮成型炭塊的高度,計(jì)算其體積。放置48 h后,再次測量其直徑和高度,計(jì)算其體積,根據(jù)公式(1)計(jì)算育苗塊尺寸穩(wěn)定性[20]。
式中DS為育苗塊尺寸穩(wěn)定性,%;Vt為壓制后48 h的育苗塊的體積,m3;V0為育苗塊成型體積,m3。
1.2.4 試驗(yàn)設(shè)計(jì)
在單因素試驗(yàn)的基礎(chǔ)上,選取育苗基質(zhì)含水率X1、壓力X2、秸稈長度X3、秸稈含量X4為變量,以48 h后育苗塊抗破壞強(qiáng)度Y1和尺寸穩(wěn)定性Y2為育苗塊成型特性的衡量指標(biāo),采用四元二次回歸通用旋轉(zhuǎn)組合設(shè)計(jì),將各因素按其水平及取值范圍進(jìn)行編碼,得到因素水平表,如表1所示。結(jié)合響應(yīng)面分析法,進(jìn)行回歸方程擬合度檢驗(yàn)和顯著性檢驗(yàn),建立育苗塊成型特性的回歸模型,根據(jù)擬合模型繪制的響應(yīng)面分析各因素及交互作用對成型特性的影響規(guī)律。
表1 試驗(yàn)因素水平編碼表Table 1 Coding of factors and levels
1.2.5 綜合優(yōu)化與試驗(yàn)驗(yàn)證
抗破壞強(qiáng)度直接影響育苗塊運(yùn)輸和搬運(yùn)過程中的破損率;尺寸穩(wěn)定性影響育苗塊的容重、總孔隙度等物理特性。綜合分析成型指標(biāo)對育苗塊運(yùn)輸和后續(xù)利用的重要性,規(guī)定抗破壞強(qiáng)度和尺寸穩(wěn)定性的權(quán)重系數(shù)均為0.5[21]。利用Design-Expert 8.0.6軟件進(jìn)行多目標(biāo)優(yōu)化,得出最佳條件??紤]試驗(yàn)的操作性,對優(yōu)化后的最佳條件進(jìn)行調(diào)整,利用調(diào)整后的最佳條件對育苗塊抗破壞強(qiáng)度和尺寸穩(wěn)定性進(jìn)行驗(yàn)證,重復(fù)試驗(yàn)3次,結(jié)果取平均值。
1.2.6 育苗塊理化特性測定方法
1)容重、總孔隙度和通氣空隙測定。
利用環(huán)割法測定育苗塊的容重[19]??偪紫抖群屯饪障稖y定參照郭世榮[22]的方法。按公式(2)和(3)計(jì)算育苗塊的總孔隙度和通氣空隙。
式中TP為育苗塊的總孔隙度,%;AFP為育苗塊的通氣空隙度,%;W1為量杯和待測育苗塊的總質(zhì)量,g;W2為飽和水下育苗塊和量杯的總質(zhì)量,g;W3為濕紗布的質(zhì)量,g;W4為自由瀝干的育苗塊質(zhì)量,g;V為量杯的體積,mL。
2)pH值及EC值測定
基質(zhì)EC值、pH值采用飽和浸提法進(jìn)行測定[23]。用蒸餾水飽和浸提基質(zhì),澄清濾液用便攜式水質(zhì)電導(dǎo)率土壤鹽度測定儀(HI993310,意大利哈納儀器公司)測定EC值,手持酸堿度/溫度測定儀(Model IQ150)測定pH值。
采用四元二次回歸通用旋轉(zhuǎn)組合試驗(yàn),結(jié)果見表2,并采用Design-Expert 8.0.6軟件對試驗(yàn)結(jié)果進(jìn)行分析。
2.1 回歸方程的建立與顯著性分析
2.1.1 抗破壞強(qiáng)度回歸模型建立與顯著性分析
對育苗塊成型48 h后的抗破壞強(qiáng)度進(jìn)行回歸分析,求得四元二次回歸方程為
在α=0.05顯著水平下,對上述回歸的方程進(jìn)行顯著性檢驗(yàn)與方差分析,分析結(jié)果見表3。
回歸方程模型F=10.19>F0.01(14,16)=3.45,P<0.000 1,回歸是極顯著的;復(fù)相關(guān)指數(shù)R2=0.90,表明約有90%抗破壞強(qiáng)度的變化可以用模型解釋;失擬F=1.68
表2 四因素二次通用旋轉(zhuǎn)組合試驗(yàn)設(shè)計(jì)及結(jié)果Table 2 Experimental design and results of second general combination of rotating design
表3 抗破壞強(qiáng)度回歸方程的方差分析Table 3 Variance analysis of regress equation of breaking strength
2.1.2 尺寸穩(wěn)定性回歸模型建立與顯著性分析
對育苗塊成型48 h后的尺寸穩(wěn)定性進(jìn)行回歸分析,求得四元二次回歸方程為
在α=0.05顯著水平下,對上述回歸的方程進(jìn)行顯著性檢驗(yàn)與方差分析,分析結(jié)果見表4。
表4 尺寸穩(wěn)定性回歸方程的方差分析表Table 4 Variance analysis of regress equation of dimension stability
回歸方程模型F=5.71>F0.01(9.10)=4.95,P=0.000 7,回歸是極顯著的;復(fù)相關(guān)指數(shù)R2=0.84,表明約有84%尺寸穩(wěn)定性的變化可以用模型解釋;失擬F=3.87
2.2 因素的響應(yīng)面效應(yīng)分析及優(yōu)化結(jié)果
對表2中的試驗(yàn)結(jié)果進(jìn)行響應(yīng)面分析,各因素對育苗塊抗破壞強(qiáng)度的影響結(jié)果如圖4所示,對育苗塊尺寸穩(wěn)定性的影響結(jié)果如圖5所示。
圖4 各因素對育苗塊抗破壞強(qiáng)度的影響Fig.4 Effect of each factors on breaking strength of seedling nursery block
圖5 含水率和秸稈長度對育苗塊尺寸穩(wěn)定性的影響Fig.5 Effect of moisture content and straw length on dimension stability of seedling nursery block
2.2.1 抗破壞強(qiáng)度的響應(yīng)面分析及優(yōu)化結(jié)果
由圖4a可知,壓力為4 kN、秸稈長度為15 mm時(shí),當(dāng)含水率一定,隨著秸稈含量的增加,育苗塊的抗破壞強(qiáng)度增大,達(dá)到最大值后,隨著秸稈含量的增加,抗破壞強(qiáng)度減??;當(dāng)秸稈含量一定時(shí),育苗塊抗破壞強(qiáng)度隨含水率的增加先增大后減小。由圖4b可知,含水率為22%、秸稈質(zhì)量分?jǐn)?shù)為12%、壓力一定時(shí),隨著秸稈長度的增大,育苗塊抗破壞強(qiáng)度先增大后減小;秸稈長度一定時(shí),育苗塊抗破壞強(qiáng)度隨壓力的增大而增大。由圖4c可知,含水率為22%、壓力為4 kN,當(dāng)秸稈長度一定時(shí),隨著秸稈含量的增加,育苗塊的抗破壞強(qiáng)度增大,達(dá)到最大值后,隨著秸稈含量增加,抗破壞強(qiáng)度減??;秸稈含量一定,隨著秸稈長度的增加,育苗塊的抗破壞強(qiáng)度先增大后減小。根據(jù)多元函數(shù)極值理論,對育苗塊抗破壞強(qiáng)度回歸模型方程求偏導(dǎo),得到最佳工藝條件:含水率為22.74%,壓力為4.5 kN、秸稈長度為12.24 mm、秸稈質(zhì)量分?jǐn)?shù)為11.25%時(shí),預(yù)測育苗塊抗破壞強(qiáng)度為24.40 N。
2.2.2 尺寸穩(wěn)定性的響應(yīng)面分析及優(yōu)化結(jié)果
由圖5可知,壓力為4 kN、秸稈質(zhì)量分?jǐn)?shù)為12%,當(dāng)秸稈長度一定時(shí),隨著含水率的增加,育苗塊的尺寸穩(wěn)定性增大,達(dá)到最大值后,隨著含水率的增加,抗破壞強(qiáng)度減??;當(dāng)含水率一定時(shí),隨著秸稈長度的增加,育苗塊的尺寸穩(wěn)定性先減小后增大。其他因素交互作用對育苗塊尺寸穩(wěn)定性影響不顯著。根據(jù)多元函數(shù)極值理論,對育苗塊尺寸穩(wěn)定性回歸模型方程求偏導(dǎo),得到最佳工藝條件:含水率為20.05%、壓力為4.18 kN、秸稈長度為10 mm、秸稈為10%時(shí),預(yù)測育苗塊尺寸穩(wěn)定性為80%。
2.3 綜合優(yōu)化及驗(yàn)證試驗(yàn)
以育苗塊的抗破壞強(qiáng)度和尺寸穩(wěn)定性為響應(yīng)值,利用Design-Expert8.0.6軟件中的優(yōu)化程序設(shè)定抗破壞強(qiáng)度和尺寸穩(wěn)定性的目標(biāo)(Goal)參數(shù)均為maximize,權(quán)重(Weight)參數(shù)均為0.5,得到育苗塊成型的最優(yōu)工藝參數(shù):含水率為20.78%,壓力為4.5 kN,秸稈長度為10 mm,秸稈質(zhì)量分?jǐn)?shù)為11.55%,模型的預(yù)測值抗破壞強(qiáng)度為22.82 N,尺寸穩(wěn)定性為83.13%??紤]到試驗(yàn)的操作性,對優(yōu)化條件進(jìn)行調(diào)整:優(yōu)化條件為含水率為21%,壓力為4.5 kN,秸稈長度為10 mm,秸稈質(zhì)量分?jǐn)?shù)為12%。試驗(yàn)重復(fù)3次,育苗塊抗破壞強(qiáng)度分別為23.12、22.91、23.06 N,結(jié)果取平均值23.03 N,與預(yù)測值22.82 N相接近;育苗尺寸穩(wěn)定性分別為82.8%、83.1%、82.6%,結(jié)果取平均值82.83%,與預(yù)測值83.13%相接近。兩者誤差分別為0.9%和0.4%,說明二項(xiàng)式優(yōu)化的區(qū)域與設(shè)計(jì)目的相符,響應(yīng)面模型與試驗(yàn)設(shè)計(jì)具有可靠性和重現(xiàn)性。
在抗破壞強(qiáng)度和尺寸穩(wěn)定性權(quán)重均為0.5時(shí),優(yōu)化后的育苗塊抗破壞強(qiáng)度達(dá)到最大;育苗基質(zhì)與育苗塊的體積之比為3.01,接近目標(biāo)值3,誤差僅為0.3%。其參數(shù)符合黃瓜育苗要求,同時(shí)具有較好的機(jī)械強(qiáng)度[18-19]。
2.4 優(yōu)化后育苗塊理化特性分析
基質(zhì)的理化性狀(容重、孔隙度、通氣孔隙、pH值、EC值等)與黃瓜幼苗的生長發(fā)育和幼苗質(zhì)量密切相關(guān),并影響到后期的長勢和產(chǎn)量,本試驗(yàn)最佳成型工藝條件下育苗塊的理化特性如表5所示。
表5 育苗塊理化特性Table 5 Physical and chemical properties of seedling nursery block
育苗塊的物理性質(zhì)由固液氣三相決定,容重和孔隙度常用于衡量育苗塊物理結(jié)構(gòu)的好壞。育苗塊的容重影響其機(jī)械性能,容重越大,機(jī)械性能越好,但通透性變差,從而抑制水、肥、熱、氣的輸運(yùn),不利于幼苗的生長發(fā)育;總孔隙度影響土壤的通透性,總孔隙度大,有利于作物根系生長,但固定作用差;通氣孔隙影響保水性能,通氣孔隙過大,保水性能差。艾冬冬等[19,24-25]認(rèn)為黃瓜育苗基質(zhì)的容重應(yīng)在0.1~0.85 g/cm3,總孔隙度應(yīng)60%以上,通氣孔隙度在15%以上,持水孔隙度在45%以上,通氣孔隙與持水孔隙比應(yīng)接近1。由表5可知,優(yōu)化后育苗塊容重為0.43 g/cm3,總孔隙度為73.31%,通氣孔度為32.6%,通氣孔隙與持水孔隙比為1:1.25,均符合黃瓜育苗要求,適宜黃瓜出苗和幼苗的生長。
基質(zhì)pH值影響幼苗對水分和礦質(zhì)元素的吸收;電導(dǎo)率(EC)的高低是制約有機(jī)廢棄物用于育苗或栽培基質(zhì)的主要因子[26]。崔秀敏等[27-29]認(rèn)為育苗基質(zhì)的pH值的最優(yōu)范圍為5.8~7.0。方金等[30]認(rèn)為黃瓜育苗基質(zhì)的EC值最好小于2.6 ms/cm;李謙盛等[23]認(rèn)為使用飽和浸提法測得的EC值在0.76~2 mS/cm范圍內(nèi)適合作物育苗。由表5可知,優(yōu)化后育苗塊的pH值為6.3,EC值為1.76 mS/cm,兩者均在合理的范圍內(nèi),適合于黃瓜種子萌發(fā)和幼苗生長。
上述分析結(jié)果表明,優(yōu)化后育苗塊的理化特性符合黃瓜育苗的農(nóng)藝要求。
1)進(jìn)行了二次通用旋轉(zhuǎn)組合試驗(yàn),建立了蔬菜育苗塊成型特性的2個(gè)回歸方程,并通過方差分析,對各回歸模型進(jìn)行了擬合度和顯著性檢驗(yàn)。
2)各因素對蔬菜育苗塊抗破壞強(qiáng)度的影響主次順序?yàn)椋簤毫?秸稈長度>含水率=秸稈含量,在交互作用中,含水率與秸稈含量、壓力與秸稈長度、秸稈長度與秸稈含量對抗破壞強(qiáng)度的影響顯著(P<0.05);對蔬菜育苗塊尺寸穩(wěn)定性的影響主次順序?yàn)椋航斩捄?含水率>壓力>秸稈長度,含水率與秸稈長度的交互作用對尺寸穩(wěn)定性的影響較顯著(P<0.05)。
3)利用Design-Expert8.0.6軟件得出最優(yōu)工藝條件,并考慮試驗(yàn)的可操作性,調(diào)整最佳工藝條件并進(jìn)行試驗(yàn)驗(yàn)證,得到最佳工藝參數(shù):含水率為21%,壓力為4.5 kN,秸稈長度為10 mm,秸稈質(zhì)量分?jǐn)?shù)為12%,育苗塊抗破壞強(qiáng)度為23.03 N,尺寸穩(wěn)定性為82.83%。根據(jù)討論分析,優(yōu)化后育苗塊的理化特性符合黃瓜育苗的農(nóng)藝要求。
[1] 閘建文,孫鵬,宋景玲,等. 機(jī)械化制營養(yǎng)缽工藝的研究[J].農(nóng)業(yè)工程學(xué)報(bào),1999,15(1):105-108. Zha Jianwen, Sun Peng, Song Jingling, et al. Study on technology of mechanized bowl-making[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 1999, 15(1): 105-108. (in Chinese with English abstract)
[2] 郭孟報(bào),楊明金,劉斌,等. 我國蔬菜育苗產(chǎn)業(yè)現(xiàn)狀及發(fā)展動態(tài)[J]. 農(nóng)機(jī)化研究,2015(1):250-253. Gu Mengbao, Yang Mingjin, Liu Bin, et al. Status and development trend of vegetable seedling industry in China[J]. Journal of Agriculture Mechanization, 2015(1): 250-253. (in Chinese with English abstract)
[3] 趙瑞. 營養(yǎng)環(huán)境對果菜育苗質(zhì)量和生理變化的影響[D].沈陽: 沈陽農(nóng)業(yè)大學(xué),2001. Zhao Rui. Study on Quality of Fruit Vegetable Seedling and Physiological Variation Treated with Nutrient Environment[D]. Shenyang: Shenyang Agricultural University, 2001. (in Chinese with English abstract)
[4] Kristensen E F, Kristensen J K. Development and test of small scale batch fired straw boilers in Denmark[J]. Biomass and Bioenergy, 2004, 26: 561-569.
[5] Woc S, Wiltshire C W, Langdon J E, et al. Effects of cultivation techniques and methods of straw disposal on predation by Pterostichusmelanarius (Coleoptera: Carabidae) upon slugs (Gastropoda:Pulmonata) in an arable field[J]. Journal of Applied Ecology, 1996, 33(4): 741-753.
[6] Baniya B K,Tiwari R K,Chaudhary P, et al. Planting Materials seed systems of finger millet, rice and taro in Jumla, Kaski and Bara districts of Nepal[J]. Nepal Agric Res J, 2005(6): 39-48.
[7] 王君玲,高玉芝,尹維達(dá). 秸稈類型對秸稈育苗缽成型質(zhì)量的影響[J]. 沈陽農(nóng)業(yè)大學(xué)學(xué)報(bào),2010,41(3):357-359. Wang Junling, Gao Yuzhi, Yin Weida, et al. Experimental study on extrusion moulding quality of nursingcontainer made from different kinds of straw[J]. Journal of Shenyang Agricultural University, 2010,41(3):357-359.(in Chinese with English abstract)
[8] 徐永剛,馬強(qiáng),周樺,等. 秸稈還田與深松對土壤理化性狀和玉米產(chǎn)量的影響[J]. 土壤通報(bào),2015(2):428-432. Xu Yonggang, Ma Qiang, Zhou Hua, et al. Effects of straw returning and deep loosening on soil physical and chemical properties and maize yields[J]. Chinese Journal of Soil Science, 2015(2): 428-432. (in Chinese with English abstract)
[9] 白曉虎,李芳,張祖立,等. 農(nóng)作物秸稈擠壓成型育苗容器的研究進(jìn)展[J]. 農(nóng)機(jī)化研究,2007(5):225-227. Bai Xiaohu, Li Fang, Zhang Zuli, et al. Review of research on the corp straw-extruded seedling container[J]. Journal of Agriculture Mechanization, 2007(5): 225-227. (in Chinese with English abstract)
[10] 陳中玉. 秸稈原料熱壓成型育苗缽試驗(yàn)研究[D]. 沈陽:沈陽農(nóng)業(yè)大學(xué),2007. Chen Zhongyu. Experiments of Extrusion Hot Moulding With Straw[D]. Shenyang: Shenyang Agricultural University, 2007. (in Chinese with English abstract)
[11] 張志軍,王慧杰,李會珍. 秸稈育苗缽質(zhì)量和性能影響因素及成本分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(10):83-87. Zhang Zhijun, Wang Huijie, Li Huizhen, et al. Influence factors on quality and properties of straw blocks and cost analyses[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(10): 428-432. (in Chinese with English abstract)
[12] 時(shí)連輝,韓國華,張志國, 等. 秸稈腐解物覆蓋對園林土壤理化性質(zhì)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2010,26(1): 113-117. Shi Lianhui, Han Guohua, Zhang Zhiguo, et al. Effect of mulching with straw composts on soil properties of landscape[J]. Transaction of the Chinese Society of Agriculture Engineering (Transactions of the CSAE), 2010,26(1): 113-117.(in Chinese with English abstract)
[13] 孫容國,韋武思,王定勇. 秸稈-膨潤土-PAM改良材料對砂質(zhì)土壤飽和導(dǎo)水率的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(1): 89-93. Sun Rongguo, Wei Wusi, Wang Dingyong. Effect of straw-bentonite-PAM improved material on the saturated hydraulic conductivity of sandy soil[J]. Transaction of the Chinese Society of Agriculture Engineering (Transactions of the CSAE), 2011, 27(1): 89-93.(in Chinese with English abstract)
[14] 蘇麗影. 玉米秸稈混合基質(zhì)在蔬菜穴盤魚苗中應(yīng)用研究[D].長春: 吉林農(nóng)業(yè)大學(xué),2013. Su Liying. Study on the Application of Corn Stalk Compand Subtract in Vegetable Seeding[D]. Changchun: Jiling Agricultural University, 2007. (in Chinese with English abstract)
[15] 范如芹,羅佳,嚴(yán)少,等. 農(nóng)作物秸稈基質(zhì)化利用技術(shù)研究進(jìn)展[J]. 生態(tài)與農(nóng)村環(huán)境學(xué)報(bào),2016,32(3):410-416. Fan Ruqin, Luo Jia, Yan Shao, et al. Progress in study on utilization of crop straw in soilless culture[J]. Journal of Ecology and rural environment, 2016, 32(3): 410-416. (in Chinese with English abstract)
[16] 曹紅亮,楊龍?jiān)?,袁巧霞,? 稻草、玉米芯調(diào)理牛糞堆肥成型育苗基質(zhì)試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(3):197-202. Cao Hongliang, Yang Longyuan,Yuan Qiaoxia, et al. Experimental research of seedling substrate compressed of cattle manures[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(3): 197-202. (in Chinese with English abstract)
[17] 劉洋,樊濤,曲振興,等. 泥炭營養(yǎng)塊壓制成型的試驗(yàn)研究[J]. 林業(yè)機(jī)械與木工設(shè)備,2014,42(5):10-12. Liu Yang, Fan Tao, Qu Zhenxing, et al. Experimental study on nutritious peat block press molding[J]. Forestry Machinery &Woodworking Equipment, 2014, 42(5):10-12. (in Chinese with English abstract)
[18] 趙瑞,韓旭,辛明金,等. 蔬菜育苗塊成型工藝及成型機(jī)的研制[J]. 農(nóng)機(jī)化研究,2010,32(4):78-80. Zhao Rui, Han Xu, Xin Mingjin, et al. The manufacture of vegetable seedling block formation technology & formation machine[J]. Journal of Agriculture Mechanization, 2010, 32(4): 78-80. (in Chinese with English abstract)
[19] 艾冬冬,趙瑞,陳俊琴,等. 不同壓縮比對育苗塊物理性質(zhì)及黃瓜幼苗質(zhì)量的影響[J]. 河南農(nóng)業(yè)大學(xué)學(xué)報(bào),2009,43(4):382-384. Ai Dongdong, Zhao Rui, Chen Junqin, et al. Effect of different compression ratio on the physical character of the seedling block and seedling quality of cucumber[J]. Journal of Henan Agricultural University, 2009, 43(4): 382-384. (in Chinese with English abstract)
[20] 陳天佑,孟軍,辛明金,等. 玉米秸稈生物炭成型特性研究[J]. 沈陽農(nóng)業(yè)大學(xué)學(xué)報(bào),2016,47(6):728-733. Chen Tianyou, Meng Jun, Xin Mingjin, et al. Compaction behavior of biochar from corn stalk[J]. Journal of Shenyang Agricultural University, 2016, 47(6): 728-733. (in Chinese with English abstract)
[21] 王暉,陳麗,陳墾,等. 多指標(biāo)綜合評價(jià)方法及權(quán)重系數(shù)的選擇[J]. 廣東藥學(xué)院學(xué)報(bào),2007,23(5):583-589. Wang Hui, Chen Li, Chen Ken, et al. Multi-index evaluation method and the choice of weight coefficient[J]. Journal of Guang Dong College of Pharmacy, 2007, 23(5): 583-589. (in Chinese with English abstract)
[22] 郭世榮. 無土栽培學(xué)[M]. 北京:中國農(nóng)業(yè)出版社,2003.
[23] 李謙盛,郭世榮,李式軍. 基質(zhì)EC值與作物生長的關(guān)系及測定方法比較[J]. 中國蔬菜,2004(1):70-71.Li Qianshen, Guo Shirong, Li Shijun. The relationship between EC value of substrate and crop growth and the comparison of measured methods[J]. Chinese Vegetables, 2004(1): 70-71. (in Chinese with English abstract)
[24] Abad M, Noguera P, Bures S. National inventory of organic wastes for use as growing media for ornamental potted plant production: A case study in Spain[J]. Bio-resource Technology, 2001, 77(2): 197-200.
[25] 程斐,張文靜,孫令強(qiáng). 棉籽殼菇渣復(fù)配基質(zhì)理化性質(zhì)分析及其對黃瓜幼苗的影響[J]. 中國瓜菜,2016,29(12):41-44. Cheng Fei, Zhang Wenjing, Sun Lingqiang. Chemical and physical property of compounded substrate by cottonseedhull mushroom residue and its effects on cucumber seedlings[J]. Chinese Cucurbits and Vegetables, 2016, 29(12): 41-44. (in Chinese with English abstract)
[26] Garcia G A, Bernal M P, Roig A.Growth of ornamental plants in two composts prepared from agroindustrial wastes[J]. Bioresource Technology, 2002, 83: 81-87.
[27] 崔秀敏,王秀峰. 蔬菜育苗基質(zhì)及其研究進(jìn)展[J]. 天津農(nóng)業(yè)科學(xué),2001,7(1):37-42. Cui Xiumin, Wang Xiufeng. Vegetable seedling substrates and their research progress[J]. Tianjin Agricultural Sciences, 2001, 7(1): 37-42. (in Chinese with English abstract)
[28] Kaudal B B, Chen Deli, Madhavan D B. An examination of physical and chemical properties of urban biochar for use as growing media substrate[J]. Biomass & Bioenergy, 2016, 84: 49-58.
[29] Garcia-gomez A, Bernal M P, Roig A. Growth of ornamental plants in two composts prepared from agroindustrial wastes[J]. Bioresource Technology, 2002, 83(1): 81-87.
[30] 方金,王斌,郭世榮. 黃瓜育苗海藻渣基質(zhì)配方研究[J].沈陽農(nóng)業(yè)大學(xué)學(xué)報(bào),2013,44(5):622-627. Fang Jin, Wang Bin, Guo Shirong. Use of seaweed slag as growing media for cucumber seedlings[J]. Journal of Shenyang Agricultural University, 2013, 44(5): 622-627. (in Chinese with English abstract)
Parameters optimization for molding of vegetable seedling substrate nursery block with rice straw
Xin Mingjin1, Chen Tianyou1, Zhang Qiang1, Jiao Jinkang1, Bai Xuewei1, Song Yuqiu1※, Zhao Rui2, Wei Chen3
(1. College of Engineering, Shenyang Agricultural University, Shenyang 110866, China; 2. College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China; 3. Kodenshi Sy Corp., Shenyang 110027, China)
Raising vegetable seedling with growing substrate nursery block is an effective way to utilize agricultural byproduct, reduce use of plastic pot which may pollute the environment and realize the optimal treatment of the growing media favorable for the growth of the seedlings. For the technology, the growing media is compacted and molded into nursery blocks; seeds are planted into the block in greenhouse; and seedlings with blocks are transplanted without the process of removing the plastic pot of traditional seedling raising at transplanting. Breaking strength and dimensional stability of the molded block are critical for the delivery and seedling production process and they affect the mechanical properties of the block as well, such as the density, and the porosity. And the parameters will affect the germination, emergence and growth of the crop seedlings. The compression ratio was determined as 3:1 according to previous studies. A mold was developed and equipped on a WDW-200 type computer-controlled electrical testing machine to compress the block according to horticultural requirement. The tested materials was the mixture of rice straw and growing substrate whose principal components were peat, vermiculite and other nutrients demanded for plant growing, which was produced by Shenyang Fannong Horticultural Materials Co. Ltd. and supervised by Seedling Developing Room of Horticulture College, Shenyang Agricultural University. Quadratic regression general rotary combined experiments of 4 factors were carried out, and by means of surface response methodology, the effects of moisture content, pressure, straw length and straw content on breaking strength and dimensional stability of the manufactured substrate block were investigated, and the regression models were set up. The fitting degree and significance of the regression model were tested through the analysis of variance. The results showed that the significance of the factors for breaking strength of the block was: pressure > straw length > moisture content = straw content; the interactions between moisture content and straw content, between pressure and straw length, and between straw length and straw content on breaking strength of the block were all significant (P<0.05); the influence of the factors on dimensional stability of the seedling nursery blocks was: content of straw > moisture content > pressure > straw length; the interaction of moisture content and straw length was significant for dimensional stability of the block (P<0.05). The optimal theoretical process parameters were obtained with Design-Expert 8.0.6. The optimal values of the factors were adjusted according to the operability and verification experiment results. The final optimal process parameters were determined as follows: moisture content of 21%, pressure of 4.5 N, straw length of 10 mm and straw content of 12%. The corresponding breaking strength and dimension stability of the block were 23.03 N and 82.83% respectively. The parameters of physical and chemical properties of the optimized seedling block were determined as follows: bulk density of 0.43 g/cm3, total porosity of 73.31%, aeration porosity of 32.6%, EC value of 1.76 mS/cm and pH value of 6.3. The analysis showed that the optimized parameters could meet the demand of physical and chemical requirement of vegetable seedling raising according to the relevant literature. The study may provide theoretical basis for process parameters optimization and machine development of vegetable seedling nursery block molding.
substrate; models; straws; seedling nursery block; breaking strength; dimensional stability; surface response methodology
10.11975/j.issn.1002-6819.2017.16.029
文獻(xiàn)標(biāo)志碼:A 文章編號:1002-6819(2017)-16-0219-07
2017-03-21
2017-06-05
國家自然科學(xué)基金項(xiàng)目(51405311)
辛明金,教授,碩士生導(dǎo)師,主要從事水稻生產(chǎn)機(jī)械化技術(shù)及裝備研究。沈陽 沈陽農(nóng)業(yè)大學(xué)工程學(xué)院,110866。Email:xinmj2005@163.com※通信作者:宋玉秋,副教授,碩士生導(dǎo)師,主要從事水稻生產(chǎn)機(jī)械化技術(shù)及裝備研究。沈陽 沈陽農(nóng)業(yè)大學(xué)工程學(xué)院,110866。
Email:songyuqiusyau@sina.com