賀旭,嚴(yán)小新,潘愛(ài)華,劉英飛, 李建平
(1益陽(yáng)醫(yī)學(xué)高等??茖W(xué)校解剖教研室,益陽(yáng) 413000;2中南大學(xué)基礎(chǔ)醫(yī)學(xué)院人體解剖與神經(jīng)生物學(xué)系,長(zhǎng)沙 410013;3益陽(yáng)醫(yī)學(xué)高等專科學(xué)校附屬醫(yī)院第一內(nèi)科,益陽(yáng) 413000;4遵義醫(yī)學(xué)院珠海校區(qū)解剖教研室,珠海 519041)
成年大鼠吻側(cè)遷移流的神經(jīng)發(fā)生
賀旭1,2,嚴(yán)小新2,潘愛(ài)華2,劉英飛3, 李建平4*
(1益陽(yáng)醫(yī)學(xué)高等??茖W(xué)校解剖教研室,益陽(yáng) 413000;2中南大學(xué)基礎(chǔ)醫(yī)學(xué)院人體解剖與神經(jīng)生物學(xué)系,長(zhǎng)沙 410013;3益陽(yáng)醫(yī)學(xué)高等??茖W(xué)校附屬醫(yī)院第一內(nèi)科,益陽(yáng) 413000;4遵義醫(yī)學(xué)院珠海校區(qū)解剖教研室,珠海 519041)
目的 探討成年SD大鼠吻側(cè)遷移流 (rostral migratory stream,RMS) 的神經(jīng)發(fā)生。方法 成年6周齡SD大鼠被處死。矢狀位切片,免疫組織化學(xué)染色觀察RMS 區(qū)微管相關(guān)蛋白雙皮質(zhì)素 (doublecortin , DCX) 及膠質(zhì)纖維酸性蛋白 (glial fibrillary acidic protein, GFAP) 的表達(dá)及DCX/GFAP、DCX/p-CREB的共表達(dá)情況。結(jié)果 在RMS區(qū)的垂直臂、肘部、水平臂均有DCX陽(yáng)性細(xì)胞和GFAP陽(yáng)性細(xì)胞,RMS區(qū)有GFAP/DCX和p-CREB/DCX共表達(dá)細(xì)胞。結(jié)論 吻側(cè)遷移流有廣泛的神經(jīng)元前體細(xì)胞及星形膠質(zhì)細(xì)胞標(biāo)記物表達(dá);遷移神經(jīng)元標(biāo)記物可表達(dá)于星形膠質(zhì)細(xì)胞,且神經(jīng)元的遷移受到CREB信號(hào)通路的調(diào)控。
吻側(cè)遷移流;雙皮質(zhì)素;膠質(zhì)纖維酸性蛋白;神經(jīng)發(fā)生
海馬的齒狀回顆粒細(xì)胞下層 (subgranular zone,SGZ) 與側(cè)腦室的室管膜下區(qū) (subventricular zone,SVZ) 是兩個(gè)重要的神經(jīng)發(fā)生區(qū)域。成年神經(jīng)發(fā)生過(guò)程中神經(jīng)祖細(xì)胞的遷移是一個(gè)重要事件。海馬的神經(jīng)祖細(xì)胞遵守就近原則遷移到齒狀回的顆粒細(xì)胞層,而來(lái)自SVZ區(qū)的神經(jīng)祖細(xì)胞以切線遷移的方式運(yùn)動(dòng),沿著吻側(cè)遷移流 (rostral migratory stream,RMS)路線增殖、分化,最后到達(dá)嗅球分化為球旁細(xì)胞和顆粒細(xì)胞,并被整合到神經(jīng)功能環(huán)路,發(fā)揮相應(yīng)的生理功能。根據(jù)RMS的形態(tài)結(jié)構(gòu)及SVZ區(qū)神經(jīng)干細(xì)胞遷移到嗅球的方向,可以發(fā)現(xiàn)RMS呈細(xì)長(zhǎng)型的鏈狀結(jié)構(gòu),分為垂直臂、肘部及水平臂3部分[1]。RMS主要由成神經(jīng)細(xì)胞和星形膠質(zhì)細(xì)胞構(gòu)成[2],在遷移過(guò)程中繼續(xù)保持分化功能。目前很多研究表明SVZ區(qū)和SGZ區(qū)的神經(jīng)發(fā)生與神經(jīng)再生在治療神經(jīng)功能紊亂疾病中發(fā)揮神經(jīng)保護(hù)作用[3-6]。而RMS作為SVZ-RMS-OB的重要組成部分,關(guān)于神經(jīng)祖細(xì)胞標(biāo)記物在該部位的表達(dá)及神經(jīng)元的遷移的調(diào)控機(jī)制目前國(guó)內(nèi)鮮有報(bào)道。雙皮質(zhì)素(doublecortin, DCX) 是未成熟神經(jīng)元和遷移神經(jīng)元的一個(gè)特異性標(biāo)記物,代表著神經(jīng)發(fā)生水平[7]。膠質(zhì)纖維酸性蛋白 (Glial fibrillary acidic protein, GFAP) 是星形膠質(zhì)干細(xì)胞的特異性標(biāo)記物,可在RMS區(qū)分化為成神經(jīng)細(xì)胞[8],而cAMP 反應(yīng)元件結(jié)合蛋白 (CREB) 信號(hào)通路可通過(guò) CREB 的磷酸化而調(diào)控成年神經(jīng)發(fā)生。鑒于此,本研究通過(guò)免疫組織化學(xué)及免疫熒光雙標(biāo)染色觀察正常 SD 大鼠RMS 區(qū)神經(jīng)干細(xì)胞的表達(dá)及各自的形態(tài)特點(diǎn),進(jìn)一步了解 RMS 區(qū)的神經(jīng)發(fā)生和轉(zhuǎn)化。
1 實(shí)驗(yàn)動(dòng)物
體重為 (250±30)g的健康清潔級(jí)、6周齡的雄性SD大鼠,由中南大學(xué)湘雅醫(yī)學(xué)院實(shí)驗(yàn)動(dòng)物中心提供,證書(shū)編號(hào):SCXK(湘)2009-0012。所有動(dòng)物飼養(yǎng)于室溫為(23±1)℃,相對(duì)濕度為55%的動(dòng)物房。大鼠適應(yīng)環(huán)境5d后開(kāi)始實(shí)驗(yàn),實(shí)驗(yàn)過(guò)程中盡可能減少動(dòng)物使用數(shù)量。整個(gè)實(shí)驗(yàn)程序都通過(guò)中南大學(xué)倫理委員會(huì)的批準(zhǔn)。
2 主要實(shí)驗(yàn)儀器和試劑
珊頓冰凍切片機(jī) (Shandon 公司),Olympus BX67熒光顯微鏡(奧林巴斯);羊抗DCX抗體(Santa Cruz Biotechnology公司),兔抗p-CREB抗體(Cell Signaling公司),兔抗膠質(zhì)纖維酸性蛋白(glial fibrillary acidic protein, GFAP)抗體(Sigma-Aldrich公司);廣譜生物素化二抗(Vector公司),二氨基聯(lián)苯胺(DAB,Sigma公司),Alexa Fluor 488與Alexa Fluor 594 偶聯(lián)驢抗兔及驢抗山羊ⅠgG(Ⅰnvitrogen公司)。
3 免疫組織化學(xué)
3.1 組織學(xué)處理
用10%水合氯醛腹腔注射麻醉大鼠后,經(jīng)心臟心尖處插入灌注針頭至升主動(dòng)脈,然后剪開(kāi)右心耳。先使用生理鹽水400ml快速灌注,然后改用4%多聚甲醛溶液500ml快速灌注進(jìn)行固定。取出腦組織,4%多聚甲醛溶液中4℃ 后固定過(guò)夜,梯度沉糖。恒低溫冰凍切片機(jī)下采用鄰切法進(jìn)行矢狀位切片,切片厚度為30μm。
3.2 ABC法免疫組織化學(xué)染色
3% H2O2處理30 min,含5% 馬血清和0.1%Triton X-100 0.01mol/L磷酸鹽緩沖液孵育2h,兔抗GFAP 抗體(1:1000)、羊抗DCX 抗體(1:1000),4℃孵育過(guò)夜,廣譜生物素化二抗(1:400)反應(yīng)1h,在提前30min配好的ABC溶液孵育2h。免疫反應(yīng)產(chǎn)物經(jīng)DAB顯色。陰性對(duì)照:用正常馬血清代替一抗,以排除二抗的非特異性染色,結(jié)果為陰性。
3.3 免疫熒光雙標(biāo)染色
切片在含5% 驢血清和0.1% Triton X-100 0.01mol/L磷酸鹽緩沖液室溫孵育2h,兔抗GFAP抗體 (1:2000) 與山羊抗DCX 抗體(1:1000)混合物或兔抗p-CREB 抗體(1:2000) 與山羊抗DCX(1:1000)抗體混合物 4℃孵育過(guò)夜,Alexa Fluor 488偶聯(lián)驢抗兔ⅠgG(1:200)與Alexa Fluor 594驢抗山羊ⅠgG (1:200) 室溫孵育2h,雙苯酰亞胺 (1:5000)染核10min;貼片,50%甘油封片。
所有免疫組織化學(xué)標(biāo)本拍照后,根據(jù)RMS的解剖結(jié)構(gòu)與形態(tài)特點(diǎn)拼接圖片。免疫熒光雙標(biāo)標(biāo)本拍照后,選取RMS區(qū)域5個(gè)視野進(jìn)行細(xì)胞計(jì)數(shù),取均值。
免疫組織化學(xué)ABC法檢測(cè)顯示,RMS全長(zhǎng)(垂直臂、肘部及水平臂)均可見(jiàn)大量DCX和GFAP免疫反應(yīng)陽(yáng)性細(xì)胞。其中,DCX陽(yáng)性細(xì)胞緊密聚集排列成“團(tuán)”狀;其胞體細(xì)長(zhǎng),相對(duì)均勻地分布在遷移路線上;突起基本朝向嗅球(圖1)。GFAP陽(yáng)性細(xì)胞胞體較小,散在分布于密集的突起之間(圖2)。
免疫熒光雙標(biāo)染色顯示,在RMS的垂直臂、肘部及水平臂中均可見(jiàn)大量DCX/GFAP和p-CREB/ DCX雙標(biāo)細(xì)胞(圖3,圖4)。其中 DCX/GFAP雙標(biāo)細(xì)胞占所有GFAP陽(yáng)性細(xì)胞的(26.9±5.6)%,p-CREB/DCX雙標(biāo)細(xì)胞占所有DCX細(xì)胞的 (65.4±7.2)%。
圖1. DCX陽(yáng)性細(xì)胞在RMS的定位。A,RMS全長(zhǎng)DCX陽(yáng)性細(xì)胞;B,RMS垂直臂DCX陽(yáng)性細(xì)胞;C,RMS肘部DCX陽(yáng)性細(xì)胞;D,RMS水平臂DCX陽(yáng)性細(xì)胞;比例尺,100μmFig.1 Localization of DCX positive cells in RMS. A, DCX positive cells in RMS; B, DCX positive cells in the horizontal arm of RMS; C, DCX positive cells in the elbow of RMS; D, DCX positive cells in the vertical arm of RMS; scale bar, 100μm
從胚胎期發(fā)育開(kāi)始,側(cè)腦室室管膜下區(qū) (SVZ)的神經(jīng)干細(xì)胞在一些調(diào)控蛋白和激酶分子的參與及管制下遷移到指定區(qū)域,在遷移途中,神經(jīng)干細(xì)胞不斷分裂,神經(jīng)干細(xì)胞分化所產(chǎn)生的神經(jīng)前體細(xì)胞聚集且以鏈狀排列,然后穿過(guò)由A型細(xì)胞-膠質(zhì)細(xì)胞突起所形成的膠質(zhì)管道到達(dá)嗅球[9]。DCX具有加速微管聚合和穩(wěn)定其網(wǎng)絡(luò)結(jié)構(gòu)的作用。DCX能特異性的表達(dá)于未成熟和遷移神經(jīng)元,與突觸可塑性關(guān)系密切[7],是未成熟神經(jīng)元和遷移神經(jīng)元的一個(gè)特異性標(biāo)記物[10-12]。此外,DCX能表達(dá)于放射狀膠質(zhì)細(xì)胞,在神經(jīng)前體細(xì)胞的分化中起調(diào)控細(xì)胞骨架的作用,如果DCX的遷移發(fā)生故障會(huì)引起智力障礙,顳葉癲癇和精神分裂癥[13], 而DCX基因出現(xiàn)變異會(huì)引起腦回的消失或者是雙層大腦皮層綜合征[14]。本研究中,我們?yōu)榱税l(fā)現(xiàn)成年大鼠RMS的路線,并檢測(cè)RMS是否含有遷移性神經(jīng)祖細(xì)胞。本研究結(jié)果顯示整個(gè)RMS區(qū)域均有DCX陽(yáng)性細(xì)胞表達(dá)且突起方向均朝向嗅球,這表明RMS區(qū)的神經(jīng)前體細(xì)胞可能最終遷移到嗅球,且被整合到神經(jīng)功能環(huán)路。
圖2. GFAP陽(yáng)性細(xì)胞在RMS的定位。A,RMS全長(zhǎng)GFAP陽(yáng)性細(xì)胞;B,RMS垂直臂GFAP陽(yáng)性細(xì)胞;C,RMS肘部GFAP陽(yáng)性細(xì)胞;D,RMS水平臂GFAP陽(yáng)性細(xì)胞;比例尺,100μmFig.2 Localization of GFAP positive cells in RMS. A, GFAP positive cells in RMS; B, GFAP positive cells in the horizontal arm of RMS; C, GFAP positive cells in the elbow of RMS; D, GFAP positive cells in the vertical arm of RMS; scale bar, 100μm
圖3 RMS中DCX 與 GFAP 共定位的免疫熒光檢測(cè)。比例尺,25μmFig. 3 Colocalization of DCX with GFAP in RMS. Scale bar, 25μm
圖4 RMS中DCX 與p-CREB 共定位的免疫熒光檢測(cè)。比例尺,25μmFig. 4 Colocalization of DCX with p-CREB in RMS. Scale bar, 25μm
SVZ區(qū)神經(jīng)干細(xì)胞屬于B型細(xì)胞,表現(xiàn)出多能性或者胚胎神經(jīng)管內(nèi)神經(jīng)上皮細(xì)胞的特點(diǎn),是星形膠質(zhì)細(xì)胞樣表達(dá)GFAP的神經(jīng)干細(xì)胞[15]。人腦大腦皮層成熟的GFAP陽(yáng)性星形膠質(zhì)細(xì)胞可表達(dá)未成熟神經(jīng)元[16]。本實(shí)驗(yàn)結(jié)果再次證明,在RMS垂直臂、肘部及水平臂上均有GFAP陽(yáng)性細(xì)胞,并可見(jiàn)GFAP與DCX的共表達(dá)細(xì)胞,這可能是RMS的星形膠質(zhì)細(xì)胞有多潛能分化的神經(jīng)干細(xì)胞屬性[8],可分化為具有遷移特性的未成熟神經(jīng)元。由于GFAP的表達(dá)是星形細(xì)胞活動(dòng)狀態(tài)的標(biāo)志之一,在穩(wěn)定的突起形成過(guò)程中起著重要作用,因此,GFAP與DCX的共表達(dá)也說(shuō)明星形膠質(zhì)細(xì)胞在未成熟神經(jīng)元的遷移過(guò)程中,可能具有穩(wěn)定其網(wǎng)絡(luò)結(jié)構(gòu),使其粘附和聚集的作用。CREB信號(hào)通路激活后參與多種生物學(xué)功能[17],比如促進(jìn)神經(jīng)再生、突觸形成及改善學(xué)習(xí)記憶。本實(shí)驗(yàn)結(jié)果顯示,在RMS中有高表達(dá)量的磷酸化CREB蛋白 (p-CREB),并且p-CREB蛋白是存在于表達(dá)神經(jīng)前體細(xì)胞標(biāo)記物--DCX神經(jīng)元中。這說(shuō)明CREB信號(hào)通路可能通過(guò)調(diào)控RMS的DCX的表達(dá)而參與成年大鼠RMS的神經(jīng)發(fā)生。
綜上所述,在成年大鼠RMS中有神經(jīng)前體細(xì)胞表達(dá),并且星形膠質(zhì)干細(xì)胞可分化為未成熟神經(jīng)元。除此之外,神經(jīng)元前體細(xì)胞的遷移受到CREB信號(hào)通路的調(diào)控。
[1] Balentova S, Hajtmanova E, Adamkov M, et al. Differential expression of doublecortin and microglial markers in the rat brain following fractionated irradiation. Neurochem Res, 2015, 40(3): 501-513.
[2] 孟艷,高殿帥,蔡青,等. 成年大鼠腦室下區(qū)吻側(cè)遷移流的細(xì)胞形態(tài)學(xué)研究. 神經(jīng)解剖學(xué)雜志,2005,21(6):576-582.
[3] Christie KJ, Turnley AM. Regulation of endogenous neural stem/progenitor cells for neural repair-factors that promote neurogenesis and gliogenesis in the normal and damaged brain. Front Cell Neurosci, 2012, 6: 70.
[4] Matsumoto M, Nakamachi T, Watanabe J, et al. Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) ⅠsⅠnvolved in Adult Mouse Hippocampal Neurogenesis After Stroke. J Mol Neurosci, 2016, 59(2): 270-279.
[5] 楊飛祥,張皚峰,郝鵬,等. 神經(jīng)營(yíng)養(yǎng)因子3-殼聚糖載體對(duì)大鼠運(yùn)動(dòng)皮層損傷后內(nèi)源性神經(jīng)發(fā)生和運(yùn)動(dòng)功能的效果. 中國(guó)康復(fù)理論與實(shí)踐,2017,23(2):155-161.
[6] 賀旭,葛金文,黃俊,等. 三七總皂苷對(duì)全腦缺血成年大鼠側(cè)腦室室管膜區(qū)神經(jīng)再生的影響. 中草藥,2016,47(9):1535-1540.
[7] Couillard-Despres S, Winner B, Schaubeck S, et al. Doublecortin expression levels in adult brain reflect neurogenesis. Eur J Neurosci, 2005, 21(1): 1-14.
[8] Gritti A, Bonfanti L, Doetsch F, et al. Multipotent neural stem cells reside into the rostral extension and olfactory bulb of adult rodents. J Neurosci, 2002, 22(2): 437-445.
[9] Martoncikova M, Fabianova K, Schreiberova A, et al. Astrocytic and vascular scaffolding for neuroblast migration in the rostral migratory stream. Curr Neurovasc Res, 2014, 11(4): 321-329.
[10] Francis F, Koulakoff A, Boucher D, et al. Doublecortin is adevelopmentally regulated, microtubule-associated protein expressed in migrating and differentiating neurons. Neuron, 1999, 23(2): 247-256.
[11] Wang C, Liu F, Liu YY, et al. Identification and characterization of neuroblasts in the subventricular zone and rostral migratory stream of the adult human brain. Cell Res, 2011, 21(11): 1534-1550.
[12] 譚新杰,胡長(zhǎng)林,蔡文琴. 微管相關(guān)蛋白Doublecortin在成年大鼠神經(jīng)元前體細(xì)胞發(fā)生中的表達(dá). 解剖學(xué)雜志,2006,29(5):601-603.
[13] Fung SJ, Joshi D, Allen KM, et al. Developmental patterns of doublecortin expression and white matter neuron density in the postnatal primate prefrontal cortex and schizophrenia. PLoS One, 2011, 6(9): e25194.
[14] Tsai MH, Kuo PW, Myers CT, et al. A novel DCX missense mutation in a family with X-linked lissencephaly and subcortical band heterotopia syndrome inherited from a low-level somatic mosaic mother: Genetic and functional studies. Eur J Paediatr Neurol, 2016, 20(5): 788-794.
[15] Mirzadeh Z, Merkle FT, Soriano-Navarro M, et al. Neural stem cells confer unique pinwheel architecture to the ventricular surface in neurogenic regions of the adult brain. Cell Stem Cell, 2008, 3(3): 265-278.
[16] Verwer RW, Sluiter AA, Balesar RA, et al. Mature astrocytes in the adult human neocortex express the early neuronal marker doublecortin. Brain, 2007, 130(Pt 12): 3321-3335.
[17] Jiang P, Zhu T, Xia Z, et al. Ⅰnhibition of MAPK/ERK signaling blocks hippocampal neurogenesis and impairs cognitive performance in prenatally infected neonatal rats. Eur Arch Psychiatry Clin Neurosci, 2015, 265(6): 497-509.
Neurogenesis in the rostral migratory stream of the adult rat
He Xu1,2, Yan Xiaoxin2, Pan Aihua2, Liu Yingfei3, Li Jianping4*
(1Department of Anatomy, Yiyang Medical College, Yiyang 413000, China;2Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University , Changsha 410013, China;3Hospital affiliated Yiyang Medical College, Yiyang 413000, China;4Department of Anatomy, Zhuhai campus of Zunyi medical university , Zhuhai 519041, China)
Objective To explore the neurogenesis in rostral migratory stream (RMS) in adult rats. Methods Aged Sprague-Dawley rats (6 weeks) were sacrificed and tissues were sectioned with sagittal position. The expression of doublecortin (DCX), glial fibrillary acidic protein (GFAP) and phospho-cAMP response element-binding protein (p-CREB) in the RMS were assessed by immunohistochemistry. Results There were DCX positive and GFAP positive cells in the horizontal, the elbow and the vertical arm of RMS. The colocalization of GFAP with DCX or p-CREB with DCX was also observed in the RMS. Conclusions Neuronal precursors and astrocytes distribute widely in RMS. Furthermore, migratory neurons marker could be expressed in the astrocytes and their migration is under the regulation of the CREB signal pathway.
Rostral migratory stream; doublecortin; glial fibrillary acidic protein; neurogenesis
R329.1
A DOⅠ:10.16705/ j. cnki. 1004-1850.04.001
2017-03-17
2017-07-15
湖南省教育廳優(yōu)秀青年課題 (16B269);益陽(yáng)醫(yī)??埔M(jìn)高層次人才科研啟動(dòng)費(fèi)(2016-001);益陽(yáng)市科技局課題 (2015JZ42)
賀旭,男(1984年),漢族,講師
*通訊作者(To whom correspondence should be addressed):93763067@qq.com
中國(guó)組織化學(xué)與細(xì)胞化學(xué)雜志2017年4期