• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Primary cilia as a novel horizon between neuron and environment

    2017-09-04 07:27:04GregoryKirschenQiaojieXiong

    Gregory W. Kirschen, Qiaojie Xiong,

    1 Medical Scientist Training Program, Stony Brook University, Stony Brook, NY, USA

    2 Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY, USA

    Primary cilia as a novel horizon between neuron and environment

    Gregory W. Kirschen1,2, Qiaojie Xiong2,*

    1 Medical Scientist Training Program, Stony Brook University, Stony Brook, NY, USA

    2 Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY, USA

    How to cite this article:Kirschen GW, Xiong Q (2017) Primary cilia as a novel horizon between neuron and environment. Neural Regen Res 12(8):1225-1230.

    Funding: GWK currently receives support from the National Institutes of Health (NIH 1 F30 MH110103).

    G protein-coupled receptor; sonic hedgehog; seizure; stroke; stem cell; neurogenesis; plasticity

    While few would still go so far as to disparage primary cilia as inert, vestigial appendages inherited from our single-celled ancestors, the fact remains that these hair-like sensory organelles continue to receive less attention than they deserve. First discovered in protozoans in the late 1600s by the Dutch scientist Antony Van Leeuwenhoek while examining pond water samples under the microscope, cilia and flagella, microtubule-based organelles found in most eukaryotic cells, have been a topic of curiosity and controversy (Haimo and Rosenbaum, 1981; Satir, 1995). Although we now appreciate at least some of the various motor and sensory functions of these organelles, thanks largely to pioneering work by the Czech biologist Jan Purkyne and his student G.G. Valentin, the field of cilia biology is still relatively uncharted (Teich, 1970). We have since discovered that most cells of the human body express primary cilia, which are immotile and sensory in nature, while a handful of specialized cells express the beating, motile variety (Afzelius, 1976; Wheatley et al., 1996). After many years of speculation, poo pooing, and neglect of primary cilia, we are fi nally beginning to develop tools and approaches to more fully understand their importance to normal cellular physiology as well as their relevance to human disease. Even more recently, we have learned that primary cilia exist and signal throughout the CNS.

    The first clue that primary cilia have not become irrelevant to mammalian biology is, of course, the host of problems that arise when primary cilia fail to assemble or signal properly, particularly during development of the organism. Indeed, the wide range of primary ciliopathies, including retinal degeneration, brain and spinal cord malformations, and Bardet-Biedl syndrome, a genetically-related obesity syndrome, has focused the scientific community’s attention on the critical role of primary cilia during embryonic development (Gerdes et al., 2009; Lee and Gleeson, 2011). Although it has become widely acknowledged that primary ciliary signaling, for example through Hedgehog-mediated control of cell cycle progressionviathe canonical Wnt pathway, is essential for proper proliferation, differentiation, and migration of cells throughout the developing embryo, much less is known regarding the potential homeostatic, stimulus-triggered, or disease relevant functions of primary cilia once developmental programs have become established (Clement et al., 2009; Wong et al., 2009; Schneider et al., 2010; Gilliam et al., 2012). In particular, investigation of primary cilia within the CNS has increased in recent years, as it has been discovered that they contribute to homeostatic mechanisms and may also be implicated in neuropathological states in the adult organism.

    In this review, we provide an overview of several recent technical and conceptual advances in the field of primary cilia biology related to their reparative potential in the CNS. We introduce several newly described non-canonical roles of primary cilia in neuroplasticity, and set forth a proposed research agenda for the study of the role of primarycilia in damage and repair in the context of neural injury. Novel methods to manipulate primary cilia structure or signaling will likely prove crucial not only to enhance our understanding of their roles in health and disease, but also to provide the foundation for novel therapeutics targeting these organelles.

    Research Agenda: to Better Understand Neural Primary Cilia in Health and Disease

    Until the past decade, it has been dif fi cult to probe the various functions of primary cilia due to a paucity of refined pharmacological or genetic tools targeting these organelles specifically. However, our understanding of cilia biology has benefited tremendously from new technologies such as transgenic mice conditionally deficient in intraflagellar transport (IFT) genes or Bardet-Biedl syndrome (BBS) genes, as well as virally-delivered DNA/RNA constructs that can downregulate or overexpress the various components of the ciliary protein machinery (Jonassen et al., 2008; Zaghloul and Katsanis, 2009; Boehlke et al., 2010; Kumamoto et al., 2012). Using these approaches, we are beginning to appreciate the many roles that cilia take on far beyond embryonic development and well into adulthood and senescence. With these considerations, we propose the following research agenda.

    To better understand normal neural primary cilia physiology and behavior in the adult CNS

    While our knowledge of cilia signaling in orchestrating neuronal patterning and other developmental programs during embryogenesis has advanced significantly, the field of cilia biology is still relatively new with regard to mature/adult physiology, especially in the CNS. More basic research aimed at understanding the cilium’s role in neuronal excitability, plasticity and behavior, as well as its importance to glial cells, is warranted.

    The presence of primary cilia on neurons was first reported in the late 1950s and early 1960s by several scientists working on different model organisms. Duncan and Dahl, each independently studying the rodent nervous system, noted the presence of cilia by ultrastructural analysis of notochord and cerebral cortex, respectively (Duncan, 1957; Dahl, 1963). Meanwhile, developmental geneticist Sydney Brenner and his colleagues also noticed the presence of cilia in the primitive nervous system of the nematodeCaenorhabditis elegans(Ward et al., 1975).us began the search into the structure and functions of neural primary cilia, work that until recently had largely focused on the cilium’s role in vertebrate neural tube development in the embryo through Sonic hedgehog signaling (Corbit et al., 2005; Caspary et al., 2007).

    As a part of their normal functioning in the mature, intact nervous system, primary cilia contribute to neuroplasticity at the neural stem cell, electrophysiological, and behavioral levels. In both adult neurogenic regions of the brain, the lateral ventricle of the subventricular zone (SVZ) and the subgranular zone (SGZ) of the hippocampal dentate gyrus, neural progenitor cells harbor primary cilia, and so a logical question is whether these cilia contribute to the process of adult neurogenesis. Radial glia-like progenitors in the SGZ depleted of ciliary genes or whose ciliary Hedgehog signaling has become disrupted are unable to proliferate, thus leading to dramatic impairments in adult hippocampal neurogenesis (Han et al., 2008). Similarly, ciliary disruption in radial glia of the SVZviadeletion of IFT proteins (important in ciliogenesis and maintained cilia integrity) leads to suppression of neurogenesis in the ventral portion of the SVZ (Tong et al., 2014). Since adult neurogenesis is well acknowledged to provide an additional layer of plasticity to the adult brain above that provided by synaptic dynamics (Kirschen et al., 2017a; Sailor et al., 2017), primary cilia are likely crucial in promoting ongoing cellular reorganization that promotes brain circuit plasticity throughout adulthood.

    In the mature neuron at the level of the synapse, primary cilia again demonstrate their role in shaping adult plasticity. Depleting primary cilia in mature dentate granule neurons of the hippocampus not only decreases evoked and spontaneous excitatory postsynaptic currents in these cells and impairs functional glutamatergic synapse formation, but further leads to defects in long term potentiation (LTP) in CA3 pyramidal neurons following high frequency stimulation at the mossy fi ber terminal (Kumamoto et al., 2012; Rhee et al., 2016). Such defects likely contribute to hippocampus-specif i c behavioral def i cits in contextual fear conditioning and spatial memory that others and we have observed upon primary cilia depletion (Berbari et al., 2014; Rhee et al., 2016). Still, the electrophysiological and behavioral relevance of primary cilia in other circuits and in other brain regions is yet to be determined. Given that virtually all neurons as well as some glial cells express primary cilia, their roles are likely to be numerous. A summary of known ciliary receptors, signaling pathways, and cellular processes directly related to primary cilia of various neural cell types is shown in Table 1.

    To characterize the functional ramif i cations of loss of neuronal primary cilia structural integrity under disease conditions

    We still do not know the full scope of neurological diseases to which neuronal cilia may contribute. In addition to determining the neurodegenerative or neuroinflammatory conditions in which cilia are implicated, strategies to target these organelles should be pursued.is could involve, for example, experimentally blocking ciliary disassembly or activating/inactivating of ciliary receptors during neurological insult and tracking functional outcomes both in terms of cellular physiology and behavioral correlates.

    With primary cilia so important for proliferation, migration, and patterning/organization of neural cells during normal development, it is natural to wonder whether they participate in similar processes under pathological conditions. Intriguingly, in the corneal epithelial cells of the developing eye, the precise timing of primary cilia assembly is crucial for the coordination of cell localization to form the uniquehexagonal monolayer of cells characteristic of the corneal epithelium (Blitzer et al., 2011). Following the completion of this developmental program, these cilia degenerate, but strikingly, they quickly regenerate following mechanical corneal injury, which disrupts the hexagonal cellular patterning. Could a similar phenomenon occur in the CNS following an insult that disrupts neuronal homeostasis? And by extension, could primary cilia play a central role in coordinating the response to this insult?

    To address these questions, others and we have initiated a new line of investigations aimed at understanding primary cilia integrity during and following CNS injury. Firstly, unlike in the corneal epithelium, in the brain, primary cilia are constitutively expressed by neurons of both young and aged animals (with increasing length across the lifespan in certain brain regions) (Guadiana et al., 2016). Secondly, neocortical and hippocampal neuronal primary cilia in the adult brain display a characteristic radial alignment paralleling their cellular polarity, and also exhibit regional heterogeneity in lengths at baseline (Kirschen et al., 2017b) (Figure 1A). Upon seizure induction, however, cilia lengths and alignment become disrupted (Parker et al., 2016; Kirschen et al., 2017b). Similarly, cerebral hemispheric ischemia leads to changes in both length and alignment of neuronal cilia (Kirschen et al., 2017b). Intriguingly, the hippocampus and its innervating region the entorhinal cortex exhibit dif f erential responses to brain injury. While a pilocarpine-induced seizure disrupts ciliary positioning in both regions, cilia length is selectively disrupted in the entorhinal cortex but not in the hippocampus.

    What these changes signify structurally and molecularly, however, remains to be determined. Given the regional heterogeneity of G protein-coupled receptors and other receptors/ef f ectors along the axoneme (the microtubule-composed cytoskeletal backbone of the cilium) and immediately surrounding area of the cell membrane, we hypothesize that these insults may induce preferential damage at some sites, with relative sparing of others, leading to differential activation or inactivation of downstream pathways involved in mounting an inf l ammatory or reparative response. Alternatively, changes in cilia length and positioning may represent distal appendage and/or ciliary disassembly, for exampleviaPitchfork (Pifo)-mediated Aurora A (AurA) activation and cilia retraction at the basal body.is could lead to changes in planar cell polarity (PCP) signaling and consequent basal body mis-localization (Sanchez and Dynlacht, 2016). An overview of known and potential physiological/pathophysiological functions of neural primary ciliais depicted in Figure 1B.

    We also do not know whether these structural changes in cilia following brain injury represent an advantageous reaction that will lead to downstream repair pathways, or rather collateral damage or injury exacerbation. Regardless, it will be important to further characterize the temporal dynamics of ciliary morphological changes over the course of disruptions in CNS homeostasis, as well as to determine their functional consequences.e existing literature on primary cilia signaling in the CNS under physiological conditions is sparse; their role in CNS malfunctioning is even more sparse. Thus, we hope that these preliminary findings will draw more interest in cilia research in the pursuit of both basic neural cilia knowledge as well as their relevance to neuropathology.

    Identify and characterize the normal and triggered signaling cascades within neuronal cilia

    The aforementioned gap in our knowledge regarding how neural cilia work, from their housekeeping functions to their stimulus-evoked responses, will be important issues to address. Fortunately, given the well-mapped neuronal connectivity and the relatively well understood stimulus-response properties of neural circuits, the basic neuroscience foundation underlying these questions should be feasible to address. Moreover, we can take advantage of strides made in other areas of cilia biology to use as starting points for reference and guidance in the study of neural cilia. For instance, it will be important to determine the molecular makeup of the plasma membrane composing the neuronal cilium as well as the cilioplasm, both in healthy and disease states. Like cilia of other cell types, neuronal cilia throughout the brain cluster G protein-coupled receptors (GCPRs) including adenylyl cyclase III (ACIII) and somatostatin receptor type 3, which when triggered, signal through the second messenger cyclic AMP (cAMP) to regulate various metabolic and secretory functions of the cell (Berbari et al., 2007; Bishop et al., 2007; Ferone et al., 2009) (Table 1). Interestingly, primary cilia were hypothesized to sense and regulate calcium homeostasis, as they appeared to act as a unique calcium sequestering compartment (Delling et al., 2013). More recent evidence from the same group suggests, however, that this is not in fact the case (at least in renal cells), as transgenic mice co-expressing a fl uorescent cilium marker and a genetically-encoded calcium indicator exhibited no cilia-specif i c basal or stimulus-evoked changes in calcium fl ux (Delling et al., 2016).

    adapted to study primary cilia in the nervous system in response to electrical or chemical stimuli will be interesting to explore. Finally, novel technologies such as cilia-APEX, which selectively biotinylates cilia-specif i c proteins for subsequent proteomic analysis, may facilitate discovery of the unique protein makeup of cilia across different cell types and brain areas (Mick et al., 2015). It will be exciting to see our understanding of cilia structural/functional diversity blossom as these and other innovations allow us to answer a series of fundamental questions that currently remain unresolved.

    Figure 1 Functions of adult neuronal primary cilia, and potential disruptions following CNS injury.

    Identify novel therapeutic agents to promote or restore cilia signaling under disease conditions

    Aside from our incomplete understanding of how neural cilia signal under physiological conditions, we do not currently know whether structurally compromised primary cilia are still able to signal, and if so, how this signaling may dif f er from their homeostatic functions. As shown in Table 1, primary cilia of the CNS indeed express an array of receptors including GPCRs, which may suf fi ce as a starting point, however the precise downstream signaling cascades of these receptors, as well as those of as-of-yet unidentif i ed receptors, will require extensive characterization. As it stands, we now appreciate some of the important functions of adult neural primary cilia, and so the next step will be to elucidate the underlying mechanisms using pharmacological or genetic tools. If we can engineer such tools, we may be able to fi netune ciliary signaling, with the potential to either facilitate repair following neural injury, or identify candidate therapies for the treatment of primary ciliopathies. For example, a recent high-throughput screen of small molecules targeting ciliary signalingviaHedgehog identif i ed a number of small molecules that prevented aberrant Hedgehog signaling in a pancreatic ductal adenocarcinoma model, impeding the transition from G1 to S phase of the cell cycle and hence retarding cancer cell proliferation (Jung et al., 2016). More preclinical small molecule screening studies for neurological diseases (especially those involving aberrant cell proliferation or migration) will likely prove instrumental in such endeavors.

    Acknowledgments:We thank Dr. Shaoyu Ge and Afrinash Ahamad for their critical feedback on this manuscript.

    Author contributions:GWK wrote the original draft. GWK and QX edited the dra, and both of them approved the fi nal version.

    Conf l icts of interest:None declared.

    Plagiarism check:Checked twice by ienticate.

    Peer review:Externally peer reviewed.

    Open access statement:

    Abdel-Majid RM, Tremblay F, Baldridge WH (2002) Localization of adenylyl cyclase proteins in the rodent retina. Brain Res Mol Brain Res 101:62-70.

    Afzelius BA (1976) A human syndrome caused by immotile cilia. Science 193:317-319.

    Baudoin JP, Viou L, Launay PS, Luccardini C, Espeso Gil S, Kiyasova V, Irinopoulou T, Alvarez C, Rio JP, Boudier T, Lechaire JP, Kessaris N, Spassky N, Metin C (2012) Tangentially migrating neurons assemble a primary cilium that promotes their reorientation to the cortical plate. Neuron 76:1108-1122.

    Berbari NF, Bishop GA, Askwith CC, Lewis JS, Mykytyn K (2007) Hippocampal neurons possess primary cilia in culture. J Neurosci Res 85:1095-1100.

    Berbari NF, Lewis JS, Bishop GA, Askwith CC, Mykytyn K (2008) Bardet-Biedl syndrome proteins are required for the localization of G protein-coupled receptors to primary cilia. Proc Natl Acad Sci U S A 105:4242-4246.

    Berbari NF, Malarkey EB, Yazdi SM, McNair AD, Kippe JM, Croyle MJ, Kraft TW, Yoder BK (2014) Hippocampal and cortical primary cilia are required for aversive memory in mice. PLoS One 9:e106576.

    Bishop GA, Berbari NF, Lewis J, Mykytyn K (2007) Type III adenylyl cyclase localizes to primary cilia throughout the adult mouse brain. J Comp Neurol 505:562-571.

    Blitzer AL, Panagis L, Gusella GL, Danias J, Mlodzik M, Iomini C (2011) Primary cilia dynamics instruct tissue patterning and repair of corneal endothelium. Proc Natl Acad Sci U S A 108:2819-2824.

    Boehlke C, Kotsis F, Patel V, Braeg S, Voelker H, Bredt S, Beyer T, Janusch H, Hamann C, Godel M, Muller K, Herbst M, Hornung M, Doerken M, Kottgen M, Nitschke R, Igarashi P, Walz G, Kuehn EW (2010) Primary cilia regulate mTORC1 activity and cell size through Lkb1. Nat Cell Biol 12:1115-1122.

    Brailov I, Bancila M, Brisorgueil MJ, Miquel MC, Hamon M, Verge D (2000) Localization of 5-HT(6) receptors at the plasma membrane of neuronal cilia in the rat brain. Brain Res 872:271-275.

    Breunig JJ, Sarkisian MR, Arellano JI, Morozov YM, Ayoub AE, Sojitra S, Wang B, Flavell RA, Rakic P, Town T (2008) Primary cilia regulate hippocampal neurogenesis by mediating sonic hedgehog signaling. Proc Natl Acad Sci U S A 105:13127-13132.

    Caspary T, Larkins CE, Anderson KV (2007)e graded response to Sonic Hedgehog depends on cilia architecture. Dev Cell 12:767-778.

    Christensen ST, Clement CA, Satir P, Pedersen LB (2012) Primary cilia and coordination of receptor tyrosine kinase (RTK) signalling. J Pathol 226:172-184.

    Clement CA, Kristensen SG, Mollgard K, Pazour GJ, Yoder BK, Larsen LA, Christensen ST (2009)e primary cilium coordinates early cardiogenesis and hedgehog signaling in cardiomyocyte dif f erentiation. J Cell Sci 122:3070-3082.

    Corbit KC, Aanstad P, Singla V, Norman AR, Stainier DY, Reiter JF (2005) Vertebrate smoothened functions at the primary cilium. Nature 437:1018-1021.

    Dahl HA (1963) Fine structure of cilia in rat cerebral cortex. Z Zellforsch Mikrosk Anat 60:369-386.

    de Quidt ME, Emson PC (1986) Distribution of neuropeptide Y-like immunoreactivity in the rat central nervous system--II. Immunohistochemical analysis. Neuroscience 18:545-618.

    Delling M, DeCaen PG, Doerner JF, Febvay S, Clapham DE (2013) Primary cilia are specialized calcium signalling organelles. Nature 504:311-314.

    Delling M, Indzhykulian AA, Liu X, Li Y, Xie T, Corey DP, Clapham DE (2016) Primary cilia are not calcium-responsive mechanosensors. Nature 531:656-660.

    Duncan D (1957) Electron microscope study of the embryonic neural tube and notochord. Tex Rep Biol Med 15:367-377.

    Ferone D, Gatto F, Arvigo M, Resmini E, Boschetti M, Teti C, Esposito D, Minuto F (2009)e clinical-molecular interface of somatostatin, dopamine and their receptors in pituitary pathophysiology. J Mol Endocrinol 42:361-370.

    Gerdes JM, Davis EE, Katsanis N (2009)e vertebrate primary cilium in development, homeostasis, and disease. Cell 137:32-45.

    Gilliam JC, Chang JT, Sandoval IM, Zhang Y, Li T, Pittler SJ, Chiu W, Wensel TG (2012) Three-dimensional architecture of the rod sensory cilium and its disruption in retinal neurodegeneration. Cell 151:1029-1041.

    Guadiana SM, Parker AK, Filho GF, Sequeira A, Semple-Rowland S, Shaw G, Mandel RJ, Foster TC, Kumar A, Sarkisian MR (2016) Type 3 adenylyl cyclase and somatostatin receptor 3 expression persists in aged rat neocortical and hippocampal neuronal cilia. Front Aging Neurosci 8:127.

    Haimo LT, Rosenbaum JL (1981) Cilia, fl agella, and microtubules. J Cell Biol 91:125s-130s.

    Han YG, Spassky N, Romaguera-Ros M, Garcia-Verdugo JM, Aguilar A, Schneider-Maunoury S, Alvarez-Buylla A (2008) Hedgehog signaling and primary cilia are required for the formation of adult neural stem cells. Nat Neurosci 11:277-284.

    Higginbotham H, Eom TY, Mariani LE, Bachleda A, Hirt J, Gukassyan V, Cusack CL, Lai C, Caspary T, Anton ES (2012) Arl13b in primary cilia regulates the migration and placement of interneurons in the developing cerebral cortex. Dev Cell 23:925-938.

    Jalalvand E, Robertson B, Wallen P, Grillner S (2016) Ciliated neurons lining the central canal sense both fl uid movement and pH through ASIC3. Nat Commun 7:10002.

    Jonassen JA, San Agustin J, Follit JA, Pazour GJ (2008) Deletion of IFT20 in the mouse kidney causes misorientation of the mitotic spindle and cystic kidney disease. J Cell Biol 183:377-384.

    Jung B, Messias AC, Schorpp K, Geerlof A, Schneider G, Saur D, Hadian K, Sattler M, Wanker EE, Hasenoder S, Lickert H (2016) Novel small molecules targeting ciliary transport of Smoothened and oncogenic Hedgehog pathway activation. Sci Rep 6:22540.

    Kirschen GW, Sailor KA, Ge S (2017a) Structural plasticity induced by adult neurogenesis: Elsevier Science.

    Kirschen GW, Liu H, Lang T, Liang X, Ge S, Xiong Q (2017b)e radial organization of neuronal primary cilia is acutely disrupted by seizure and ischemic brain injury. Front Biol (Beijing) 12:124-138.

    Kondo S, Sato-Yoshitake R, Noda Y, Aizawa H, Nakata T, Matsuura Y, Hirokawa N (1994) KIF3A is a new microtubule-based anterograde motor in the nerve axon. J Cell Biol 125:1095-1107.

    Kumamoto N, Gu Y, Wang J, Janoschka S, Takemaru K, Levine J, Ge S (2012) A role for primary cilia in glutamatergic synaptic integration of adult-born neurons. Nat Neurosci 15:399-405, S391.

    Lee JE, Gleeson JG (2011) Cilia in the nervous system: linking cilia function and neurodevelopmental disorders. Curr Opin Neurol 24:98-105.

    Loktev AV, Jackson PK (2013) Neuropeptide Y family receptors traf fi c via the Bardet-Biedl syndrome pathway to signal in neuronal primary cilia. Cell Rep 5:1316-1329.

    Ma X, Peterson R, Turnbull J (2011) Adenylyl cyclase type 3, a marker of primary cilia, is reduced in primary cell culture and in lumbar spinal cord in situ in G93A SOD1 mice. BMC Neurosci 12:71.

    Mick DU, Rodrigues RB, Leib RD, Adams CM, Chien AS, Gygi SP, Nachury MV (2015) Proteomics of Primary Cilia by Proximity Labeling. Dev Cell 35:497-512.

    Moser JJ, Fritzler MJ, Rattner JB (2009) Primary ciliogenesis defects are associated with human astrocytoma/glioblastoma cells. BMC Cancer 9:448.

    Moser JJ, Fritzler MJ, Rattner JB (2014) Ultrastructural characterization of primary cilia in pathologically characterized human glioblastoma multiforme (GBM) tumors. BMC Clin Pathol 14:40.

    Muresan V, Lyass A, Schnapp BJ (1999)e kinesin motor KIF3A is a component of the presynaptic ribbon in vertebrate photoreceptors. J Neurosci 19:1027-1037.

    Parker AK, Le MM, Smith TS, Hoang-Minh LB, Atkinson EW, Ugartemendia G, Semple-Rowland S, Coleman JE, Sarkisian MR (2016) Neonatal seizures induced by pentylenetetrazol or kainic acid disrupt primary cilia growth on developing mouse cortical neurons. Exp Neurol 282:119-127.

    Rhee S, Kirschen GW, Gu Y, Ge S (2016) Depletion of primary cilia from mature dentate granule cells impairs hippocampus-dependent contextual memory. Sci Rep 6:34370.

    Sailor KA, Schinder AF, Lledo PM (2017) Adult neurogenesis beyond the niche: its potential for driving brain plasticity. Curr Opin Neurobiol 42:111-117.

    Sanchez I, Dynlacht BD (2016) Cilium assembly and disassembly. Nat Cell Biol 18:711-717.

    Satir P (1995) Landmarks in cilia research from Leeuwenhoek to us. Cell Motil Cytoskeleton 32:90-94.

    Schmid A, Bai G, Schmid N, Zaccolo M, Ostrowski LE, Conner GE, Fregien N, Salathe M (2006) Real-time analysis of cAMP-mediated regulation of ciliary motility in single primary human airway epithelial cells. J Cell Sci 119:4176-4186.

    Schneider L, Cammer M, Lehman J, Nielsen SK, Guerra CF, Veland IR, Stock C, Hof f mann EK, Yoder BK, Schwab A, Satir P, Christensen ST (2010) Directional cell migration and chemotaxis in wound healing response to PDGF-AA are coordinated by the primary cilium in fibroblasts. Cell Physiol Biochem 25:279-292.

    Teich M (1970) Purkyne and Valentin on ciliary motion: an early investigation in morphological physiology. Br J Hist Sci 5:168-177.

    Tong CK, Han YG, Shah JK, Obernier K, Guinto CD, Alvarez-Buylla A (2014) Primary cilia are required in a unique subpopulation of neural progenitors. Proc Natl Acad Sci U S A 111:12438-12443.

    Wheatley DN, Wang AM, Strugnell GE (1996) Expression of primary cilia in mammalian cells. Cell Biol Int 20:73-81.

    Willaredt MA, Hasenpusch-Theil K, Gardner HA, Kitanovic I, Hirschfeld-Warneken VC, Gojak CP, Gorgas K, Bradford CL, Spatz J, Wolf l S,eil T, Tucker KL (2008) A crucial role for primary cilia in cortical morphogenesis. J Neurosci 28:12887-12900.

    Wong SY, Seol AD, So PL, Ermilov AN, Bichakjian CK, Epstein EH, Jr., Dlugosz AA, Reiter JF (2009) Primary cilia can both mediate and suppress Hedgehog pathway-dependent tumorigenesis. Nat Med 15:1055-1061.

    Yoshimura K, Kawate T, Takeda S (2011) Signaling through the primary cilium af f ects glial cell survival under a stressed environment. Glia 59:333-344.

    Zaghloul NA, Katsanis N (2009) Mechanistic insights into Bardet-Biedl syndrome, a model ciliopathy. J Clin Invest 119:428-437.

    *< class="emphasis_italic">Correspondence to: Qiaojie Xiong, Ph.D., Qiaojie.xiong@stonybrook.edu.

    Qiaojie Xiong, Ph.D., Qiaojie.xiong@stonybrook.edu.

    orcid: 0000-0003-1371-8137 (Gregory W. Kirschen) 0000-0002-9221-860X (Qiaojie Xiong)

    10.4103/1673-5374.213535

    Accepted: 2017-07-11

    在线天堂最新版资源| 欧美极品一区二区三区四区| 国产美女午夜福利| 国产成人aa在线观看| aaaaa片日本免费| www国产在线视频色| svipshipincom国产片| 精品日产1卡2卡| 国产精品久久电影中文字幕| 可以在线观看毛片的网站| 日本一本二区三区精品| 亚洲天堂国产精品一区在线| www.熟女人妻精品国产| 狂野欧美激情性xxxx| 亚洲av第一区精品v没综合| 国产精品女同一区二区软件 | 国内毛片毛片毛片毛片毛片| 色综合亚洲欧美另类图片| 18禁黄网站禁片免费观看直播| 色哟哟哟哟哟哟| av天堂在线播放| 亚洲美女黄片视频| 黄色女人牲交| 九九久久精品国产亚洲av麻豆| 欧美黄色片欧美黄色片| 亚洲av免费在线观看| 在线观看美女被高潮喷水网站 | 欧美又色又爽又黄视频| 午夜福利18| 午夜福利18| 深夜精品福利| 19禁男女啪啪无遮挡网站| 国内揄拍国产精品人妻在线| 91久久精品电影网| 国产精品国产高清国产av| 脱女人内裤的视频| 欧美极品一区二区三区四区| 日韩有码中文字幕| 中亚洲国语对白在线视频| 日韩av在线大香蕉| 亚洲五月天丁香| 免费看十八禁软件| 久久久久九九精品影院| 嫩草影院精品99| 丰满的人妻完整版| 午夜福利18| 一区二区三区高清视频在线| 伊人久久大香线蕉亚洲五| 久久香蕉精品热| 亚洲午夜理论影院| 国产 一区 欧美 日韩| xxxwww97欧美| 免费观看的影片在线观看| 18禁美女被吸乳视频| 国产国拍精品亚洲av在线观看 | 有码 亚洲区| a级毛片a级免费在线| 天堂√8在线中文| 久久久国产精品麻豆| 欧美日韩乱码在线| 日本免费a在线| 久久6这里有精品| 国产亚洲av嫩草精品影院| 18禁黄网站禁片午夜丰满| 性欧美人与动物交配| 日韩欧美国产在线观看| netflix在线观看网站| 免费av不卡在线播放| 国产99白浆流出| 五月伊人婷婷丁香| 久久精品影院6| 制服丝袜大香蕉在线| 欧美成人一区二区免费高清观看| 别揉我奶头~嗯~啊~动态视频| 国产麻豆成人av免费视频| 亚洲人成网站高清观看| 人妻夜夜爽99麻豆av| 波多野结衣高清作品| 亚洲av免费高清在线观看| 国产高清三级在线| 国产免费一级a男人的天堂| 老汉色av国产亚洲站长工具| 午夜激情福利司机影院| 一本综合久久免费| 日韩欧美精品v在线| 欧美一区二区亚洲| 日韩欧美在线二视频| 欧美最新免费一区二区三区 | 97超视频在线观看视频| 成人av在线播放网站| 啦啦啦韩国在线观看视频| 一进一出抽搐gif免费好疼| 亚洲av日韩精品久久久久久密| 99久久精品国产亚洲精品| 中文资源天堂在线| 国产伦精品一区二区三区视频9 | 一级黄色大片毛片| 床上黄色一级片| 熟女人妻精品中文字幕| 9191精品国产免费久久| 国产蜜桃级精品一区二区三区| 久久久久国内视频| 国产色婷婷99| 中文字幕av成人在线电影| 18禁在线播放成人免费| 国产在视频线在精品| 成人特级黄色片久久久久久久| 久久久久久久久久黄片| 99在线视频只有这里精品首页| 国产精品电影一区二区三区| 久久久久亚洲av毛片大全| 一个人免费在线观看电影| 亚洲av不卡在线观看| 国产乱人伦免费视频| 国产精品一及| 两人在一起打扑克的视频| 伊人久久精品亚洲午夜| 成年女人看的毛片在线观看| 成年女人看的毛片在线观看| 久久久久久人人人人人| 日本免费一区二区三区高清不卡| 国产高清视频在线观看网站| 色视频www国产| 国产精品乱码一区二三区的特点| 日本精品一区二区三区蜜桃| 国产69精品久久久久777片| 在线十欧美十亚洲十日本专区| 免费在线观看亚洲国产| 婷婷亚洲欧美| 99在线人妻在线中文字幕| aaaaa片日本免费| 波多野结衣巨乳人妻| av中文乱码字幕在线| 一夜夜www| 蜜桃久久精品国产亚洲av| 欧美三级亚洲精品| 搡老妇女老女人老熟妇| 两个人看的免费小视频| 欧美av亚洲av综合av国产av| 丝袜美腿在线中文| 精品人妻一区二区三区麻豆 | 亚洲aⅴ乱码一区二区在线播放| av黄色大香蕉| 国产高清视频在线播放一区| 亚洲av熟女| 九色国产91popny在线| 日韩欧美 国产精品| 国产一区二区三区在线臀色熟女| 亚洲第一电影网av| 身体一侧抽搐| 亚洲七黄色美女视频| www.熟女人妻精品国产| 一区二区三区高清视频在线| 老鸭窝网址在线观看| 九色国产91popny在线| 成人国产一区最新在线观看| 国模一区二区三区四区视频| 好看av亚洲va欧美ⅴa在| 男女下面进入的视频免费午夜| 国产亚洲精品久久久com| 亚洲午夜理论影院| 88av欧美| 少妇的丰满在线观看| 欧美最新免费一区二区三区 | 国产精品女同一区二区软件 | 国产v大片淫在线免费观看| 一级黄色大片毛片| 午夜福利免费观看在线| 老司机福利观看| 欧美三级亚洲精品| 听说在线观看完整版免费高清| 国产成人啪精品午夜网站| 1000部很黄的大片| 精品免费久久久久久久清纯| 国产综合懂色| 亚洲国产精品999在线| 久久天躁狠狠躁夜夜2o2o| 免费观看精品视频网站| 最新中文字幕久久久久| 在线看三级毛片| 欧美最新免费一区二区三区 | 91在线精品国自产拍蜜月 | 舔av片在线| 欧美中文综合在线视频| 神马国产精品三级电影在线观看| 成人无遮挡网站| av专区在线播放| 日韩成人在线观看一区二区三区| 桃红色精品国产亚洲av| 中文资源天堂在线| 91麻豆精品激情在线观看国产| 美女 人体艺术 gogo| 老熟妇乱子伦视频在线观看| 国产精品爽爽va在线观看网站| 色av中文字幕| 国产三级中文精品| 男插女下体视频免费在线播放| 在线播放无遮挡| 亚洲美女视频黄频| 97超级碰碰碰精品色视频在线观看| 一个人看的www免费观看视频| АⅤ资源中文在线天堂| 亚洲国产精品久久男人天堂| 日本五十路高清| 母亲3免费完整高清在线观看| 国产探花在线观看一区二区| 久久这里只有精品中国| 很黄的视频免费| 成年版毛片免费区| 天天添夜夜摸| 美女高潮的动态| 最近最新中文字幕大全电影3| 亚洲av成人av| 在线观看美女被高潮喷水网站 | 伊人久久大香线蕉亚洲五| 国产三级在线视频| 国产欧美日韩精品亚洲av| 天天躁日日操中文字幕| 国产成人影院久久av| 99久久综合精品五月天人人| 尤物成人国产欧美一区二区三区| 国产精品99久久久久久久久| 欧美又色又爽又黄视频| 美女黄网站色视频| 叶爱在线成人免费视频播放| 国内精品久久久久久久电影| 国产亚洲精品av在线| 悠悠久久av| 97碰自拍视频| 国产av不卡久久| 午夜老司机福利剧场| 别揉我奶头~嗯~啊~动态视频| 婷婷丁香在线五月| 国产精品一区二区免费欧美| 亚洲在线观看片| 欧美精品啪啪一区二区三区| 成人特级黄色片久久久久久久| 搡女人真爽免费视频火全软件 | 深夜精品福利| 色播亚洲综合网| 一级黄片播放器| 免费观看精品视频网站| 麻豆久久精品国产亚洲av| 日韩成人在线观看一区二区三区| 深夜精品福利| 国产日本99.免费观看| 真实男女啪啪啪动态图| 久久精品国产综合久久久| 亚洲专区中文字幕在线| 久久亚洲精品不卡| 免费高清视频大片| 男女之事视频高清在线观看| 亚洲人成网站在线播| www日本在线高清视频| 久久精品人妻少妇| 熟女少妇亚洲综合色aaa.| 欧美最新免费一区二区三区 | 99国产精品一区二区三区| 亚洲自拍偷在线| 制服丝袜大香蕉在线| 麻豆国产av国片精品| 桃色一区二区三区在线观看| 看片在线看免费视频| 精品电影一区二区在线| 19禁男女啪啪无遮挡网站| 老鸭窝网址在线观看| 精品久久久久久久久久久久久| 成人特级黄色片久久久久久久| 精品久久久久久久毛片微露脸| 国产精品一区二区免费欧美| 精品国产美女av久久久久小说| 欧美色欧美亚洲另类二区| 日本黄大片高清| 免费人成视频x8x8入口观看| 国产免费男女视频| 国产一区二区三区在线臀色熟女| 免费一级毛片在线播放高清视频| 波多野结衣高清作品| 国内久久婷婷六月综合欲色啪| 无遮挡黄片免费观看| 好男人在线观看高清免费视频| 国产精品98久久久久久宅男小说| 亚洲av第一区精品v没综合| 一区二区三区国产精品乱码| 亚洲熟妇中文字幕五十中出| 久久久久精品国产欧美久久久| 午夜影院日韩av| 亚洲人成电影免费在线| 国产99白浆流出| 夜夜爽天天搞| www日本在线高清视频| 欧美性猛交黑人性爽| 国产又黄又爽又无遮挡在线| 婷婷六月久久综合丁香| 老司机福利观看| 免费看a级黄色片| 成人性生交大片免费视频hd| 国产高潮美女av| 午夜免费激情av| 欧美日韩精品网址| 男女视频在线观看网站免费| 成年版毛片免费区| 91久久精品国产一区二区成人 | 久久精品夜夜夜夜夜久久蜜豆| 女人被狂操c到高潮| 97碰自拍视频| 狂野欧美白嫩少妇大欣赏| 亚洲中文字幕一区二区三区有码在线看| 欧美黑人巨大hd| 天天一区二区日本电影三级| 69人妻影院| 亚洲无线观看免费| 综合色av麻豆| netflix在线观看网站| 国产黄a三级三级三级人| 最近最新中文字幕大全电影3| 热99在线观看视频| 欧美极品一区二区三区四区| 国产不卡一卡二| 成年免费大片在线观看| 亚洲真实伦在线观看| 国产精品美女特级片免费视频播放器| 人妻夜夜爽99麻豆av| 午夜免费激情av| 黄色日韩在线| 18美女黄网站色大片免费观看| 欧美激情久久久久久爽电影| 日韩av在线大香蕉| 国产精品99久久99久久久不卡| 狠狠狠狠99中文字幕| 在线国产一区二区在线| 最近视频中文字幕2019在线8| 欧美最黄视频在线播放免费| 久久精品影院6| 99热这里只有是精品50| 高清日韩中文字幕在线| 国产久久久一区二区三区| 色噜噜av男人的天堂激情| 蜜桃亚洲精品一区二区三区| 久久欧美精品欧美久久欧美| 热99re8久久精品国产| 日本撒尿小便嘘嘘汇集6| 国产极品精品免费视频能看的| 久久精品91无色码中文字幕| 99视频精品全部免费 在线| 老鸭窝网址在线观看| 婷婷亚洲欧美| 色精品久久人妻99蜜桃| 黄色日韩在线| 99riav亚洲国产免费| 亚洲国产精品合色在线| 国产伦人伦偷精品视频| 欧美乱色亚洲激情| 欧美成人性av电影在线观看| 亚洲最大成人中文| 狠狠狠狠99中文字幕| 国产探花极品一区二区| 国产伦人伦偷精品视频| 又黄又爽又免费观看的视频| 国产精品 国内视频| 国内精品一区二区在线观看| 男女视频在线观看网站免费| 麻豆成人av在线观看| 女人十人毛片免费观看3o分钟| 国产精品乱码一区二三区的特点| 免费人成视频x8x8入口观看| 在线观看66精品国产| 99久久无色码亚洲精品果冻| 欧美日韩综合久久久久久 | 国产主播在线观看一区二区| 校园春色视频在线观看| 国内揄拍国产精品人妻在线| 尤物成人国产欧美一区二区三区| 欧美黄色片欧美黄色片| 成人一区二区视频在线观看| 淫秽高清视频在线观看| 中文资源天堂在线| а√天堂www在线а√下载| 亚洲最大成人中文| 天天躁日日操中文字幕| 午夜两性在线视频| 好男人在线观看高清免费视频| 老汉色∧v一级毛片| 国产亚洲精品久久久com| 欧美日韩综合久久久久久 | 欧美黑人欧美精品刺激| 日韩大尺度精品在线看网址| 有码 亚洲区| 午夜视频国产福利| 欧美性猛交黑人性爽| 亚洲成av人片在线播放无| 成人特级av手机在线观看| 亚洲午夜理论影院| 亚洲欧美一区二区三区黑人| 欧美不卡视频在线免费观看| 久久精品91无色码中文字幕| 国产一级毛片七仙女欲春2| 国产精品嫩草影院av在线观看 | 久久久精品大字幕| 亚洲av日韩精品久久久久久密| 看黄色毛片网站| 亚洲无线在线观看| 国产亚洲精品一区二区www| 一个人免费在线观看电影| 一个人看视频在线观看www免费 | 亚洲国产高清在线一区二区三| 亚洲最大成人手机在线| 一个人看的www免费观看视频| 18美女黄网站色大片免费观看| 午夜两性在线视频| 在线观看免费午夜福利视频| 久久久久亚洲av毛片大全| 日本黄色片子视频| 日本 av在线| 欧美3d第一页| 欧美bdsm另类| 亚洲第一电影网av| 亚洲熟妇中文字幕五十中出| 午夜日韩欧美国产| 天美传媒精品一区二区| 欧美不卡视频在线免费观看| 男插女下体视频免费在线播放| av在线蜜桃| 久9热在线精品视频| 成人国产一区最新在线观看| 狂野欧美激情性xxxx| 一区福利在线观看| 国产成人a区在线观看| 波多野结衣高清作品| 精品久久久久久久人妻蜜臀av| 欧美性猛交╳xxx乱大交人| 中文字幕av在线有码专区| 99在线人妻在线中文字幕| 18+在线观看网站| 免费看美女性在线毛片视频| 国产精品99久久99久久久不卡| 桃红色精品国产亚洲av| 中文字幕av成人在线电影| e午夜精品久久久久久久| 欧美av亚洲av综合av国产av| 国产av一区在线观看免费| 精品国产美女av久久久久小说| 亚洲在线自拍视频| 成人特级av手机在线观看| 熟妇人妻久久中文字幕3abv| 最近最新中文字幕大全免费视频| 久久久久免费精品人妻一区二区| 九色成人免费人妻av| 脱女人内裤的视频| 免费看美女性在线毛片视频| av福利片在线观看| 国产精品嫩草影院av在线观看 | 亚洲国产日韩欧美精品在线观看 | 免费无遮挡裸体视频| 久久久久国内视频| 中文字幕av成人在线电影| 久久久国产成人精品二区| 国产精品av视频在线免费观看| 国产精品一区二区免费欧美| 中文字幕熟女人妻在线| 国产乱人伦免费视频| 成年人黄色毛片网站| 波多野结衣高清无吗| 国产精品亚洲av一区麻豆| 婷婷六月久久综合丁香| 99精品在免费线老司机午夜| 性色av乱码一区二区三区2| av福利片在线观看| 久99久视频精品免费| 无遮挡黄片免费观看| 国产精品永久免费网站| 天堂√8在线中文| 亚洲无线观看免费| 一边摸一边抽搐一进一小说| av在线蜜桃| 午夜激情福利司机影院| 亚洲精品成人久久久久久| 法律面前人人平等表现在哪些方面| 久久婷婷人人爽人人干人人爱| 男女那种视频在线观看| 久久久久久国产a免费观看| 亚洲va日本ⅴa欧美va伊人久久| 午夜福利在线观看吧| 一进一出抽搐gif免费好疼| 又爽又黄无遮挡网站| 香蕉av资源在线| 欧美最黄视频在线播放免费| 男女之事视频高清在线观看| 亚洲国产高清在线一区二区三| 51国产日韩欧美| 一进一出抽搐gif免费好疼| 免费看日本二区| 国产欧美日韩一区二区三| 天堂av国产一区二区熟女人妻| 91在线精品国自产拍蜜月 | e午夜精品久久久久久久| 久久亚洲精品不卡| 99久久精品一区二区三区| 狠狠狠狠99中文字幕| 动漫黄色视频在线观看| 国内精品久久久久久久电影| 国产蜜桃级精品一区二区三区| 国产欧美日韩精品一区二区| 欧美激情在线99| 亚洲 欧美 日韩 在线 免费| av女优亚洲男人天堂| 国产男靠女视频免费网站| www.熟女人妻精品国产| 九九热线精品视视频播放| 白带黄色成豆腐渣| 久9热在线精品视频| 美女大奶头视频| 黑人欧美特级aaaaaa片| 我要搜黄色片| 亚洲精品在线美女| 少妇的丰满在线观看| 日韩欧美三级三区| 无限看片的www在线观看| 国模一区二区三区四区视频| 午夜福利在线在线| 亚洲国产精品久久男人天堂| 色综合站精品国产| 免费av不卡在线播放| 午夜激情欧美在线| 国产精品久久久久久精品电影| 中文字幕高清在线视频| 99久久无色码亚洲精品果冻| 在线观看av片永久免费下载| 老司机福利观看| 99在线人妻在线中文字幕| 国内精品一区二区在线观看| 亚洲国产色片| 国内揄拍国产精品人妻在线| 午夜视频国产福利| 国模一区二区三区四区视频| 国产男靠女视频免费网站| 一本精品99久久精品77| 亚洲狠狠婷婷综合久久图片| 男人舔女人下体高潮全视频| 高潮久久久久久久久久久不卡| 一二三四社区在线视频社区8| 国产精品电影一区二区三区| а√天堂www在线а√下载| 三级国产精品欧美在线观看| 少妇人妻精品综合一区二区 | 国产真实伦视频高清在线观看 | 亚洲国产中文字幕在线视频| 国产黄a三级三级三级人| 手机成人av网站| 久久久国产成人免费| 色噜噜av男人的天堂激情| 国产av麻豆久久久久久久| 久久亚洲真实| 久久久久亚洲av毛片大全| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 香蕉丝袜av| 国产极品精品免费视频能看的| 蜜桃亚洲精品一区二区三区| 床上黄色一级片| 一个人看的www免费观看视频| 中文字幕精品亚洲无线码一区| 亚洲激情在线av| 久久精品亚洲精品国产色婷小说| 午夜福利视频1000在线观看| 18禁黄网站禁片免费观看直播| 成人欧美大片| 一个人观看的视频www高清免费观看| 91久久精品电影网| 色尼玛亚洲综合影院| 99在线人妻在线中文字幕| 欧美高清成人免费视频www| 69人妻影院| 变态另类成人亚洲欧美熟女| 久久久久久久精品吃奶| 特级一级黄色大片| 两个人视频免费观看高清| 亚洲精品一卡2卡三卡4卡5卡| 欧美在线一区亚洲| 日韩中文字幕欧美一区二区| 亚洲成av人片免费观看| 伊人久久大香线蕉亚洲五| www国产在线视频色| 亚洲成人中文字幕在线播放| www.熟女人妻精品国产| 国产精品一区二区三区四区久久| 两性午夜刺激爽爽歪歪视频在线观看| 精品熟女少妇八av免费久了| 精品国产美女av久久久久小说| 成人永久免费在线观看视频| 久久午夜亚洲精品久久| 精品国产三级普通话版| 中文资源天堂在线| 欧美色视频一区免费| 最新中文字幕久久久久| 欧美日本视频| 久久性视频一级片| 久久精品夜夜夜夜夜久久蜜豆| 91在线观看av| 最近在线观看免费完整版| 男女下面进入的视频免费午夜| 99久久99久久久精品蜜桃| 久久午夜亚洲精品久久| 亚洲美女视频黄频| 亚洲一区二区三区不卡视频| 一级作爱视频免费观看| 久久这里只有精品中国| 国产伦一二天堂av在线观看| 真人一进一出gif抽搐免费| 男女下面进入的视频免费午夜| 91在线观看av| 精品一区二区三区视频在线 | 制服人妻中文乱码| 51午夜福利影视在线观看| 亚洲av成人不卡在线观看播放网| 国产 一区 欧美 日韩|