李潤(rùn)澤, 張宇飛, 陳海昕(清華大學(xué) 航天航空學(xué)院, 北京 100084)
“人在回路”思想在飛機(jī)氣動(dòng)優(yōu)化設(shè)計(jì)中演變與發(fā)展
李潤(rùn)澤, 張宇飛, 陳海昕*
(清華大學(xué) 航天航空學(xué)院, 北京 100084)
近年來優(yōu)化設(shè)計(jì)得到了大量的研究和發(fā)展,多學(xué)科、多設(shè)計(jì)點(diǎn)、多目標(biāo)、多約束、魯棒優(yōu)化等優(yōu)化算法已經(jīng)相對(duì)成熟,但這些算法在工程設(shè)計(jì)中的實(shí)際應(yīng)用尚有諸多困難。從優(yōu)化在工程設(shè)計(jì)中應(yīng)用的發(fā)展歷程及其遇到的問題入手,介紹“人在回路”作為一種面向工程的優(yōu)化設(shè)計(jì)思想的內(nèi)涵、實(shí)施方式和歷史沿革。以氣動(dòng)優(yōu)化設(shè)計(jì)為例闡述“人在回路”思想在優(yōu)化設(shè)計(jì)各個(gè)環(huán)節(jié)中的實(shí)現(xiàn)方式和表現(xiàn)。另一方面,當(dāng)下人工智能的發(fā)展使得計(jì)算機(jī)在非線性映射構(gòu)建、數(shù)據(jù)挖掘等方面體現(xiàn)出了超越人能力的性能,從而進(jìn)一步探討人工智能在優(yōu)化設(shè)計(jì)中替代“人在回路”的作用,分析面向工程的優(yōu)化設(shè)計(jì)幾個(gè)可能的發(fā)展方向。
空氣動(dòng)力學(xué);優(yōu)化設(shè)計(jì);人在回路;人工智能
過去幾十年隨著計(jì)算機(jī)和數(shù)值方法、優(yōu)化算法的迅猛發(fā)展,也隨著對(duì)飛機(jī)性能的要求越來越先進(jìn)、復(fù)雜,飛機(jī)設(shè)計(jì)從依賴于風(fēng)洞實(shí)驗(yàn)和試湊(cut-and-try)的狀態(tài)向基于CFD計(jì)算的性能分析和基于優(yōu)化的自動(dòng)化設(shè)計(jì)的方向發(fā)展,優(yōu)化方法在飛機(jī)設(shè)計(jì)中的起到的積極作用已不可否認(rèn)。然而優(yōu)化和設(shè)計(jì)這兩個(gè)概念在指導(dǎo)思想和關(guān)注重點(diǎn)上畢竟存在著一定差距,加之一些其它的原因,使得先進(jìn)的優(yōu)化方法在工程設(shè)計(jì)實(shí)際中應(yīng)用仍然受限。
計(jì)算領(lǐng)域的優(yōu)化(或最優(yōu)化方法,以單目標(biāo)優(yōu)化為例)指在可行域中搜索最優(yōu)解的過程,其數(shù)學(xué)形式為
minF(x)
s.t.x∈D
一般稱通過優(yōu)化獲得設(shè)計(jì)結(jié)果的過程為優(yōu)化設(shè)計(jì)。本文討論的優(yōu)化設(shè)計(jì)是以最優(yōu)化理論為基礎(chǔ),根據(jù)設(shè)計(jì)所追求的性能目標(biāo)建立目標(biāo)函數(shù),在滿足給定的約束體系下,通過計(jì)算機(jī)搜索最優(yōu)設(shè)計(jì)方案的過程,其基本過程符合圖1描述的回路:首先定義優(yōu)化目標(biāo)及約束,提供初始設(shè)計(jì)樣本進(jìn)行計(jì)算;得到樣本幾何、性能與約束、目標(biāo)之間的差異,利用優(yōu)化算法得到新的設(shè)計(jì);進(jìn)而計(jì)算新樣本性能并得到新的差異,判斷優(yōu)化是否收斂或者是否產(chǎn)生滿足設(shè)計(jì)人員期望的設(shè)計(jì),如果是則停止優(yōu)化,否則繼續(xù)優(yōu)化回路。
圖1 優(yōu)化設(shè)計(jì)回路Fig.1 Optimization design flow chart
雖然最優(yōu)化方法的數(shù)學(xué)定義理論上可以涵蓋所有的目標(biāo)和約束,能夠完全按照上述回路封閉、自動(dòng)地運(yùn)行。然而在工程應(yīng)用中,優(yōu)化目標(biāo)F、設(shè)計(jì)變量x、可行域D(對(duì)x的約束涵蓋在D中,但其他類型的約束在此定義下無法表達(dá))的定義往往存在很多困難,不但過多的目標(biāo)和約束會(huì)導(dǎo)致優(yōu)化循環(huán)難以收斂或獲得有效解,而且很多工程約束更是難以給出數(shù)學(xué)表達(dá)。因此目前工程中的優(yōu)化設(shè)計(jì)的目標(biāo)、約束體系相較于工程設(shè)計(jì)的期望而言往往過于簡(jiǎn)化,甚至不盡合理,因而很多時(shí)候優(yōu)化設(shè)計(jì)的結(jié)果并不具有工程實(shí)際意義。
“人在回路”一詞最早出現(xiàn)在反設(shè)計(jì)方法研究中,其目的在于表述人在設(shè)計(jì)迭代中的參與。之后“人在回路”的內(nèi)涵不斷充實(shí)和調(diào)整。本文中定義為:優(yōu)化過程中,對(duì)不便直接體現(xiàn)在優(yōu)化約束與目標(biāo)中的工程設(shè)計(jì)要求,通過人在設(shè)計(jì)循環(huán)中對(duì)優(yōu)化目標(biāo)、約束、方法、樣本等的監(jiān)視、判斷和調(diào)整來加以引入?!叭嗽诨芈贰崩谩叭恕备朴诰C合、模糊判斷的優(yōu)勢(shì),通過將人工經(jīng)驗(yàn)與自動(dòng)優(yōu)化相結(jié)合,在使優(yōu)化結(jié)果更加符合工程實(shí)踐要求的同時(shí),可能提高優(yōu)化效率。
本文第一節(jié)介紹優(yōu)化設(shè)計(jì)的發(fā)展過程和困難,第二節(jié)解釋“人在回路”的內(nèi)涵和作用,第三節(jié)介紹“人在回路”目前發(fā)展趨勢(shì)和較有前景的研究方向,第四節(jié)展望“人在回路”未來研究重點(diǎn)并討論可能的實(shí)現(xiàn)手段。
自飛機(jī)發(fā)明以來,其設(shè)計(jì)方法不斷演變,從試湊與經(jīng)驗(yàn)總結(jié)中一步步發(fā)展,創(chuàng)造了一系列經(jīng)典與突破。自20世紀(jì)八九十年代起,優(yōu)化、反設(shè)計(jì)等方法逐漸應(yīng)用于飛行器研究中,隨著計(jì)算機(jī)計(jì)算能力的迅猛發(fā)展,優(yōu)化方法得到了長(zhǎng)足的發(fā)展。然而長(zhǎng)期以來,優(yōu)化在實(shí)際工程設(shè)計(jì)中發(fā)揮的作用仍不如人意,存在諸多困難和障礙。這些困難和障礙使得單純依靠?jī)?yōu)化很難獲得滿足工程需求的設(shè)計(jì)方案,也阻礙了優(yōu)化設(shè)計(jì)更好地替代工程師的工作。
1.1 優(yōu)化設(shè)計(jì)的發(fā)展
在計(jì)算機(jī)大規(guī)模應(yīng)用之前,工程設(shè)計(jì)只能依賴于簡(jiǎn)單的理論公式、繁復(fù)的實(shí)驗(yàn)數(shù)據(jù)和“只能意會(huì)”的經(jīng)驗(yàn),設(shè)計(jì)師通過積累的數(shù)據(jù)和經(jīng)驗(yàn)進(jìn)行試湊,不斷取舍、判斷、權(quán)衡,以期達(dá)到要求。即圖 1的設(shè)計(jì)回路中,尋優(yōu)任務(wù)由人完成,可以說人不但“在回路”,幾乎“就是回路”。這一方面使得飛機(jī)設(shè)計(jì)成功與否取決于設(shè)計(jì)師的經(jīng)驗(yàn)、認(rèn)識(shí)甚至個(gè)性,另一方面也使得設(shè)計(jì)師的成長(zhǎng)和經(jīng)驗(yàn)的繼承變得愈發(fā)困難。
在飛機(jī)設(shè)計(jì)嚴(yán)重依賴于人的同時(shí),飛機(jī)變得越來越復(fù)雜、精密,設(shè)計(jì)團(tuán)隊(duì)越來越龐大。萊特兄弟以兩人之力創(chuàng)造了“飛行者一號(hào)”,后來Kelly Johnson帶領(lǐng)一個(gè)十幾人的小團(tuán)隊(duì)設(shè)計(jì)了F-80,而在設(shè)計(jì)波音747時(shí),Joe Sutter的設(shè)計(jì)團(tuán)隊(duì)卻從幾百人最終膨脹到4500人[1]。在現(xiàn)代飛機(jī)設(shè)計(jì)中,追求極致導(dǎo)致關(guān)注的問題、關(guān)聯(lián)的學(xué)科、設(shè)計(jì)的對(duì)象、涉及的規(guī)律、積累的數(shù)據(jù)不斷增多,在這種“一切影響其他一切”(everything affects everything else[1])的復(fù)雜工程中,需要應(yīng)對(duì)的問題開始超出人所能處理的極限。因此,基于計(jì)算機(jī)的優(yōu)化方法和數(shù)據(jù)挖掘方法逐漸應(yīng)用于飛機(jī)設(shè)計(jì)中,并取得了長(zhǎng)足的發(fā)展。
在20世紀(jì)八九十年代,優(yōu)化或計(jì)算機(jī)輔助設(shè)計(jì)的早期發(fā)展階段,計(jì)算機(jī)仍只能處理實(shí)驗(yàn)-理論/經(jīng)驗(yàn)公式計(jì)算[2]、基于線性速度勢(shì)方程的面元法[3-5]、亞聲速不可壓流動(dòng)基于渦升力理論的渦格法[6-8]等程序。當(dāng)時(shí)工程型號(hào)尚不過于復(fù)雜,研究或設(shè)計(jì)往往以獲得某方面最優(yōu)性能為目標(biāo),即便如此,人已經(jīng)表現(xiàn)出效率低、速度慢、認(rèn)識(shí)局限的不足。而計(jì)算機(jī)程序已經(jīng)可以很大程度減輕人的工作強(qiáng)度,并獲得更好的結(jié)果。因此針對(duì)“人就是回路”的現(xiàn)實(shí),當(dāng)時(shí)研究的目標(biāo)是盡量把人“逐出”“回路”,用計(jì)算機(jī)代替“人”以加快優(yōu)化速率和效果[9-10]。
這一階段人們發(fā)展出了反設(shè)計(jì)方法、反優(yōu)化方法和早期的直接優(yōu)化方法[11]。盡管根本出發(fā)點(diǎn)是減少人的工作,但由于技術(shù)尚不成熟,這些方法中仍需要大量人的介入,也為后來“人在回路”的回歸埋下了伏筆。
最初的反設(shè)計(jì)方法(inverse method)中設(shè)計(jì)師提出目標(biāo)壓力分布,通過求解輔助方程(auxiliary equation)變形幾何使其壓力分布逼近目標(biāo)[12-14],設(shè)計(jì)成功與否取決于設(shè)計(jì)師給出的目標(biāo)壓力分布是否合理。雖然反設(shè)計(jì)方法基于的控制方程從二維、勢(shì)流方程發(fā)展到了三維、Euler方程,但仍然只能用于設(shè)計(jì)簡(jiǎn)單部件[15-17],一方面是由于計(jì)算能力的限制,另一方面也在于設(shè)計(jì)師不可能給出復(fù)雜構(gòu)型的符合流體力學(xué)方程的壓力分布。
隨著優(yōu)化算法的發(fā)展,人們嘗試優(yōu)化出更優(yōu)的壓力分布來作為反設(shè)計(jì)的目標(biāo),從而發(fā)展出了反優(yōu)化方法(inverse numerical optimization)[18-21]。反優(yōu)化方法的發(fā)展有多方面考慮:一是優(yōu)化算法得到了一定發(fā)展,遺傳算法、模擬退火等隨機(jī)搜索方法和梯度算法開始應(yīng)用于飛機(jī)設(shè)計(jì)[22];二是計(jì)算能力有限導(dǎo)致不能直接應(yīng)用直接優(yōu)化方法(direct numerical optimization)[21];三是在復(fù)雜要求下,設(shè)計(jì)師很難直接給出較優(yōu)的合理目標(biāo)壓力分布[23]。因而反優(yōu)化方法以壓力分布作為優(yōu)化對(duì)象,在給定的升力、力矩、環(huán)量分布等約束下優(yōu)化壓力分布[21,23],得到最優(yōu)壓力分布后,用反設(shè)計(jì)方法得到相應(yīng)幾何設(shè)計(jì)。為得到合理的目標(biāo)壓力分布和幾何,需要提出相應(yīng)的約束,如要求壓力分布曲線要在后緣保證后加載強(qiáng)度,或局部滿足斜率限制以避免流動(dòng)分離,以及其它方面的合理性等[21,23-24]。
不同于反優(yōu)化以壓力分布為對(duì)象、反設(shè)計(jì)以壓力分布為目標(biāo),目前流行的空氣動(dòng)力學(xué)直接優(yōu)化方法通常將幾何作為優(yōu)化對(duì)象,用流場(chǎng)計(jì)算獲得的性能指標(biāo)來構(gòu)造適應(yīng)度函數(shù)。在復(fù)雜問題面前,人在試湊設(shè)計(jì)中常表現(xiàn)出顧此失彼、因循守舊、記憶力差、認(rèn)識(shí)局限、搜索空間小等局限,直接優(yōu)化方法則相應(yīng)地展現(xiàn)出其優(yōu)勢(shì)[25-29],并隨著計(jì)算能力的提高,迅速得到了研究發(fā)展。但迄今為止,大部分發(fā)表的工作主要集中于優(yōu)化算法的發(fā)展和應(yīng)用[30-34]。直至近期,研究者的關(guān)注點(diǎn)才逐漸向優(yōu)化算法在復(fù)雜工程實(shí)際設(shè)計(jì)中的應(yīng)用策略轉(zhuǎn)移。人們?cè)诙鄬W(xué)科、多設(shè)計(jì)點(diǎn)、多目標(biāo)、魯邦優(yōu)化方面進(jìn)行大量研究,以期通過優(yōu)化手段獲得均衡、全面的性能。
多學(xué)科、多點(diǎn)、多目標(biāo)優(yōu)化等概念雖然在最初階段含義不盡相同,但最終殊途同歸,都一定程度上轉(zhuǎn)化為多目標(biāo)優(yōu)化問題。多學(xué)科在最初僅指考慮多學(xué)科之間耦合效應(yīng)的設(shè)計(jì),當(dāng)時(shí)由于計(jì)算能力的限制往往停留于概念或簡(jiǎn)單部件的研究[35],并未大量使用優(yōu)化算法,相關(guān)發(fā)展可以參見綜述[36-37]。隨著優(yōu)化算法和計(jì)算機(jī)的發(fā)展,多學(xué)科優(yōu)化實(shí)質(zhì)上趨向于將多學(xué)科性能直接作為多個(gè)目標(biāo),或考慮多學(xué)科耦合效應(yīng)形成多個(gè)組合目標(biāo)的多目標(biāo)優(yōu)化問題[28,38-41]。
多點(diǎn)設(shè)計(jì)的目的在于不同飛行工況下性能的均衡穩(wěn)定[42-43],這一思想早在反設(shè)計(jì)階段就已經(jīng)得到應(yīng)用。不過最初在兩個(gè)設(shè)計(jì)點(diǎn)分別反設(shè)計(jì),再依據(jù)小擾動(dòng)理論線性加權(quán)疊加的做法[44]很快就被淘汰;隨后出現(xiàn)了將當(dāng)前壓力分布與目標(biāo)壓力分布間的差異在兩個(gè)設(shè)計(jì)點(diǎn)分別計(jì)算后加權(quán),再用最小二乘法進(jìn)行反設(shè)計(jì)的嘗試[45];目前直接優(yōu)化方法中,早期是將多設(shè)計(jì)點(diǎn)目標(biāo)加權(quán)后轉(zhuǎn)成單目標(biāo)優(yōu)化[42,46-47],后來才開始使用更加先進(jìn)的多目標(biāo)優(yōu)化手段[48-51]。
多目標(biāo)優(yōu)化技術(shù)同樣在反設(shè)計(jì)時(shí)期起步[52-53],并在優(yōu)化設(shè)計(jì)中得到了廣泛應(yīng)用[54-57]。目前多目標(biāo)優(yōu)化主要有三類:應(yīng)用最早的多目標(biāo)加權(quán)為單目標(biāo)的優(yōu)化,應(yīng)用最廣泛的基于帕雷托前緣的優(yōu)化和新興的基于博弈理論(如Nash均衡)或其他人工智能[58]的優(yōu)化。多目標(biāo)加權(quán)方法[59]雖然簡(jiǎn)單,但一般只在明確知道合理的權(quán)重時(shí)有效,優(yōu)化效果也顯著依賴于權(quán)重選擇[60]。Shaffer于1985年首先提出了一種多目標(biāo)遺傳算法[61],隨后Goldberg發(fā)展出了基于帕雷托前緣的優(yōu)化方法[62],并得到了充分發(fā)展[63-66],詳細(xì)內(nèi)容可見綜述[67]。目前基于帕雷托前緣的多目標(biāo)優(yōu)化方法發(fā)展成熟,已經(jīng)廣泛應(yīng)用于實(shí)際應(yīng)用中,但不可否認(rèn)的是這種方法帶來的性能評(píng)估計(jì)算量迅速增加和收斂困難仍是一大挑戰(zhàn)。
魯棒性本身有多種表述[68-70],本文采用同文獻(xiàn)[70]相同的描述:魯棒性是系統(tǒng)對(duì)環(huán)境和系統(tǒng)本身變化的響應(yīng)不敏感的程度(The degree of tolerance of the system to be insensitive to variations in both the system itself and the environment.)[71]。魯棒性設(shè)計(jì)優(yōu)化是由Genichi Taguchi首先提出的用于提高產(chǎn)品魯棒性的設(shè)計(jì)方法[70],目前有一些文章中的魯棒性優(yōu)化指的是優(yōu)化方法的魯棒性[72-73],本文中不予考慮。
傳統(tǒng)的直接優(yōu)化方法往往過分追求設(shè)計(jì)點(diǎn)的性能,卻導(dǎo)致了糟糕的非設(shè)計(jì)點(diǎn)特性[69],因此魯棒優(yōu)化在實(shí)際工程設(shè)計(jì)中顯得十分重要。Taguchi的關(guān)注重點(diǎn)在于減少產(chǎn)品間的差異以提高產(chǎn)品質(zhì)量[74-76],與氣動(dòng)設(shè)計(jì)的魯棒性不同而且存在一定的局限性[77-78],隨后Welch等用計(jì)算機(jī)實(shí)驗(yàn)嘗試替代Taguchi方法[79-80],但效果有限;后續(xù)又發(fā)展出用極小極大策略避免最壞情形[78-82]和利用貝葉斯風(fēng)險(xiǎn)最小化來提高一定不確定范圍內(nèi)性能的方法[83-84];目前比較流行的方法是基于不確定設(shè)計(jì)的魯棒性優(yōu)化,具體發(fā)展可詳見綜述[70]。不確定設(shè)計(jì)方法通過設(shè)計(jì)點(diǎn)鄰域的性能期望和方差來表征魯棒性,最初的研究發(fā)現(xiàn)單獨(dú)優(yōu)化期望會(huì)導(dǎo)致非魯棒結(jié)果,單獨(dú)優(yōu)化方差則無法有效提升性能,因此需要進(jìn)行期望-方差的多目標(biāo)優(yōu)化,使用的多目標(biāo)優(yōu)化方法與上文類似,更多內(nèi)容可參考文獻(xiàn)[69]。但顯然魯棒優(yōu)化對(duì)計(jì)算量的增加是相當(dāng)可觀的。
1.2 優(yōu)化設(shè)計(jì)的困難
優(yōu)化算法近年來已取得巨大的發(fā)展,但優(yōu)化設(shè)計(jì)在工程設(shè)計(jì)中的應(yīng)用卻與之不太相稱。目前的飛行器氣動(dòng)設(shè)計(jì),優(yōu)化設(shè)計(jì)往往僅應(yīng)用于簡(jiǎn)單部件,或淪為“設(shè)計(jì)優(yōu)化”——在手動(dòng)設(shè)計(jì)基本完成后在其基礎(chǔ)上進(jìn)行小幅度的優(yōu)化改進(jìn)。真正利用優(yōu)化完成設(shè)計(jì)尚存在著不少障礙。其主要原因在于如下四方面的困難:
1) 首先是自動(dòng)優(yōu)化計(jì)算量的問題。一方面,傳統(tǒng)快速分析方法適用范圍狹小,在詳細(xì)設(shè)計(jì)階段的使用往往會(huì)給出誤差較大的結(jié)果,甚至錯(cuò)誤的規(guī)律,在非設(shè)計(jì)點(diǎn)的使用更是如此。因此優(yōu)化設(shè)計(jì)往往被迫大量使用高精度計(jì)算方法,從而造成計(jì)算壓力巨大。另一方面,由于現(xiàn)代飛機(jī)設(shè)計(jì)中部件間耦合作用不能忽略,單獨(dú)部件優(yōu)化獲得的收益在全機(jī)中應(yīng)用效果不佳(多點(diǎn)設(shè)計(jì)猶甚),因此往往需要基于全機(jī)模型進(jìn)行分析,這使得計(jì)算量再次增加。如果進(jìn)一步希望在耦合效應(yīng)下進(jìn)行全機(jī)優(yōu)化,則設(shè)計(jì)變量急劇增加,計(jì)算量將遠(yuǎn)遠(yuǎn)超出能接受的范圍。
2) 其次,優(yōu)化問題目標(biāo)與約束的合理定義較為復(fù)雜。以超臨界機(jī)翼為例,當(dāng)前氣動(dòng)設(shè)計(jì)需要考慮的因素有:巡航升阻比、升力系數(shù)、力矩、迎角等設(shè)計(jì)點(diǎn)性能;阻力發(fā)散、阻力蠕增、低速、抖振、99%M×L/D范圍等非設(shè)計(jì)點(diǎn)指標(biāo);還有厚度、油箱容積、前緣裝置、后緣裝置、展向光滑性等幾何約束;以及壓力分布形態(tài)、失速起始位置、失速形態(tài)等其它方面的要求。這些設(shè)計(jì)點(diǎn)、非設(shè)計(jì)點(diǎn)特性要求大量引入時(shí)會(huì)導(dǎo)致計(jì)算量劇增,最優(yōu)解難以評(píng)判,優(yōu)化迭代難于收斂的問題。過多、過于細(xì)致、過為嚴(yán)苛的約束,容易造成優(yōu)化始終難以產(chǎn)生符合約束的結(jié)果;而反之,則可能造成優(yōu)化消耗大量的計(jì)算量在無意義的樣本之上。
3) 第三,存在很多只可意會(huì)不可言傳,難以數(shù)學(xué)表達(dá)的目標(biāo)或約束。應(yīng)該承認(rèn),設(shè)計(jì)存在一定的模糊的判斷和決策的自由發(fā)揮之處。一些工程設(shè)計(jì)中必須要考慮的目標(biāo)和約束過于復(fù)雜或沒有數(shù)學(xué)定義,因而無法體現(xiàn)在優(yōu)化之中,只能依靠人的觀察和判斷。比如超臨界機(jī)翼的壓力分布形態(tài)蘊(yùn)含豐富的非設(shè)計(jì)點(diǎn)特性信息,常被設(shè)計(jì)師用來判斷設(shè)計(jì)的優(yōu)劣,但卻很難嚴(yán)格、定量地描述。
4) 最后,自動(dòng)優(yōu)化收斂的走向和獲得的結(jié)果常常不符合設(shè)計(jì)人員的經(jīng)驗(yàn),但設(shè)計(jì)師卻無法干預(yù)。一些約束和目標(biāo)是隨著優(yōu)化的進(jìn)程才被設(shè)計(jì)人員意識(shí)到或發(fā)現(xiàn)需要進(jìn)行控制。仍以超臨界機(jī)翼為例,一般氣動(dòng)設(shè)計(jì)各指標(biāo)的重要性難以硬性規(guī)定[85-86],如巡航升阻比、阻力發(fā)散特性和低速特性三項(xiàng),設(shè)計(jì)師常常必須在優(yōu)化到一定程度時(shí)暫時(shí)放松對(duì)某一個(gè)的要求以換取另兩個(gè)的提升。有時(shí),一些樣本性能表現(xiàn)不佳但卻蘊(yùn)含著某種優(yōu)秀的基因,但在自動(dòng)優(yōu)化下往往被不知不覺地淘汰。優(yōu)化算法調(diào)用試算得到大量的結(jié)果和流場(chǎng),也難以被設(shè)計(jì)人員學(xué)習(xí)利用形成經(jīng)驗(yàn)和新的知識(shí)。
1.3 “人在回路”在當(dāng)代氣動(dòng)優(yōu)化設(shè)計(jì)中的引入
以上這些困難導(dǎo)致目前尚難以完全依靠自動(dòng)優(yōu)化獲得滿足工程實(shí)際的設(shè)計(jì),設(shè)計(jì)仍不能脫離設(shè)計(jì)人員,優(yōu)化設(shè)計(jì)仍需要設(shè)計(jì)人員參與到優(yōu)化設(shè)計(jì)準(zhǔn)則的制定和優(yōu)化循環(huán)的各個(gè)環(huán)節(jié),將自己的經(jīng)驗(yàn)和智慧與優(yōu)化算法的搜索尋優(yōu)能力相結(jié)合?!叭嗽诨芈贰睉?yīng)該是現(xiàn)階段計(jì)算能力仍遠(yuǎn)不充足,優(yōu)化準(zhǔn)則尚不完備,人們對(duì)設(shè)計(jì)結(jié)果的綜合評(píng)判仍缺乏理性手段的條件下,使優(yōu)化設(shè)計(jì)滿足工程設(shè)計(jì)需求的一種有效的解決方式。
Sobieszczanski于1997年就在綜述文章[37]中指出:面向工程實(shí)際的優(yōu)化方法需要引入“人機(jī)接口”以控制優(yōu)化進(jìn)程、引入判斷與創(chuàng)新,其核心在于通過數(shù)據(jù)管理與可視化以及設(shè)計(jì)流程的自動(dòng)化搭建,使設(shè)計(jì)師能夠便捷地監(jiān)控優(yōu)化進(jìn)程,再根據(jù)更新的輸入重建優(yōu)化進(jìn)程,具體的工作詳見綜述[37]。進(jìn)入21世紀(jì),優(yōu)化算法進(jìn)一步發(fā)展,重建整個(gè)優(yōu)化進(jìn)程既浪費(fèi)時(shí)間又浪費(fèi)已有數(shù)據(jù),因此 “人”在優(yōu)化設(shè)計(jì)中的作用發(fā)生了一定的調(diào)整[87]:一方面“人”可以減少隨機(jī)搜索的無意義隨機(jī)性;另一方面 “人”需要監(jiān)控優(yōu)化過程,調(diào)整優(yōu)化控制參數(shù)或調(diào)整種群個(gè)體以提高優(yōu)化方法的有效性;而這就是現(xiàn)代“人在回路”思想的雛形。至此,優(yōu)化設(shè)計(jì)從面向壓力分布(反設(shè)計(jì))、面向單一指標(biāo)向面向綜合性能、面向工程實(shí)際發(fā)展?!叭恕痹谎芯空咴噲D逐出“回路”,這一想法被證明過于激進(jìn),因此“人”又開始回歸“回路”。
總體而言,“人在回路”的目的是要避免優(yōu)化成為一個(gè)封閉的黑匣,更要避免優(yōu)化成為一種數(shù)學(xué)游戲,而使其真正成為設(shè)計(jì)師的設(shè)計(jì)工具。狹義的“人在回路”指設(shè)計(jì)師在圖 1的循環(huán)中實(shí)時(shí)監(jiān)控和干預(yù)優(yōu)化的過程與結(jié)果,如執(zhí)行優(yōu)化算法的切換、調(diào)節(jié)目標(biāo)與約束的權(quán)重、干預(yù)個(gè)體和種群等[86]。而廣義的“人在回路”更包含了設(shè)計(jì)師根據(jù)自己的經(jīng)驗(yàn)對(duì)整個(gè)優(yōu)化設(shè)計(jì)過程的設(shè)計(jì)與設(shè)定,如選擇設(shè)計(jì)變量、定義目標(biāo)、確定搜索空間、設(shè)定約束等。
2.1 優(yōu)化目標(biāo)與約束的設(shè)定
在實(shí)際應(yīng)用中,往往會(huì)發(fā)現(xiàn)型號(hào)設(shè)計(jì)的要求或目的是模糊的或概念性的(如魯棒性),數(shù)學(xué)化難度較大,而應(yīng)用優(yōu)化方法需要目標(biāo)的嚴(yán)格數(shù)學(xué)定義,因此設(shè)計(jì)師在參與優(yōu)化設(shè)計(jì)時(shí)的一項(xiàng)主要工作就是利用對(duì)問題物理本質(zhì)的理解和權(quán)衡,將模糊或難以實(shí)現(xiàn)的目標(biāo)約束轉(zhuǎn)化為可操作、可接受的形式,從而在現(xiàn)有優(yōu)化方法中實(shí)現(xiàn)工程實(shí)踐的種種要求。如魯棒性、阻力蠕增、阻力發(fā)散、抖振、失速與升阻力特性等看似紛繁蕪雜,需要大量的分析評(píng)估。但這些性能存在一定的規(guī)律,可以由少數(shù)特征狀態(tài)的性能來分析推斷。
2.1.1 面向性能的優(yōu)化設(shè)定
以超臨界機(jī)翼設(shè)計(jì)為例,在優(yōu)化巡航點(diǎn)效率時(shí),對(duì)阻力蠕增、阻力發(fā)散特性的考量不必以近10倍的計(jì)算量獲得Cd-Ma特性來評(píng)估,而可以通過適當(dāng)?shù)亩帱c(diǎn)設(shè)計(jì)完成,如圖2中通過三點(diǎn)設(shè)計(jì)改善了機(jī)翼的阻力發(fā)散特性。
多段翼型著陸構(gòu)型的設(shè)計(jì)常常是追求最大升力系數(shù)的提升,但CFD無法直接預(yù)測(cè)失速迎角,也無法直接給出最大升力系數(shù),硬性搜索最大升力系數(shù)的多點(diǎn)計(jì)算不但增加工作量,也囿于湍流模型難以準(zhǔn)確。對(duì)此有經(jīng)驗(yàn)的設(shè)計(jì)師會(huì)通過考查線性段升力系數(shù)和某一接近失速迎角工況的升力系數(shù),以預(yù)測(cè)最大升力系數(shù)是否改善[85]。顯然,這樣的判斷更容易在優(yōu)化中實(shí)現(xiàn)數(shù)學(xué)定義,需要的計(jì)算量也更小。
圖2 某窄體客機(jī)機(jī)翼優(yōu)化前后阻力隨馬赫數(shù)變化曲線Fig.2 Original and optimized wing drag-Mach curve of a certain single-aisle airplane
約束方面,氣動(dòng)優(yōu)化中最常用的約束有幾何約束和性能約束兩類,如由于結(jié)構(gòu)、油箱容積等方面引發(fā)的最大厚度變化范圍的限制[46,65];為滿足制造要求,尾緣厚度不得小于0.5%的要求[65];考慮氣彈穩(wěn)定性邊界,最低可接受發(fā)散馬赫數(shù)和顫振馬赫數(shù)要大于1.5倍最高需求馬赫數(shù),各階段結(jié)構(gòu)件應(yīng)力小于0.66667極限值的限制[42]等。幾何約束往往出于結(jié)構(gòu)考慮,但也包含對(duì)氣動(dòng)特性的支撐,如通過限制前緣半徑下限以保持良好的低速特性;通過限制翼型最大彎度上限以保持良好的抖振特性[85];限制弦向10%位置厚度從而為前加載留余量并為前梁留結(jié)構(gòu)空間;限制弦向80%厚度以保證后部厚度便于布置襟翼,并約束后加載強(qiáng)度以降低低頭力矩等[87]。這些約束的設(shè)定似乎能夠以模板的形式就某類問題固化下來,但實(shí)際上只有理解這些約束含義的設(shè)計(jì)師才明白哪些是不能越半步的雷池,哪些則可以放松一些。
2.1.2 面向流動(dòng)的優(yōu)化設(shè)定
氣動(dòng)性能來自流動(dòng)物理。如超臨界性能的本質(zhì)在于激波穩(wěn)定性、激波邊界層干擾、邊界層分離等物理現(xiàn)象。這些物理現(xiàn)象難以在優(yōu)化中用數(shù)學(xué)表達(dá),但卻能夠被設(shè)計(jì)師所理解和掌握。設(shè)計(jì)師可面向流動(dòng)的物理本質(zhì),或者根據(jù)流動(dòng)結(jié)構(gòu)來定義目標(biāo)與約束。例如對(duì)抖振、低速魯棒性的保證也可以通過少量特征狀態(tài)的壓力分布約束及優(yōu)化實(shí)現(xiàn)[47,86]。
對(duì)跨聲速機(jī)翼而言,壓力分布形態(tài)中蘊(yùn)含十分豐富的信息,氣動(dòng)特性變化背后的物理規(guī)律往往可以在壓力分布中有所體現(xiàn)。以阻力特性為例,在相同升力系數(shù)條件下翼型可能獲得三種典型的壓力分布形態(tài)(圖3從上至下依次為):近無激波(Shock Free)、雙激波(Double Shock)和弱激波(Weak Shock),一般而言近無激波形態(tài)翼型彎度大,吸力平臺(tái)低,升阻比較高但性能極不穩(wěn)定;弱激波形態(tài)吸力平臺(tái)高,激波靠前,升阻比相對(duì)較低但阻力發(fā)散最好;雙激波為二者的過渡形態(tài),阻力發(fā)散特性居中。文獻(xiàn)[85]中對(duì)三種形態(tài)的阻力發(fā)散、魯棒性等特性(圖4)進(jìn)行詳細(xì)研究后,認(rèn)為激波位置適當(dāng)靠前的弱激波形態(tài)是窄體客機(jī)較為合理的超臨界翼型壓力分布,并依此定義了相應(yīng)的壓力分布約束,引導(dǎo)優(yōu)化演進(jìn)向這種類型的壓力分布形態(tài)發(fā)展,取得了較好效果。
(a) 近無激波
(b) 雙激波
(c) 弱激波
圖4 三種壓力分布形態(tài)的阻力變化趨勢(shì)Fig.4 Drag-Mach curves of the three kinds of Cp distribution
事實(shí)上經(jīng)過人們長(zhǎng)時(shí)間的研究,超臨界機(jī)翼的壓力分布形態(tài)早已形成了弱激波形態(tài)的定勢(shì),而這種形態(tài)決定了這種機(jī)翼在升力獲取、激波阻力、激波穩(wěn)定性、后緣分離特性、結(jié)構(gòu)容積等方面達(dá)到了一個(gè)較好的折衷狀態(tài)。對(duì)壓力分布形態(tài)的掌控也是設(shè)計(jì)師的主要工作,圖5中引用文獻(xiàn)[85]對(duì)某型窄體客機(jī)機(jī)翼優(yōu)化的壓力分布形態(tài)約束,體現(xiàn)了設(shè)計(jì)師對(duì)優(yōu)化設(shè)計(jì)的參與和主導(dǎo),也體現(xiàn)了多年來人們?cè)诔R界機(jī)翼設(shè)計(jì)中的認(rèn)識(shí)積累:
1) 吸力峰值不能低于-1.2,以避免前緣加速過快向“尖峰”翼型發(fā)展;
2) 負(fù)壓平臺(tái)區(qū)(0.08 3) 壓力恢復(fù)區(qū)(0.6 4) 后加載約束上下表面壓力差,以限制低頭力矩。 圖5 某型窄體客機(jī)機(jī)翼翼型壓力分布約束示意圖Fig.5 Cp constraints of a certain single-aisle airplane wing’s foil 壓力分布形態(tài)約束很難有普適的范式可循。例如某型寬體客機(jī)的合理壓力分布形態(tài)與窄體客機(jī)發(fā)生了很大的變化(圖6,從上至下依次為巡航設(shè)計(jì)點(diǎn)、低升力系數(shù)設(shè)計(jì)點(diǎn)和阻力發(fā)散設(shè)計(jì)點(diǎn)的翼型壓力分布約束),約束根據(jù)相應(yīng)工況和目標(biāo)的變化進(jìn)行調(diào)整[85],并增加了非設(shè)計(jì)點(diǎn)的約束: 1) 低升力系數(shù)點(diǎn)——由于激波位置靠后,容易出現(xiàn)吸力平臺(tái)塌陷、雙激波等現(xiàn)象從而造成抖振、低升力性能惡化,因此引入吸力平臺(tái)梯度約束和壓力恢復(fù)約束; 2) 阻力發(fā)散點(diǎn)——由于來流馬赫數(shù)大,巡航點(diǎn)激波位置靠后使得激波在馬赫增加時(shí)更易進(jìn)一步增強(qiáng),因此設(shè)置阻力發(fā)散點(diǎn)壓力分布的吸力平臺(tái)梯度約束和激波強(qiáng)度約束。 圖7(a)給出了優(yōu)化過程大范圍探索的演化過程(橫坐標(biāo)為巡航設(shè)計(jì)點(diǎn)阻力系數(shù),縱坐標(biāo)為阻力發(fā)散設(shè)計(jì)點(diǎn)阻力系數(shù);黃色為不符合約束條件的個(gè)體,黑色為符合約束條件的個(gè)體),可以看出,約束條件淘汰了壓力分布形態(tài)與期望形態(tài)符合欠佳的個(gè)體,引導(dǎo)優(yōu)化更高效地向綜合最優(yōu)的方向進(jìn)行,最終如圖7(b)所示形成了Pareto前緣,給出了選擇最優(yōu)個(gè)體的參考依據(jù)。 (a) 巡航設(shè)計(jì)點(diǎn)壓力分布約束 (b) 低升力系數(shù)設(shè)計(jì)點(diǎn)壓力分布約束 (c) 阻力發(fā)散設(shè)計(jì)點(diǎn)壓力分布約束 (a) 優(yōu)化歷程的所有個(gè)體 (b) 符合約束條件的個(gè)體 圖8的九個(gè)圖分別代表沿機(jī)翼展向從翼根到翼梢(10%到90%)不同截面的壓力分布(紅色:優(yōu)化方案,黑色:初始方案),可看出在外翼段,由于壓力分布形態(tài)約束的施加,激波位置向翼型前緣移動(dòng)到了弦長(zhǎng)的55%左右,而激波強(qiáng)度也明顯減弱,優(yōu)化獲得了滿意的效果。 (a) (b) (c) (d) (e) (f) (g) (h) (i) 2.2 優(yōu)化過程的監(jiān)控與干預(yù) 優(yōu)化方法確定后,并不意味著優(yōu)化就可以無監(jiān)管地進(jìn)行了,優(yōu)化進(jìn)程控制是保證優(yōu)化效率、優(yōu)化有效性的重要環(huán)節(jié),也是設(shè)計(jì)師引導(dǎo)優(yōu)化方向,體現(xiàn)不便于數(shù)學(xué)表達(dá)的目標(biāo)和約束,實(shí)現(xiàn)設(shè)計(jì)意志的手段。設(shè)計(jì)師對(duì)優(yōu)化進(jìn)程的控制首先需要對(duì)優(yōu)化進(jìn)程和已產(chǎn)生數(shù)據(jù)進(jìn)行分析,得到當(dāng)前狀態(tài)的評(píng)估[37],之后由人調(diào)整優(yōu)化方向、優(yōu)化方法和約束,并對(duì)最終結(jié)果進(jìn)行評(píng)估與選擇。 在無法保證嚴(yán)格全局搜索的情況下,為避免“無意義的隨機(jī)性”,調(diào)整優(yōu)化進(jìn)程向有希望的方向搜索是明智且有效的[87]。應(yīng)用遺傳算法進(jìn)行的優(yōu)化中一種簡(jiǎn)單有效的做法就是種群調(diào)控,如采取精英策略[88],或根據(jù)某種評(píng)估(根據(jù)流動(dòng)形態(tài)人工干預(yù)[47];利用代理模型評(píng)估、預(yù)測(cè)優(yōu)秀個(gè)體[89-90])添加新個(gè)體引導(dǎo)種群進(jìn)化方向;也可以通過調(diào)整進(jìn)化過程,如將基因組交叉互換過程的隨機(jī)操作用博弈理論指導(dǎo)的最優(yōu)組合確定方法替代以提高效率[91];還可以調(diào)節(jié)多目標(biāo)加權(quán)的權(quán)重以調(diào)整方向[21]。其他優(yōu)化方法如變參數(shù)方法通過調(diào)整算法中的控制參數(shù),調(diào)整子代的演化方向依賴于父代種群的程度,以改變方向并同時(shí)調(diào)整算法的魯棒性和效率[92];多目標(biāo)禁忌搜索[93],和其它改進(jìn)策略如并行、多樣性保持、多重復(fù)雜度的函數(shù)評(píng)估方法[94]等也得到了研究發(fā)展。 除卻上述優(yōu)化算法層面的實(shí)時(shí)調(diào)整,設(shè)計(jì)師也可根據(jù)自己的經(jīng)驗(yàn)對(duì)遺傳種群進(jìn)行個(gè)體操作,如對(duì)“無意義個(gè)體”進(jìn)行剔除和替換。文獻(xiàn)[85-86]基于進(jìn)化算法,通過對(duì)種群個(gè)體和目標(biāo)、約束、優(yōu)化算法的調(diào)整實(shí)現(xiàn)研究人員對(duì)優(yōu)化進(jìn)程的調(diào)控,引導(dǎo)優(yōu)化根據(jù)設(shè)計(jì)者經(jīng)驗(yàn)和設(shè)計(jì)思想高效發(fā)展。其中針對(duì)遺傳種群個(gè)體的操作包括:人工刪除個(gè)體、人工引入新個(gè)體、人工修改個(gè)體(人工修型接口)、人工結(jié)果選擇四個(gè)方面。刪除一些已知的不利個(gè)體避免了無意義搜索;引入新個(gè)體可以引入外來基因,增強(qiáng)種群的多樣性,也可體現(xiàn)研究人員對(duì)某一方面問題可能解決方案的思考與嘗試;人工個(gè)體選擇(如圖9)體現(xiàn)了研究人員對(duì)各性能之間的權(quán)衡,一些表現(xiàn)好的個(gè)體,因其與其它個(gè)體相似度太高,或因其壓力分布形態(tài)太差等原因而被淘汰。一些性能很差,但具有某方面有利特點(diǎn)(如前緣半徑大,有利于縫翼布置),或有新意的個(gè)體(如壓力分布新形態(tài))可能被保留甚至加強(qiáng)。人工修型接口(如圖10)使得優(yōu)化可以繼承傳統(tǒng)試湊法設(shè)計(jì)的優(yōu)勢(shì),更為直接地引入設(shè)計(jì)師的操作,從而實(shí)現(xiàn)人工修型設(shè)計(jì)與自動(dòng)優(yōu)化的有機(jī)結(jié)合。如圖11所示,研究人員首先進(jìn)行全局搜索,之后對(duì)Pareto前緣附近的個(gè)體進(jìn)行評(píng)估分析,并在考慮低速特性進(jìn)行下表面前緣人工修型后,引回種群,繼續(xù)優(yōu)化。最終獲得了滿意的方案。 圖9 根據(jù)Pareto前沿進(jìn)行人工結(jié)果選擇Fig.9 Manually individual selection based on Pareto front 圖10 人工修型,返回優(yōu)化流程Fig.10 Manually design then add into optimization 現(xiàn)有的優(yōu)化算法在尋優(yōu)的廣度和深度上存在一定的矛盾。如進(jìn)化類算法具有全局搜索的優(yōu)勢(shì),但收斂較慢;梯度類算法則收斂較快,但容易收斂到局部最優(yōu)解。設(shè)計(jì)師可以監(jiān)控優(yōu)化進(jìn)程,適時(shí)切換或調(diào)整尋優(yōu)算法,一種典型的思路為:先在大范圍內(nèi)用大數(shù)目的測(cè)試點(diǎn)進(jìn)行搜索或重構(gòu),捕捉可能存在全局最優(yōu)的空間,當(dāng)搜索空間被縮小至可接受的程度時(shí),使用高效率、高精度的優(yōu)化方法得到最優(yōu)解。需要注意的是,廣度、深度的平衡直接影響了優(yōu)化的速度和尋優(yōu)效果,切換的時(shí)機(jī)需要仔細(xì)權(quán)衡。而且不同的優(yōu)化方法在同一問題上的表現(xiàn)也是不同的,如文獻(xiàn)[30]對(duì)比了三種優(yōu)化方法在高速民機(jī)優(yōu)化中的差異,文獻(xiàn)[95]對(duì)比了遺傳算法和梯度算法在多目標(biāo)優(yōu)化中的表現(xiàn),文獻(xiàn)[41]對(duì)比了遺傳算法、梯度算法和基于kriging的優(yōu)化方法,認(rèn)為后者非常適用于少變量、多目標(biāo)的優(yōu)化問題。問題的多尺度性和方法的多樣性使得研究者需要根據(jù)問題合理選擇優(yōu)化方法,以獲得速度與精度、全局與局部的平衡。在遺傳算法中調(diào)整種群也可以影響深度和廣度的平衡[96];也可以構(gòu)造復(fù)雜的適應(yīng)函數(shù),通過調(diào)整參數(shù)控制平衡[27]。還有一些研究通過一些多準(zhǔn)則決策方法幫助優(yōu)化快速逼近真實(shí)帕雷托前緣[64],自適應(yīng)范圍的遺傳算法目前也有較多發(fā)展[97-101]。 圖11 優(yōu)化方法切換與人工修型的引入Fig.11 The switch of optimization methods and the introduction of manually adjustment 在優(yōu)化過程中,設(shè)計(jì)師對(duì)約束和目標(biāo)權(quán)重的實(shí)時(shí)調(diào)整也是一種重要的“人在回路”的手段。優(yōu)化之初,過多的約束使得遺傳算法產(chǎn)生的有效樣本很少。此時(shí),設(shè)計(jì)師通過非支配排序中的調(diào)整放松甚至關(guān)閉了部分約束。在優(yōu)化進(jìn)入正軌、種群得以建立后再逐漸調(diào)節(jié)到約束的正常工作狀態(tài)。對(duì)壓力分布形態(tài)的約束也需要根據(jù)設(shè)計(jì)師在優(yōu)化過程中的分析、思考和積累進(jìn)行不斷的調(diào)整,約束體系中激波位置、后加載強(qiáng)度等一般無法在優(yōu)化設(shè)計(jì)之初就十分合理地定義,需要在優(yōu)化進(jìn)程中多次修改才達(dá)到理想的狀態(tài)。另一方面,優(yōu)化過程中可能出現(xiàn)優(yōu)化結(jié)果始終無法滿足約束的情況,說明優(yōu)化過程沒能向滿足約束的方向發(fā)展,此時(shí)可以通過將約束設(shè)置為目標(biāo)來引導(dǎo)種群向可行的方向演化,在種群內(nèi)有足夠個(gè)體滿足約束后,將該目標(biāo)重新切換為約束,使優(yōu)化正常進(jìn)行。 優(yōu)化收斂之后,多目標(biāo)問題往往得到帕雷托前緣,設(shè)計(jì)師可以從中選擇各項(xiàng)性能較均勻、流動(dòng)結(jié)構(gòu)和幾何較合理的結(jié)果作為最終設(shè)計(jì),此時(shí)需要設(shè)計(jì)師豐富的經(jīng)驗(yàn)作為最終評(píng)判標(biāo)準(zhǔn),當(dāng)然選擇也存在設(shè)計(jì)師偏好和個(gè)性的因素。不過當(dāng)決定并不十分清晰時(shí),也可以使用一些決策方法如“Fuzzy Bellman Zedah”來輔助人來選擇[65]。事實(shí)上,不只是對(duì)結(jié)果的選擇。設(shè)計(jì)師“人在回路”中調(diào)控行為的決策基于經(jīng)驗(yàn)理解,也依賴于對(duì)當(dāng)前優(yōu)化狀態(tài)的判斷。一些分析手段可以幫助設(shè)計(jì)師得到有助于做出更明智調(diào)整[41,102],如文獻(xiàn)[41]通過推阻分解和相關(guān)度分析手段得到了各阻力部分與小翼設(shè)計(jì)變量的相關(guān)關(guān)系,從而使優(yōu)化集中調(diào)整相關(guān)的變量,加快了收斂速度。 2.3 “人在回路”的實(shí)施要求 圖12展示了“人在回路”在優(yōu)化回路中的引入和實(shí)現(xiàn)環(huán)節(jié),“人在回路”優(yōu)化設(shè)計(jì)的實(shí)現(xiàn)需要優(yōu)化方法和設(shè)計(jì)師共同做出努力。也就是說從優(yōu)化方法而言,要便于設(shè)計(jì)師參與到循環(huán)中進(jìn)行調(diào)控。而設(shè)計(jì)師也應(yīng)該理解優(yōu)化方法的原理、邏輯和流程,并盡量將自己的經(jīng)驗(yàn)和靈感轉(zhuǎn)化為優(yōu)化方法的設(shè)定和調(diào)整。 圖12 優(yōu)化回路中“人在回路”的引入Fig.12 “Man-in-loop” in optimization design 在優(yōu)化方法選擇和優(yōu)化平臺(tái)搭建中,有以下幾點(diǎn)需要注意:1) 根據(jù)“人在回路”的要求,選擇便于人參與調(diào)控的優(yōu)化方法。比如啟發(fā)式搜索(如遺傳算法)在全局搜索和多目標(biāo)優(yōu)化方面具有優(yōu)勢(shì)的同時(shí)也存在搜索隨機(jī)性有時(shí)過強(qiáng)、局部收斂緩慢的劣勢(shì),但它容易通過種群調(diào)控和個(gè)體操作實(shí)現(xiàn)“人在回路”;而共軛算法雖然局部收斂能力強(qiáng)大,但調(diào)控略有難度,不過近年來也有人研究“人在回路”的辦法[103-106];2) 設(shè)置方便人在回路的接口。如上面提到的優(yōu)化準(zhǔn)則設(shè)定,尋優(yōu)算法參數(shù)調(diào)節(jié)、種群調(diào)控、個(gè)體操作、結(jié)果篩選、約束與目標(biāo)調(diào)整、尋優(yōu)方法切換的實(shí)時(shí)開展等,都應(yīng)該提供接口允許設(shè)計(jì)師進(jìn)行方便的操作;也可以使用先進(jìn)的幾何造型方法使個(gè)體修改與引入、人工修型等變得更加靈活;3) 設(shè)置決策輔助功能,如帕累托前緣分析、種群的統(tǒng)計(jì)歸納分析、靈活的個(gè)體查看與分析等功能;4) 還有就是需要使優(yōu)化回路的速度與節(jié)奏適應(yīng)設(shè)計(jì)師的工作習(xí)慣與承受能力,例如部署并行計(jì)算能力,實(shí)現(xiàn)“一日設(shè)計(jì)循環(huán)”[85],使設(shè)計(jì)師能夠有充分時(shí)間分析結(jié)果,參與優(yōu)化設(shè)計(jì)的同時(shí)又不至于降低優(yōu)化設(shè)計(jì)的效率。 對(duì)設(shè)計(jì)師而言,應(yīng)該認(rèn)識(shí)到并承認(rèn)人工經(jīng)驗(yàn)與優(yōu)化算法作為設(shè)計(jì)工具的優(yōu)勢(shì)與不足,理解優(yōu)化算法的運(yùn)作方式,掌握優(yōu)化平臺(tái)可設(shè)定與可調(diào)節(jié)之處,在優(yōu)化過程中不斷觀察、學(xué)習(xí)和思考,處理好優(yōu)化自主演進(jìn)和“人在回路”調(diào)控之間的度,并努力將自身經(jīng)驗(yàn)與創(chuàng)意轉(zhuǎn)化為優(yōu)化方法能夠接收、處理的表達(dá)形式。 目前“人在回路”可以通過優(yōu)化的設(shè)定和優(yōu)化進(jìn)程中的實(shí)時(shí)調(diào)整,彌補(bǔ)現(xiàn)有計(jì)算能力與優(yōu)化算法仍不能支持完全自動(dòng)化的全面尋優(yōu)的不足。但人畢竟有其局限:人的經(jīng)驗(yàn)、記憶力有限;人對(duì)強(qiáng)耦合、強(qiáng)非線性問題的理解、梳理能力有限;人無法像計(jì)算機(jī)那樣不眠不休等。隨著大規(guī)模并行計(jì)算能力的發(fā)展、問題復(fù)雜程度的增加,人在“人在回路”的優(yōu)化設(shè)計(jì)中又將成為瓶頸,隨著人工智能、深度學(xué)習(xí)等的飛速發(fā)展,引入機(jī)器智能來輔助甚至代替設(shè)計(jì)師在“人在回路”中的行為成為人們思考的方向。 總體而言,近期迅速發(fā)展的人工神經(jīng)網(wǎng)絡(luò)、代理模型等方法在信息收納和響應(yīng)重構(gòu)方面體現(xiàn)出了存儲(chǔ)量大,映射多尺度、非線性構(gòu)建能力強(qiáng)的優(yōu)勢(shì)。深度學(xué)習(xí)與數(shù)據(jù)挖掘中的一些手段也表現(xiàn)出了強(qiáng)大的分析能力,并已出現(xiàn)了人工智能應(yīng)用于優(yōu)化的一些實(shí)踐[107-110]。但本文討論的人工智能終究是為了模擬“人在回路”時(shí),設(shè)計(jì)師在參與和監(jiān)控優(yōu)化設(shè)計(jì)中表現(xiàn)出的兩種特征行為(“歸納性行為”和 “演繹性行為”)和兩種特征思想(“面向性能”和“面向流場(chǎng)”),因而此時(shí)人工智能的應(yīng)用思想相對(duì)復(fù)雜一些。 人工智能的引入最初是將優(yōu)化與人工神經(jīng)網(wǎng)絡(luò)等混合形成對(duì)優(yōu)化算法的增強(qiáng),可實(shí)現(xiàn)優(yōu)化能力和可調(diào)控性的大幅提高。比如代理模型、人工神經(jīng)網(wǎng)絡(luò)等的發(fā)展使得優(yōu)化過程中產(chǎn)生并分析的大量樣本可被充分利用,替代或部分替代CFD分析;通過人工神經(jīng)網(wǎng)絡(luò)[111-112]和代理模型[113-116]可實(shí)現(xiàn)不同置信度[117-120]的數(shù)據(jù)模型構(gòu)建與整合[121,123],以及梯度信息的利用[124-126]等。 近期開發(fā)出的眾多方法能夠進(jìn)一步輔助甚至替代“人在回路”中的分析與調(diào)控作用,如敏感度分析[127]等手段使得對(duì)優(yōu)化進(jìn)程的評(píng)估變得更加直觀有效。實(shí)際問題中并非所有的設(shè)計(jì)變量都對(duì)性能有顯著影響,基于數(shù)據(jù)挖掘的相關(guān)度分析(ANOVA)可以實(shí)現(xiàn)變量影響顯著性評(píng)估,甚至可以分析較優(yōu)個(gè)體間共性和設(shè)計(jì)變量、性能參數(shù)之間的關(guān)系[41,128],得到其中關(guān)聯(lián)或影響的顯式表達(dá)[129],從而指導(dǎo)優(yōu)化并提高效率。類似的還有數(shù)據(jù)挖掘中的自組織數(shù)據(jù)挖掘算法(SOM)、粗糙集理論(rough set theory)、決策樹分析[57]等可以幫助縮并設(shè)計(jì)變量或設(shè)計(jì)目標(biāo)[130],從而提高優(yōu)化效率。一些優(yōu)化算法的自動(dòng)切換策略[131],和自適應(yīng)參數(shù)調(diào)整策略[132]也能夠取代設(shè)計(jì)師的部分“人在回路”行為。 目前看來,基于人工神經(jīng)網(wǎng)絡(luò)、代理模型的多類信息利用和基于數(shù)據(jù)挖掘、深度學(xué)習(xí)的知識(shí)構(gòu)建與決策是模擬設(shè)計(jì)師“人在回路”行為的解決之道。目前的嘗試大多集中于前者,一般利用各類數(shù)學(xué)工具對(duì)已完成算例進(jìn)行蘊(yùn)含規(guī)律的總結(jié)歸納和簡(jiǎn)單的結(jié)果預(yù)測(cè)。但依據(jù)這些規(guī)律分析優(yōu)化演進(jìn)方向、調(diào)整優(yōu)化策略的“演繹性行為”實(shí)現(xiàn)仍有困難。人工智能對(duì)流動(dòng)結(jié)構(gòu)的分析和對(duì)流體力學(xué)知識(shí)的運(yùn)用還遠(yuǎn)不能達(dá)到人的水平,因此在很多方面還無法代替人。但無論如何,人們已經(jīng)開始嘗試從“人在回路”向“機(jī)器人在回路”的方向發(fā)展。 優(yōu)化方法應(yīng)用于工程設(shè)計(jì)中至今已近40年,“人”在優(yōu)化設(shè)計(jì)中經(jīng)歷了“出回路-進(jìn)回路-出回路”的歷程,反映出氣動(dòng)設(shè)計(jì)/優(yōu)化方法/計(jì)算能力共同發(fā)展進(jìn)步過程中出現(xiàn)的不均衡和不滿足的矛盾。在現(xiàn)階段“人在回路”仍是解決優(yōu)化方法滿足氣動(dòng)設(shè)計(jì)工程需求的一個(gè)有效、有益的解決辦法。 優(yōu)化方法在工程設(shè)計(jì)實(shí)踐中,應(yīng)明確其工具屬性。在現(xiàn)階段及可預(yù)見的將來,工程問題的復(fù)雜性和龐大性使得設(shè)計(jì)過程中既迫切需要優(yōu)化算法將設(shè)計(jì)師從相對(duì)簡(jiǎn)單的重復(fù)性工作中釋放出來,又離不開人的分析、判斷、調(diào)控。一個(gè)成功的設(shè)計(jì)應(yīng)該充分發(fā)揮人的智慧和機(jī)器的強(qiáng)大計(jì)算能力,既不使人的時(shí)間浪費(fèi)于簡(jiǎn)單重復(fù)工作,也不使強(qiáng)大的計(jì)算機(jī)等待人的操作或被人限制與干擾。而這需要設(shè)計(jì)師和優(yōu)化方法研究者的共同努力。 人在未來設(shè)計(jì)中該如何發(fā)揮作用,仍有待思考和研究。未來的設(shè)計(jì)中人會(huì)不會(huì)、應(yīng)不應(yīng)該被計(jì)算機(jī)完全取代,這其實(shí)是人工智能發(fā)展的普遍性、哲學(xué)性問題。但減少人的重復(fù)、機(jī)械工作量,使其能夠集中于創(chuàng)造性的工作應(yīng)該是明確的主題。 [1]Sobieszczanski-Sobieski J, Morris A, et al. Multidisciplinary design optimization supported by knowledge basedengineering[M]. John Wiley & Sons, 2015[2]Malone B, Mason W H. Multidisciplinary optimization in aircraft design using analytic technologymodels[J]. Journal of Aircraft, 1995, 32(2): 431-438 [3]Hess J T, Smith A M. Calculation of nonlifting potential flow about arbitrary three dimensional bodies[J]. Journal of Ship Research, 1964, 8(2): 22-24 [4]Tinoco E N, Ball D N, Rice F A. PAN AIR analysis of a transport high-lift configuration[J]. Journal of Aircraft, 1987, 24(3): 181-187 [5]Chen A W, Tinoco E N. PAN AIR applications to aero-propulsionintegration[J]. Journal of Aircraft, 1984, 21(3): 161-167 [6]Katz J, Plotkin A. Low-speed aerodynamics[M]. Cambridge University Press, 2001 [7]Melin T. A vortex lattice MATLAB implementation for linear aerodynamic wing applications[D]. Master’s Thesis, Department of Aeronautics, Royal Institute of Technology (KTH), Stockholm, Sweden, 2000 [8]Amadori K, Melin T, Krus P. Multidisciplinary optimization of wing structure using parametric models[C]//51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2013: 140 [9]Labrujere T E, Slooff J W. Computational methods for the aerodynamic design of aircraft components[J]. Annual Review of Fluid Mechanics, 1993, 25(1): 183-214 [10]Chattopadhyay A, Narayan J R. Optimum design of high speed prop-rotors using a multidisciplinary approach[J]. Engineering Optimization, 1993, 22(1): 1-17 [11]Malone J B, Narramore J C, Sankar L N. Airfoil design method using the Navier-Stokes equations[J]. Journal of Aircraft, 1991, 28(3): 216-224 [12]Garabedian P, Mcfadden G. Design of supercritical swept wings[J]. AIAA Journal, 1982, 20(3): 289-291 [13]Malone J, Vadyak J, Sankar L. A technique for the inverse aerodynamic design of nacelles and wing configurations[C]//3rd Applied Aerodynamics Conference. 1985: 4096 [14]Malone J B, Vadyak J, Sankar L N. Inverse aerodynamic design method for aircraft components[J]. Journal of Aircraft, 1987, 24(1): 8-9 [15]Bell R A, Cedar R D. An inverse method for the aerodynamic design of three-dimensional aircraft engine nacelles[R]. NASA Report, 1991 [16]Dulikravich G. Shape inverse design and optimization for three-dimensional aerodynamics[C]//33rd Aerospace Sciences Meeting and Exhibit. 1995: 695 [17]Dang T, Isgro V. Euler-based inverse method for turbomachine blades. I-Two-dimensional cascades[J]. AIAA Journal, 1995, 33(12): 2309-2315 [18]Vanegmond J. Numerical optimization of target pressure distributions for subsonic and transonic airfoil design[R]. AGARD N 90-20976 14-05, 1990 [19]Kim H J, Rho O H. Dual-point design of transonic airfoils using the hybrid inverse optimization method[J]. Journal of Aircraft, 1997, 34(5): 612-618 [20]Obayashi S, Takanashi S. Genetic algorithm for aerodynamic inverse optimization problems[C]//Genetic Algorithms in Engineering Systems: Innovations and Applications, 1995. GALESIA. First International Conference on (Conf. Publ. No. 414). IET, 1995: 7-12 [21]Obayashi S, Takanashi S. Genetic optimization of target pressure distributions for inverse design methods[J]. AIAA Journal, 1996, 34(5): 881-886 [22]Obayashi S. Aerodynamic optimization with evolutionary algorithms[C]//Control’96, UKACC International Conference on (Conf. Publ. No. 427), IET, 1996: 687-692[23]Kim H J, Rho O H. Aerodynamic design of transonic wings using the target pressure optimization approach[J]. Journal of Aircraft, 1998, 35(5): 671-677 [24]Harris C D. NASA Supercritical airfoils: a matrix of family-related airfoils[R]. NASA Report, 1990 [25]Quagliarella D, Della Cioppa A. Genetic algorithms applied to the aerodynamic design of transonic airfoils[J]. Journal of Aircraft, 1995, 32(4): 889-891 [26]Vicini A, Quagliarella D. Airfoil and wing design through hybrid optimization strategies[J]. AIAA Journal, 1999, 37(5): 634-641 [27]Fan H Y, Xi G, Wang S J. A dual fitness function genetic algorithm and application in aerodynamic inverse design[J]. Inverse Problems in Engineering, 2000, 8(4): 325-344 [28]Jones B R, Crossley W A, Lyrintzis A S. Aerodynamic and aeroacoustic optimization of rotorcraft airfoils via a parallel genetic algorithm[J]. Journal of Aircraft, 2000, 37(6): 1088-1096 [29]Marco N, Lanteri S. A two-level parallelization strategy for genetic algorithms applied to optimum shape design[J]. Parallel Computing, 2000, 26(4): 377-397 [30]Cox S E, Haftka R T, Baker C A, et al. A comparison of global optimization methods for the design of a high-speed civil transport[J]. Journal of Global Optimization, 2001, 21(4): 415-432 [31]Lim D, Ong Y S, Jin Y, et al. Efficient hierarchical parallel genetic algorithms using grid computing[J]. Future Generation Computer Systems, 2007, 23(4): 658-670 [32]Asouti V G, Giannakoglou K C. Aerodynamic optimization using a parallel asynchronous evolutionary algorithm controlled by strongly interacting demes[J]. Engineering Optimization, 2009, 41(3): 241-257 [33]Bharti S, Frecker M, Lesieutre G. Optimal morphing-wing design using parallel nondominated sorting genetic algorithm II[J]. AIAA Journal, 2009, 47(7): 1627-1634 [34]Ebrahimi M, Jahangirian A. A hierarchical parallel strategy for aerodynamic shape optimization with genetic algorithm[J]. Scientia Iranica. Transaction D, Computer Science & Engineering, Electrical, 2015, 22(6): 2379 [35]Hutchison M G, Unger E R, Mason W H, et al. Variable-complexity aerodynamic optimization of a high-speed civil transport wing[J]. Journal of Aircraft, 1994, 31(1): 110-116 [36]Sobieszczanski-Sobieski J. Multidisciplinary design optimization: an emerging new engineering discipline[M]//Advances in Structural Optimization. Springer Netherlands, 1995: 483-496 [37]Sobieszczanski-Sobieski J, Haftka R T. Multidisciplinary aerospace design optimization: survey of recent developments[J]. Structural Optimization, 1997, 14(1): 1-23 [38]Toivanen J, Makinen R E, Périaux J, et al. Multidisciplinary shape optimization in aerodynamics and electromagnetics using genetic algorithms[J]. Intl J. Numer. Meth. Fluids, 1999, 30: 149-159 [39]Kim Y, Jeon Y H, Lee D H. Multi-objective and multidisciplinary design optimization of supersonic fighter wing[J]. Journal of Aircraft, 2006, 43(3): 817-824 [40]Chiba K, Oyama A, Obayashi S, et al. Multidisciplinary design optimization and data mining for transonic regional-jet wing[J]. Journal of Aircraft, 2007, 44(4): 1100-1112 [41]Takenaka K, Hatanaka K, Yamazaki W, et al. Multidisciplinary design exploration for a winglet[J]. Journal of Aircraft, 2008, 45(5): 1601-1611 [42]Berci M, Toropov V V, Hewson R W, et al. Multidisciplinary multifidelity optimisation of a flexible wing aerofoil with reference to a small UAV[J]. Structural and Multidisciplinary Optimization, 2014, 50(4): 683-699 [43]Cliff S E, Reuther J J, Saunders D A, et al. Single-point and multipoint aerodynamic shape optimization of high-speed civil transport[J]. Journal of Aircraft, 2001, 38(6): 997-1005 [44]Kim H J, Rho O H. Dual-point design of transonic airfoils using the hybrid inverse optimization method[J]. Journal of Aircraft, 1997, 34(5): 612-618 [45]Kim H J, Kim C, Rho O H. Multipoint inverse design method for transonic wings[J]. Journal of Aircraft, 1999, 36(6): 941-947 [46]Peigin S, Epstein B. Multipoint aerodynamic design of wing-body configurations for minimum drag[J]. Journal of Aircraft, 2007, 44(3): 971-980 [47]Tian Y, Liu P Q, Li Z. Multi-objective optimization of shock control bump on a supercritical wing[J]. Science China Technological Sciences, 2014, 57(1): 192-202 [48]Nemec M, Zingg D W, Pulliam T H. Multipoint and multi-objective aerodynamic shape optimization[J]. AIAA Journal, 2004, 42(6): 1057-1065 [49]Pierret S, Filomeno Coelho R, Kato H. Multidisciplinary and multiple operating points shape optimization of three-dimensional compressor blades[J]. Structural and Multidisciplinary Optimization, 2007, 33(1): 61-70 [50]Ju Y P, Zhang C H. Multi-point robust design optimization of wind turbine airfoil under geometric uncertainty[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2012, 226(2): 245-261 [51]Ju Y P, Zhang C H. Multi-point and multi-objective optimization design method for industrial axial compressor cascades[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2011, 225(6): 1481-1493 [52]Vicini A, Quagliarella D. Inverse and direct airfoil design using a multiobjective genetic algorithm[J]. AIAA Journal, 1997, 35(9): 1499-1505 [53]Takahashi S, Obayashi S, Nakahashi K. Inverse design optimization of transonic wings based on multi-objective genetic algorithms[J]. AIAA Journal, 1999, 37(12): 1656-1662 [54]Wang J F, Periaux J, Sefrioui M. Parallel evolutionary algorithms for optimization problems in aerospace engineering[J]. Journal of Computational and Applied Mathematics, 2002, 149(1): 155-169 [55]Benini E. Three-dimensional multi-objective design optimization of a transonic compressor rotor[J]. Journal of Propulsion and Power, 2004, 20(3): 559-565 [56]Park K, Lee J. Optimal design of two-dimensional wings in ground effect using multi-objective genetic algorithm[J]. Ocean Engineering, 2010, 37(10): 902-912 [57]Sugimura K, Obayashi S, Jeong S. Multi-objective optimization and design rule mining for an aerodynamically efficient and stable centrifugal impeller with a vaned diffuser[J]. Engineering Optimization, 2010, 42(3): 271-293 [58]?ksüz ?, Akmandor S. Multi-objective aerodynamic optimization of axial turbine blades using a novel multilevel genetic algorithm[J]. Journal of Turbomachinery, 2010, 132(4): 041009 [59]Stadler W. Multicriteria optimization in engineering and in the sciences[M]. Springer Science & Business Media, 2013 [60]Périaux J, Chen H Q, Mantel B, et al. Combining game theory and genetic algorithms with application to DDM-nozzle optimization problems[J]. Finite Elements in Analysis and Design, 2001, 37(5): 417-429 [61]Schaer J D. Multiple objective optimization with vector evaluated genetic algorithms[C]//Sixth International Conference on Genetic Algorithms, Morgan Kaufmann, San Mateo, CA, 1985, 93-100 [62]Goldberg D E, Holland J H. Genetic algorithms and machine learning[J]. Machine learning, 1988, 3(2): 95-99 [63]Deb K, Agrawal S, Pratap A, et al. A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II[C]//International Conference on Parallel Problem Solving From Nature. Springer Berlin Heidelberg, 2000: 849-858 [64]Wang X D, Hirsch C, Kang S, et al. Multi-objective optimization of turbomachinery using improved NSGA-II and approximation model[J]. Computer Methods in Applied Mechanics and Engineering, 2011, 200(9): 883-895 [65]Sanaye S, Hassanzadeh A. Multi-objective optimization of airfoil shape for efficiency improvement and noise reduction in small wind turbines[J]. Journal of Renewable and Sustainable Energy, 2014, 6(5): 053105 [66]Da Ronco C C, Ponza R, Benini E. Aerodynamic shape optimization of aircraft components using an advanced multi-objective evolutionary approach[J]. Computer Methods in Applied Mechanics and Engineering, 2015, 285: 255-290 [67]Fonseca C M, Fleming P J. An overview of evolutionary algorithms in multiobjective optimization[J]. Evolutionary Computation, 1995, 3(1): 1-16 [68]Phadke M S. Quality engineering using robust design[M]. Prentice Hall PTR, 1995 [69]Kumar A, Keane A J, Nair P B, et al. Robust design of compressor fan blades against erosion[J]. Journal of Mechanical Design, 2006, 128(4): 864-873 [70]Yao W, Chen X, Luo W, et al. Review of uncertainty-based multidisciplinary design optimization methods for aerospace vehicles[J]. Progress in Aerospace Sciences, 2011, 47(6): 450-479 [71]Noor A K. Nondeterministic approaches and their potential for future aerospace systems[R]. NASA Report, 2001 [72]Epstein B, Peigin S. Robust hybrid approach to multiobjective constrained optimization in aerodynamics[J]. AIAA Journal, 2004, 42(8): 1572-1581 [73]Peigin S, Epstein B. Robust handling of non‐linear constraints for GA optimization of aerodynamic shapes[J]. International Journal for Numerical Methods in Fluids, 2004, 45(12): 1339-1362 [74]Taguchi G, Wu Y. Introduction to off-line quality control[R]. Central Japan Quality Control Association, Nagoya, Japan, 1980 [75]Nair V N, Abraham B, Mackay J, et al. Taguchi’s parameter design: a panel discussion[J]. Technometrics, 1992, 34(2): 127-161 [76]Trosset M W. Taguchi and robust design[R]. Technical Report No. 96-31, Houston, TX., 1996[77]Box G. Signal-to-noise ratios, performance criteria, and transformations[J]. Technometrics, 1988, 30(1): 1-17 [78]Trosset M W, Alexandrov N M, Watson L T. New methods for robust design using computer simulations[C]//American Statistical Association, 2003, Proceedings of the Section on Physical and Engineering Science [79]Welch W, Yu T, Kang S M, et al. Computer experiments for quality control by parameter design[J]. Journal of Quality Technology, 1990, 22(1): 15-22 [80]Welch W J, Sacks J. A system for quality improvement via computer experiments[J]. Communications in Statistics-Theory and Methods, 1991, 20(2): 477-495 [81]Ben-Tal A, Nemirovski A. Robust truss topology design via semidefinite programming[J]. SIAM Journal on Optimization, 1997, 7(4): 991-1016 [82]Gunawan S, Azarm S. Non-gradient based parameter sensitivity estimation for single objective robust design optimization[J]. Journal of Mechanical Design, 2004, 126(3): 395-402 [83]Lewis R M, Huyse L. Aerodynamic shape optimization of two-dimensional airfoils under uncertain conditions[R]. Institute for Computer Applications in Science and Engineering Hampton Va, 2001 [84]Li W, Huyse L, Padula S. Robust airfoil optimization to achieve drag reduction over a range of mach numbers[J]. Structural and Multidisciplinary Optimization, 2002, 24(1): 38-50 [85]Zhang Y F. Aerodynamic optimization of civil aircraft design based on advanced computational fluid dynamics[D]. Beijing: Tsinghua University, 2010. (in Chinese)張宇飛. 基于先進(jìn) CFD 方法的民用客機(jī)氣動(dòng)優(yōu)化設(shè)計(jì)[D]. 博士學(xué)位論文. 北京: 清華大學(xué), 2010 [86]Zhao T. Aerodynamic optimization design of supercritical wing based on structure weight/ deformation performance[D]. Beijing: Tsinghua University, 2016. (in Chinese)趙童. 考慮結(jié)構(gòu)重量變形的超臨界機(jī)翼氣動(dòng)優(yōu)化設(shè)計(jì)[D]. 博士學(xué)位論文. 北京: 清華大學(xué), 2016 [87]Giannakoglou K C. Design of optimal aerodynamic shapes using stochastic optimization methods and computational intelligence[J]. Progress in Aerospace Sciences, 2002, 38(1): 43-76 [88]Asouti V G, Kyriacou S A, Giannakoglou K C. PCA-enhanced Metamodel-assisted Evolutionary Algorithms for Aerodynamic optimization[M]//Application of Surrogate-based Global Optimization to Aerodynamic Design. Springer International Publishing, 2016: 47-57 [90]Ni A X, Zhang Y F, Chen H X. An improvement to NSGA-II algorithm and its application in optimization design of multi-element airfoil[J]. Acta Aerodynamica Sinica, 2014, 32(2): 252-257. (in Chinese)倪昂修, 張宇飛, 陳海昕. NSGA-II算法的改進(jìn)及其在多段翼型縫道參數(shù)優(yōu)化中的應(yīng)用[J]. 空氣動(dòng)力學(xué)學(xué)報(bào), 2014, 32(2): 252-257 [91]Liu J L. Intelligent genetic algorithm and its application to aerodynamic optimization of airplanes[J]. AIAA Journal, 2005, 43(3): 530-538 [92]Oyama A, Obayashi S, Nakamura T. Real-coded adaptive range genetic algorithm applied to transonic wing optimization[J]. Applied Soft Computing, 2001, 1(3): 179-187 [93]Trapani G, Kipouros T, Savill A M. The design of multi-element airfoils through multi-objective optimization techniques[J]. CMES-Computer Modeling in Engineering and Sciences, 2012, 88: 107-138 [94]Madavan N. On improving efficiency of differential evolution for aerodynamic shape optimization applications[C]//10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. 2004: 4622 [95]Zingg D W, Nemec M, Pulliam T H. A comparative evaluation of genetic and gradient-based algorithms applied to aerodynamic optimization[J]. European Journal of Computational Mechanics/Revue Européenne de Mécanique Numérique, 2008, 17(1-2): 103-126 [96]Sugimura K, Obayashi S, Jeong S. Multi-objective optimization and design rule mining for an aerodynamically efficient and stable centrifugal impeller with a vaned diffuser[J]. Engineering Optimization, 2010, 42(3): 271-293 [97]Oyama A, Liou M S, Obayashi S. Transonic axial-flow blade optimization: Evolutionary algorithms/three-dimensional Navier-Stokes solver[J]. Journal of Propulsion and Power, 2004, 20(4): 612-619 [98]Chiba K, Obayashi S, Nakahashi K, et al. High-fidelity multidisciplinary design optimization of aerostructural wing shape for regional jet[C]//23rd AIAA Applied Aerodynamics Conference. 2005: 5080 [99]Chiba K, Makino Y, Takatoya T. Evolutionary-based multidisciplinary design exploration for silent supersonic technology demonstrator wing[J]. Journal of Aircraft, 2008, 45(5): 1481-1494 [100]Chiba K, Makino Y, Takatoya T. Evolutionary-based multidisciplinary design exploration for silent supersonic technology demonstrator wing[J]. Journal of Aircraft, 2008, 45(5): 1481-1494 [101]Jung S K, Choi W, Martins-Filho L S, et al. An implementation of self-organizing maps for airfoil design exploration via multi-objective optimization technique[J]. Journal of Aerospace Technology and Management, 2016, 8(2): 193-202 [102]Yamazaki W, Matsushima K, Nakahashi K. Aerodynamic design optimization using the drag-decomposition method[J]. AIAA Journal, 2008, 46(5): 1096-1106 [103]Poloni C, Mosetti G. Aerodynamic shape optimisation by means of hybrid genetic algorithm[J]. Zeitschrift fur Angewandte Mathematik und Mechanik, 1996, 76: 247-250 [104]Foster N F, Dulikravich G S. Three-dimensional aerodynamic shape optimization using genetic and gradient search algorithms[J]. Journal of Spacecraft and Rockets, 1997, 34(1): 36-42 [105]Tang Z. Multi-objective optimization strategies using adjoint method and game theory in aerodynamics[J]. Acta Mechanica Sinica, 2006, 22(4): 307-314 [106]Tang Z, Désidéri J A, Périaux J. Multicriterion aerodynamic shape design optimization and inverse problems using control theory and nash games[J]. Journal of Optimization Theory and Applications, 2007, 135(3): 599-622 [107]Haryanto I, Utomo T S, Sinaga N, et al. Optimization of maximum lift to drag ratio on airfoil design based on artificial neural network utilizing genetic algorithm[C]//Applied Mechanics and Materials. Trans Tech Publications, 2014, 493: 123-128 [108]Asouti V G, Kampolis I C, Giannakoglou K C. A grid-enabled asynchronous metamodel-assisted evolutionary algorithm for aerodynamic optimization[J]. Genetic Programming and Evolvable Machines, 2009, 10(4): 373 [109]Hu Z, Jakiela M, Pitt D M, et al. Reducing aerodynamic vibration with piezoelectric actuators: a genetic algorithm optimization[C]//Smart Structures and Materials. International Society for Optics and Photonics, 2004: 276-287 [110]Ong Y S, Nair P B, Keane A J. Evolutionary optimization of computationally expensive problems via surrogate modeling[J]. AIAA Journal, 2003, 41(4): 687-696 [111]Madavan N. Aerodynamic shape optimization using hybridized differential evolution[C]//21st AIAA Applied Aerodynamics Conference. 2003: 3792 [112]Kang Y S, Park T C, Yang S S, et al. Multi disciplinary design optimization and performance evaluation of a single-stage transonic axial compressor[C]//ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2012: 361-369 [113]Jones D R. A taxonomy of global optimization methods based on response surfaces[J]. Journal of Global Optimization, 2001, 21(4): 345-383 [114]Zhou Z, Ong Y S, Nair P B, et al. Combining global and local surrogate models to accelerate evolutionary optimization[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2007, 37(1): 66-76 [115]Pehlivanoglu Y V, Yagiz B. Aerodynamic design prediction using surrogate-based modeling in genetic algorithm architecture[J]. Aerospace Science and Technology, 2012, 23(1): 479-491 [116]Karakasis M K, Koubogiannis D G, Giannakoglou K C. Hierarchical distributed metamodel-assisted evolutionary algorithms in shape optimization[J]. International Journal for Numerical Methods in Fluids, 2007, 53(3): 455-469 [117]Whitney E J, Sefrioui M, et al. Advances in hierarchical, parallel evolutionary algorithms for aerodynamic shape optimisation[J]. JSME International Journal Series B, 2002, 45(1): 23-28 [118]Joly M M, Verstraete T, Paniagua G. Integrated multifidelity, multidisciplinary evolutionary design optimization of counterrotating compressors[J]. Integrated Computer-Aided Engineering, 2014, 21(3): 249-261 [119]Chernukhin O, Zingg D W. Multimodality and global optimization in aerodynamic design[J]. AIAA Journal, 2013, 51(6): 1342-1354 [120]Karakasis M K, Giotis A P, Giannakoglou K C. Inexact information aided, low-cost, distributed genetic algorithms for aerodynamic shape optimization[J]. International Journal for Numerical Methods in Fluids, 2003, 43(10-11): 1149-1166 [121]Praveen C, Duvigneau R. Low cost PSO using metamodels and inexact pre-evaluation: Application to aerodynamic shape design[J]. Computer Methods in Applied Mechanics and Engineering, 2009, 198(9): 1087-1096 [122]Sun H, Lee S. Response surface approach to aerodynamic optimization design of helicopter rotor blade[J]. International Journal for Numerical Methods in Engineering, 2005, 64(1): 125-142 [123]Song W, Keane A J. Surrogate-based aerodynamic shape optimization of a civil aircraft engine nacelle[J]. AIAA Journal, 2007, 45(10): 2565-2574 [124]Alexandrov N M, Lewis R M, Gumbert C R, et al. Approximation and model management in aerodynamic optimization with variable-fidelity models[J]. Journal of Aircraft, 2001, 38(6): 1093-1101 [125]Kampolis I C, Giannakoglou K C. A multilevel approach to single-and multiobjective aerodynamic optimization[J]. Computer Methods in Applied Mechanics and Engineering, 2008, 197(33): 2963-2975 [126]Backhaus J, Aulich M, Frey C, et al. Gradient enhanced surrogate models based on adjoint CFD methods for the design of a counter rotating turbofan[C]//ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2012: 2319-2329 [127]Giannakoglou K C, Giotis A P, Karakasis M K. Low-cost genetic optimization based on inexact pre-evaluations and the sensitivity analysis of design parameters[J]. Inverse Problems in Engineering, 2001, 9(4): 389-412 [128]Song L, Guo Z, Li J, et al. Research on metamodel-based global design optimization and data mining methods[J]. Journal of Engineering for Gas Turbines and Power, 2016, 138(9): 092604 [129]Jeong S, Murayama M, Yamamoto K. Efficient optimization design method using kriging model[J]. Journal of Aircraft, 2005, 42(2): 413-420 [130]Namura N, Obayashi S, Jeong S. Surrogate-based multi-objective optimization and data mining of vortex generators on a transonic infinite-wing[C]//Evolutionary Computation (CEC), 2013 IEEE Congress on. IEEE, 2013: 2910-2917 [131]Dulikravich G S, Martin T J, Cola?o M J, et al. Automatic switching algorithms in hybrid single-objective optimization[J]. FME Transactions, 2013, 41(3): 167-179 [132]Song L, Luo C, Li J, et al. Automated multi-objective and multidisciplinary design optimization of a transonic turbine stage[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2012, 226(2): 262-276. Evolution and development of “man-in-loop” in aerodynamic optimization design LI Runze, ZHANG Yufei, CHEN Haixin* Optimization method has been well researched and developed in the past few decades. Studies have been also carried out on multi-disciplinary, multi-point, multi-objective, multi-constraint, and robust optimization as well as other optimization approaches. However, practical applications of these optimization methods still have difficulties in the engineering design. Therefore, by reviewing the application history of optimization methods in industrial design and analyzing the difficulties and problems in the application, “man-in-loop” is introduced as a methodology for applying optimization methods in practical engineering design. The concept, realization, and evolution of “man-in-loop” are explained with examples of aircraft aerodynamic design. Due to the significant development of artificial intelligence (AI) in non-linear regression and data mining, it is quite possible that the human role in “man-in-loop” can be replaced by the AI. According to some examples given by the present approach, potential directions for the development of engineering optimization design are discussed. aerodynamic; optimization design; man-in-loop; artificial intelligence 0258-1825(2017)04-0529-15 2017-04-02; 2017-06-30 973項(xiàng)目(2014CB744806);清華大學(xué)自主科研項(xiàng)目(2015THZO) 李潤(rùn)澤(1994-),男,遼寧人,博士研究生,研究方向:飛行器氣動(dòng)優(yōu)化設(shè)計(jì)及方法開發(fā). E-mail:lirz16@mails.tsinghua.edu.cn 陳海昕*(1974-),男,湖南人,博士,教授,博士生導(dǎo)師,研究方向:計(jì)算流體力學(xué),流動(dòng)控制,空氣動(dòng)力學(xué)優(yōu)化設(shè)計(jì),飛機(jī)設(shè)計(jì), 葉輪機(jī)械氣動(dòng)熱/力,新概念飛行器布局,無人機(jī)系統(tǒng)研發(fā)等. E-mail: chenhaixin@tsinghua.edu.cn 李潤(rùn)澤, 張宇飛, 陳海昕. “人在回路”思想在飛機(jī)氣動(dòng)優(yōu)化設(shè)計(jì)中演變與發(fā)展[J]. 空氣動(dòng)力學(xué)學(xué)報(bào), 2017, 35(4): 529-543. 10.7638/kqdlxxb-2017.0076 LI R Z, ZHANG Y F, CHEN H X. Evolution and development of “man-in-loop” in aerodynamic optimization design[J]. Acta Aerodynamica Sinica, 2017, 35(4): 529-543. V211.3 A doi: 10.7638/kqdlxxb-2017.00763 “人在回路”的進(jìn)一步發(fā)展
4 結(jié)論與展望
(School of Aerospace Engineering, Tsinghua University, Beijing 100084, China)