• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Preparation of Monodisperse Silica Spheres Based on Improved St?ber Method and Their Mechanism of Formation

    2017-09-03 08:40:08,,,,
    關(guān)鍵詞:硅酸分散性二氧化硅

    , , , ,

    (1. School of Renewable Energy, Shenyang Institute of Engineering, Shenyang 110136, China; 2. College of Biology Engineering, Beijing University of Chemical Technology, Beijing 100029, China)

    材料科學(xué)

    Preparation of Monodisperse Silica Spheres Based on Improved St?ber Method and Their Mechanism of Formation

    DINGYanbo1,WANGCunxu1,BIXiaoguo1,ZHANGDong1,

    LIYucai1,SONGShiwei1,WANGJian1,WANGGang1,WANGHan1,LIULiying1,XUZhao1,ZHAOZiqing2

    (1. School of Renewable Energy, Shenyang Institute of Engineering, Shenyang 110136, China; 2. College of Biology Engineering, Beijing University of Chemical Technology, Beijing 100029, China)

    In this paper, monodispersed spherical silica particles were prepared by sol-gel hydrolysis of tetraethoxy silane (TEOS) in alcohol-water mixed solvent using ammonia as catalyst by improved St?ber method. Effect of the concentration of TEOS, the type of solvents, the concentration of ammonia, the particle diameter and morphology of silica were investigated. Scanning electron microscopy to characterize the structure and morphology of the silica microspheres, the result shows that the hydrolysis of TEOS is control step in SiO2preparation and the diameter of SiO2increased as the concentration of ammonia increased.

    monodisperse; Silica; formation mechanism

    0 Introduction

    Silica microspheres with high mechanical strength, good liquidity are widely used in chromatographic column packing, structure of ceramic materials, coatings, cosmetics, printing ink additives, etc.[1-2]. Beside, the silica has a non-toxic, high biological activity. The surface of the silicon hydroxyl group is very suitable as a modified bridge which suitable for variety of functionalization[3]due to their great potential application value in the fields of composite materials, catalysis, sensors, biomedical etc. In addition, after E. Yablonovitch's concept of photonic crystal, the dielectric function in space can change the mode of photon state in materials[4], which received wide attention of scientists interested of photonic crystals. The existence of photonic band gap in photonic crystals has produced a lot of new physical properties and phenomena, thus showing a very broad development and application prospects. The photonic crystal has become the hot research focus of physics and materials science, and developing rapidly at present.

    1In the preparation of many photonic crystals, the process of preparing the photonic crystal by the colloidal crystal template method is considered as the most simple and effective, and also has the most development and application prospect[5]. However, one of the most challenging problems in the preparation of photonic crystals by this process is the large area preparation of ordered thin film photonic crystals.

    Monodispersed silica microspheres prepared by self-assembly have been extensively application in the field of photonic crystal, data storage, optoelectronics which attracting a wide range of scientists interested[6]. There are many preparation methods of silica microspheres, such as micro emulsion method, plasma, chemical vapor deposition, etc. However, micro emulsion method needs large amounts of organic matter during the preparation process[7]. The recycling is much more troublesome, high cost and may cause pollution to the environment, the plasma method and chemical vapor deposition methods require specific device, high energy consumption[8]. On the basis of St?ber method using alcohol as solvent to make silicon alkoxide under ammonia catalytic hydrolytic condensation, then preparing silica microspheres through a post-processing, which not only simple in process, but also low cost, and can get good monodispersity products[9]. In this paper, based on the St?ber method for preparing silica microspheres, broadening the range of particle size of particles, the different alcohol solvent for the effect of silica particle size and dispersion under ammonia catalyst and its mechanism are discussed systematically.

    1 Experimental section

    Reagents used were anhydrous ethanol C2H5OH(A.R.), isopropyl alcohol CH3CH(OH)CH3(A.R.),butanol CH3CH2CH2CH2OH(A.R.), ammonia NH3·H2O(A.R.), tetraethyl orthosilicate (C2H5O)4Si (TEOS) (A.R.).Water used in all experiments was purified with a resistivity greater than 18ΩM/cm.

    The improved St?ber method was used in this experiment. At first adding water into the reactor, then adding ethanol and ammonia solution into water, stirring for about 5 min.Finally, adding drops of TEOS slowly into reactor, constant temperature react about 5 hours to make the TEOS complete hydrolysis. The silica colloidal particles can easily obtain after TEOS sufficiently hydrolyzed. The improved St?ber method can avoid the larger initial concentration of TEOS which would make a good reproducibility of sample preparation. The particle size and morphology of silica microspheres can also be more precise control.

    At the end of reaction, the product was spin-evaporated at 70 ℃ and 60 r/min, cleaned with ethanol until the pH was 7, dried in an oven to obtain SiO2samples Monodispersed silica microspheres was ultrasonic for 20 min in ethanol, take a certain amount of dispersed droplets on the aluminum film after drying, The silica microspheres was measured by scanning electron microscope (SEM) of Philips S-4800 type field-scanning microscope.

    2 Results and discussion

    2.1 Effect of Ethylorthosilicate and Formation Mechanism of Silica Microsphere

    This experiment studied the adding amounts of ethylorthosilicate on silica microspheres. Fig.1 shows morphologies of silica microspheres with the concentrations of TEOS varying. The SEM micrographs of SiO2microspheres with the addition of 10% TEOS shown on Fig.1a. The SiO2particle size is 326 nm with smooth surface, high sphericity, uniform particle size and good monodispersity. Fig.1b shows the SEM micrographs of SiO2microspheres with the addition of 12% TEOS. The particle size of SiO2is 297 nm, the SiO2particle size is uniform, the monodispersity is good and the sphericity is high. Fig.1c shows the SEM micrographs of SiO2microspheres with 14% TEOS addition. It can be seen that SiO2is also spherical with smooth surface, but the particle size is not uniform and a double-size distribution occurs, obviously. The hydrolysis of ethylorthosilicate is the controlling step of the whole reaction. Once the supply of ethylorthosilicate exceeds its hydrolytic capacity, the monodisperse balance of the system will be destroyed, which will could not accord with the requirement of colloidal crystals self-assembly. TEOS addition should be controlled within 14% during the preparation of SiO2microspheres. Monodispersed SiO2synthesis of the main components of the alkyl silicates, short-chain alcohol, a certain concentration of ammonia and ultra-pure water, orthosilicate alkyl ester hydrolysis and polycondensation reaction principles usually described by the following reactions[10].

    (1)

    (2)

    (3)

    R in Equation is alkyl groups CxH2x+1, in (1) hydrolysis reaction, alcohol-based functional groups (RO-) are replaced by (OH-) functional groups, and then with (2) and (3) the polycondensation reaction, generate Si-O-Si, at the same time water and alcohol generate. Water and alcohol generating, Simultaneously. All these reactions are reversible. The reverse reactions of these reactions are hydrolysis and alcoholysis, respectively. The polycondensation can take place in both acidic and basic conditions. The adverse reactions of these are hydrolyzed and alcoholysis reactions, and the condensation reaction can react in both acidic or alkaline cases.

    (a) TEOS 10%; (b) TEOS 12%; (c) TEOS 14%.

    The polycondensation reaction begins with H+or OH-reacting rapidly with the hydrolyzate to form a charged intermediate followed by an electrically neutral silicon group which slowly attacks the charged intermediate. As with the hydrolysis reaction, the rate of polycondensation reaction also depends on the steric effect and the transition state of the charged state, in alkali catalyzed reaction, due to the formation and nucleation of orthosilicic acid, and then grow to form monodispersed spherical colloidal microspheres.

    2.2 Effects of Solvent on Particle Size of Silica Microspheres

    Fig.2a shows the SEM micrographs of SiO2microspheres prepared by using ethanol as solvent. It can be seen from the figure that the silica microspheres are spherical and have high sphericity, uniform particle size distribution and good monodispersity. Fig.2b shown the SiO2microspheres morphology prepared with isopropanol as solvent. SEM photographs can clearly see that the preparation of silica is spherical, particle size distribution is also very uniform, but the sphericity is not as high as with ethanol as solvent. SEM photographs shown in the Fig.2c demonstrate that the use of ethylene glycol as solvent to prepare SiO2microspheres due to no spherical silica particles and agglomeration seriously. This may be due to the alkyl chain of isopropanol is longer than the alkyl chain of ethanol, the faster reaction rate in the isopropanol solvent. When ethylene glycol used as solvent, the viscosity is larger. The polarity is small due to the large surface tension. Which leads to large steric hindrance during hydrolysis, so it is easy to agglomerate during hydrolysis.

    (a) Ethanol; (b) Isopropanol; (c) Ethylene glycol.

    While ethanol is a kind of solvent that dissolves in water and dissolves in TEOS, it can be mixed with water and ammonia in any proportion. The reactants and water can be evenly mixed and can participate in the reaction better during the reaction. The prepared silica has better dispersibility and smoother surface.

    2.3 Ammonia concentration on the influence of silica microspheres

    Fig.3 is a scanning electron micrograph of silica microspheres prepared at different ammonia concentrations. Fig.3a shows that the particle size of the prepared SiO2microspheres is 142 nm when the ammonia concentration is 6%. Fig.3b shows the particle diameter of the prepared SiO2microsphere is 310 nm when the ammonia concentration become 9%. Fig.3c shows the particle size of the prepared SiO2microspheres is 384 nm when the ammonia concentration enhance up to 12%. Fig.3d shows the particle size of the prepared SiO2microspheres is 423 nm when the ammonia concentration increase up to 15%. SiO2microspheres particle size increases gradually with the increasing of ammonia concentration. In addition, ammonia is not only the catalyst for the hydrolysis of ethyl orthosilicate, but also the morphology regulator of SiO2microspheres, which can’t form SiO2microspheres without ammonia. The mechanism of the preparation of monodisperse silica colloidal particles by TEOS hydrolysis under the catalysis of aqueous ammonia shown as following[11]:

    Normally, a small amount of deionized water added into the TEOS and a reaction occurs, but the reaction rate is very slow and the gel is particularly prone to be formed. The addition of aqueous ammonia plays a catalytic role. there are has four-alkoxy -OR(-OC2H5) bonding around the silicon atom in the TEOS molecules has four-alkoxy -OR(-OC2H5) with it. In the presence of a basic catalyst (NH4OH), the OH-nucleophilic attack on the silicon nucleus causes the silicon nucleus to be negatively charged and causes the electron cloud to shift to the OR-group on the other side, so that the Si-O bond become weakened and broken, and hydrolysis occurs. Hydrolysis of monomer between Si-OH, the Si-OH group and the Si-R group undergo dehydration or dealcoholysis polymerization reaction. Forming Si-O-Si chain, Si-O-Si chain between the continuous cross-linking, synthesizing granular SiO2aggregates ultimately.

    (a) ammonia 6% 142 nm; (b) ammonia 9% 310 nm; (c) ammonia 12% 384 nm; (d) ammonia 15% 423 nm.

    In the presence of a basic catalyst (NH4OH), with the small radius, OH-ions attack negatively, which directly causes nucleon attack on the silicon nucleus and causes the silicon nucleus to be negatively charged and the electron cloud shifting to the other side of the OR-group, so that the Si-O bond of the group is weakened and cleaved out of the OR-to complete the hydrolysis reaction. Under the condition of alkali catalysis, TEOS hydrolysis belongs to the nucleophilic reaction mechanism of OH-ion attacking silicon nucleus directly, the intermediate process is little, and OH-ion radius is small, so the hydrolysis rate is faster. Silicon nucleus in the middle of the process obtains a negative charge, therefore if there are acceptor groups such as -OH or -OSi which are easy to attract electrons around the silicon nucleus, the induction can stabilize the negative charge and facilitate the hydrolysis of TEOS. In the alkaline catalysis system, the hydrolysis rate is higher than the polymerization rate, and the hydrolysis of TEOS is relatively complete. Therefore, it is considered that the polymerization is carried out in the multidimensional direction under the condition of complete hydrolysis, which forms a short chain cross linking structure. The internal polymerization of the intercalated structure strengthens the cross linking between short chains and forms unstable microcrystalline nuclei. The microcrystal nucleus has small volume and large diffusion coefficient, and the surface has many negative charges and is susceptible to background solution ionization species so that continue growing.Silicon nuclei in the middle process to obtain a negative charge, therefore, there exist acceptor groups such as-OH or-O-Si are easy to attract electrons around the silicon nucleus which is beneficial to the hydrolysis of TEOS due to its induction can stabilize the negative charge and is conducive.

    3 Conclusion

    In the process of silicon dioxide growth, TEOS concentration, the type of solvent, the concentration of ammonia have very important influence in the property of silica, such as particle size, morphology. Silica particle size will become larger with the increases amount of TEOS in the system. However, the TEOS concentration is too high will lead to less monodispersibility or double particle size distribution. The amount of TEOS addition should be controlled within 14%. The particle size distribution of silica microspheres was broadened with the more carbon chain alcohols. The morphology and particle size of SiO2prepared by using ethanol as solvent were superior. The particle size of the silica microspheres is larger as the ammonia concentration increasing. The diameter of silica microspheres will distribution under excessive ammonia, and the best pH value is about 9.

    [ 1 ]VEVEL O D,JEDE T A,LOBO R F,et al. Porous silica via colloidal crystallization[J]. Nature, 1997,389:447-448.

    [ 2 ]STEIN A. Sphere templating methods for periodic porous colloids[J]. Microporous and Mesoporous Mater, 2001,44:227.

    [ 3 ]NIELSEN K H,ORZOL D K,KOYNOV S, et al. Large area,low cost anti-reflective coating for solar glasses[J]. Sol Energy Mater Sol Cells, 2014,128:283-288.

    [ 4 ]YBLONOVITCH E. Inhibited Spontaneous Emission in Solid-State Physics and Electronics[J]. Phys Rev Lett, 1987,58:2059-2062.

    [ 5 ]LIU Y,SHEN J,LI X G,et al. Effect of hydrophobicity on the vacuum-contamination resistance and laser damage threshold of sol-gel silica coating[J]. Chin J Inorg Chem, 2013,29:1339-1344.

    [ 6 ]MORI T,HASEGAWA K,HATANO T,et al. Surface-relief gratings with high spatial frequency fabricated using direct glass imprinting process[J]. Opt Lett, 2008,33:428-430.

    [ 7 ]HU Q F,LI G,WANG J H. The sediment method prepares the high strength white carbon black[J]. Non-metallic Mineral, 2000,23(6):23-24.

    [ 8 ]GAN L M,ZHANG K,CHEW C H. Preparation of silica nanoparticles from sodium orthosilicate in inverse microemulsions[J]. Colloids Surf A:Physicochemical and Engineering Aspects. 1996,110:199-200.

    [ 9 ]STBER W,FINK A. Controlled growth of monodisperse silica spheres in the micron size range[J]. Colloid & Interface Sci, 1968,26:626.

    [10]MATSOUKAS T,GULARI E. A growth model for silica particles from alkoxides[J]. Colloid lnterface Sci, 1989,132:13.

    [11]ASSINK R A,BRUEE D, KAY J. LDRD final report on gas separation by fullerene membranes[J]. Non-Crystal Solids, 1996(9):359-371.

    1673-5862(2017)03-0281-05

    基于改進(jìn)的St?ber法制備單分散二氧化硅微球及其形成機(jī)理探討

    丁艷波1, 王存旭1, 畢孝國1, 張 東1, 李昱材1, 宋世巍1, 王 健1, 王 剛1, 王 晗1, 劉麗瑩1, 徐 昭1, 趙子青2

    (1. 沈陽工程學(xué)院 新能源學(xué)院, 沈陽 110136; 2. 北京化工大學(xué) 生物工程學(xué)院, 北京 100029)

    使用改進(jìn)的St?ber法,在醇水混合物中,以氨水作催化劑,正硅酸乙酯(TEOS)作為硅源,通過溶膠-凝膠水解工藝制備單分散的二氧化硅微球。研究了正硅酸乙酯的濃度、溶劑類型、氨水濃度、二氧化硅微球粒徑和形貌的影響。采用掃描電子顯微鏡對(duì)所制備的二氧化硅微球進(jìn)行結(jié)構(gòu)和形貌的表征,結(jié)果表明正硅酸乙酯的濃度越大,二氧化硅微球的粒徑越大。氨水的濃度增加,二氧化硅微球的粒徑增大,單分散性較好。

    單分散性; 二氧化硅; 形成機(jī)理

    date: 2017-01-20.

    TQ016 Document code: A

    10.3969/ j.issn.1673-5862.2017.03.004

    Supported: Fund of Liaoning Provincial Education Department under Grant (L2014516,L2015377,L2015370, L201610) .

    Biography: DING Yanbo(1981-),female, was born in Wuhan of Hubei Province, lecturer of Shenyang Institute of Engineering,Doctor.

    猜你喜歡
    硅酸分散性二氧化硅
    三硅酸鎂的制備方法及應(yīng)用
    云南化工(2021年10期)2021-12-21 07:33:36
    攪拌對(duì)聚羧酸減水劑分散性的影響
    納米SiO2粉體在水泥液相中的分散性
    姜黃提取物二氧化硅固體分散體的制備與表征
    中成藥(2018年2期)2018-05-09 07:19:43
    CdO對(duì)硅酸三鈣形成的影響及其固溶效應(yīng)
    氨基官能化介孔二氧化硅的制備和表征
    sPS/PBA-aPS共混體系的相容性及分散性研究
    中國塑料(2016年4期)2016-06-27 06:33:40
    異丙腎上腺素在硅酸鉍離子交換薄層上的選擇性分離與測(cè)定
    色譜(2015年6期)2015-12-26 01:57:36
    齒科用二氧化硅纖維的制備與表征
    介孔二氧化硅制備自修復(fù)的疏水棉織物
    欧美日韩视频高清一区二区三区二| 五月开心婷婷网| bbb黄色大片| 美女高潮到喷水免费观看| 90打野战视频偷拍视频| 精品一品国产午夜福利视频| 久久国产精品男人的天堂亚洲| 欧美在线黄色| 久久久国产欧美日韩av| 精品国产超薄肉色丝袜足j| 亚洲三区欧美一区| 黄色视频在线播放观看不卡| 欧美日韩精品网址| 午夜91福利影院| 高清黄色对白视频在线免费看| 美女脱内裤让男人舔精品视频| 久久精品国产亚洲av涩爱| 久久人人97超碰香蕉20202| 日韩免费高清中文字幕av| a级毛片黄视频| 日韩一区二区三区影片| 国产欧美日韩一区二区三区在线| 无遮挡黄片免费观看| 成年动漫av网址| 精品人妻熟女毛片av久久网站| 亚洲成色77777| 亚洲av电影在线进入| 国产成人精品无人区| 男女无遮挡免费网站观看| 亚洲国产看品久久| 亚洲久久久国产精品| 亚洲久久久国产精品| 国产女主播在线喷水免费视频网站| 亚洲精品久久久久久婷婷小说| 美女主播在线视频| 精品久久蜜臀av无| 观看美女的网站| 五月天丁香电影| 老汉色∧v一级毛片| 精品亚洲成国产av| 日本欧美视频一区| 国产av一区二区精品久久| 19禁男女啪啪无遮挡网站| 久久女婷五月综合色啪小说| 汤姆久久久久久久影院中文字幕| 国产欧美日韩综合在线一区二区| 日本猛色少妇xxxxx猛交久久| 欧美日韩视频高清一区二区三区二| 老司机影院成人| 免费在线观看视频国产中文字幕亚洲 | 欧美日韩视频高清一区二区三区二| 亚洲av电影在线进入| 中文字幕另类日韩欧美亚洲嫩草| 久久女婷五月综合色啪小说| 中文字幕人妻丝袜制服| 欧美激情高清一区二区三区 | 一级片'在线观看视频| 多毛熟女@视频| 亚洲 欧美一区二区三区| 国产av国产精品国产| 国产精品久久久久成人av| 欧美人与性动交α欧美软件| 一级毛片我不卡| 五月天丁香电影| 久久久久国产精品人妻一区二区| 在现免费观看毛片| 国产精品一区二区精品视频观看| 亚洲欧美日韩另类电影网站| 丰满饥渴人妻一区二区三| 纯流量卡能插随身wifi吗| 男人舔女人的私密视频| 伊人久久国产一区二区| 欧美av亚洲av综合av国产av | 日日撸夜夜添| 免费久久久久久久精品成人欧美视频| 国产视频首页在线观看| av国产精品久久久久影院| 我要看黄色一级片免费的| 一边摸一边抽搐一进一出视频| 午夜激情av网站| 九色亚洲精品在线播放| 婷婷色av中文字幕| 日本91视频免费播放| 国产免费又黄又爽又色| 午夜福利一区二区在线看| 国产一区二区激情短视频 | 欧美日韩精品网址| 国产精品久久久久久久久免| tube8黄色片| 亚洲男人天堂网一区| 美女高潮到喷水免费观看| 免费观看人在逋| 日本色播在线视频| 99香蕉大伊视频| 日日撸夜夜添| 国产亚洲最大av| 国产成人a∨麻豆精品| 中文字幕av电影在线播放| 嫩草影院入口| 中文字幕高清在线视频| 久久久久网色| 丰满饥渴人妻一区二区三| 日日啪夜夜爽| 国产在线一区二区三区精| 久久久久久人妻| 一级爰片在线观看| 精品国产一区二区三区四区第35| 波多野结衣av一区二区av| 久久久久久久大尺度免费视频| 丝袜在线中文字幕| 欧美av亚洲av综合av国产av | 欧美日韩视频精品一区| 国产黄色免费在线视频| 满18在线观看网站| 午夜av观看不卡| 午夜老司机福利片| 中文欧美无线码| 日韩制服骚丝袜av| 欧美少妇被猛烈插入视频| 我的亚洲天堂| 女人爽到高潮嗷嗷叫在线视频| 无限看片的www在线观看| 国产精品一区二区在线不卡| 国产麻豆69| 亚洲精品久久久久久婷婷小说| 黄频高清免费视频| 久久久精品免费免费高清| 男女午夜视频在线观看| 侵犯人妻中文字幕一二三四区| 国产成人av激情在线播放| 香蕉国产在线看| 亚洲欧美精品自产自拍| 亚洲av日韩精品久久久久久密 | 日韩制服骚丝袜av| 国产精品偷伦视频观看了| 色综合欧美亚洲国产小说| 国产成人啪精品午夜网站| 91精品国产国语对白视频| 亚洲一区中文字幕在线| 飞空精品影院首页| h视频一区二区三区| 女人久久www免费人成看片| 天天操日日干夜夜撸| 少妇人妻 视频| av一本久久久久| 夜夜骑夜夜射夜夜干| 国产精品久久久久久久久免| 一区二区日韩欧美中文字幕| 久久久久精品人妻al黑| 51午夜福利影视在线观看| 免费在线观看黄色视频的| 国产麻豆69| 青青草视频在线视频观看| 亚洲国产精品成人久久小说| 亚洲精品一区蜜桃| 巨乳人妻的诱惑在线观看| 亚洲欧美成人精品一区二区| 午夜福利在线免费观看网站| 久久99精品国语久久久| 亚洲国产欧美在线一区| 国产成人啪精品午夜网站| 欧美乱码精品一区二区三区| 亚洲国产最新在线播放| 欧美国产精品va在线观看不卡| 亚洲国产精品国产精品| 国产午夜精品一二区理论片| 黄频高清免费视频| 亚洲伊人久久精品综合| 久久久久久久久免费视频了| 咕卡用的链子| 777久久人妻少妇嫩草av网站| 一区二区三区激情视频| 成年动漫av网址| 久久99一区二区三区| 中文字幕色久视频| 一级毛片我不卡| 国产一级毛片在线| 国产精品久久久人人做人人爽| 亚洲国产日韩一区二区| 国产探花极品一区二区| 久久久欧美国产精品| 久久国产精品男人的天堂亚洲| 波多野结衣av一区二区av| 国产精品麻豆人妻色哟哟久久| 亚洲国产精品国产精品| 亚洲国产欧美日韩在线播放| 久久久久久免费高清国产稀缺| 热99国产精品久久久久久7| 亚洲情色 制服丝袜| 亚洲精品国产一区二区精华液| 菩萨蛮人人尽说江南好唐韦庄| 免费人妻精品一区二区三区视频| av在线观看视频网站免费| 日韩av在线免费看完整版不卡| 中文字幕人妻丝袜一区二区 | 麻豆av在线久日| 成年美女黄网站色视频大全免费| 一区二区三区激情视频| 色播在线永久视频| av国产精品久久久久影院| 国产一区二区 视频在线| 亚洲成人手机| 18禁动态无遮挡网站| 午夜福利乱码中文字幕| 免费高清在线观看日韩| 亚洲激情五月婷婷啪啪| av片东京热男人的天堂| 亚洲精品久久午夜乱码| 少妇人妻精品综合一区二区| 一级爰片在线观看| 在线天堂中文资源库| 久久精品亚洲av国产电影网| 一级毛片电影观看| 免费日韩欧美在线观看| 亚洲av在线观看美女高潮| 伦理电影大哥的女人| 欧美在线一区亚洲| 一区在线观看完整版| 久久午夜综合久久蜜桃| 国产在视频线精品| 飞空精品影院首页| 亚洲欧美成人精品一区二区| 亚洲精品视频女| 国产精品亚洲av一区麻豆 | 久久久久精品人妻al黑| 91国产中文字幕| 午夜激情久久久久久久| av电影中文网址| www.自偷自拍.com| 啦啦啦 在线观看视频| 这个男人来自地球电影免费观看 | 丝瓜视频免费看黄片| 岛国毛片在线播放| 欧美人与性动交α欧美精品济南到| 亚洲精品国产色婷婷电影| 亚洲精品日本国产第一区| 亚洲第一av免费看| 黄频高清免费视频| 亚洲成国产人片在线观看| 毛片一级片免费看久久久久| www.自偷自拍.com| 国产成人精品福利久久| 超色免费av| 国产99久久九九免费精品| 欧美成人精品欧美一级黄| 久久精品国产亚洲av涩爱| 香蕉丝袜av| 亚洲美女黄色视频免费看| 成人18禁高潮啪啪吃奶动态图| av女优亚洲男人天堂| 搡老岳熟女国产| 制服丝袜香蕉在线| 熟女少妇亚洲综合色aaa.| 国产精品嫩草影院av在线观看| 国产精品久久久久久久久免| 亚洲精品美女久久久久99蜜臀 | 人成视频在线观看免费观看| 亚洲免费av在线视频| 日本欧美国产在线视频| 精品亚洲成a人片在线观看| 国产有黄有色有爽视频| 色婷婷av一区二区三区视频| 91精品国产国语对白视频| 久久久久久久国产电影| 在线天堂中文资源库| 最黄视频免费看| 久久热在线av| 亚洲精品国产av蜜桃| 黄色一级大片看看| 日本av免费视频播放| 国产精品女同一区二区软件| 青春草国产在线视频| 久久天堂一区二区三区四区| 亚洲一码二码三码区别大吗| 1024视频免费在线观看| 如日韩欧美国产精品一区二区三区| 亚洲一卡2卡3卡4卡5卡精品中文| bbb黄色大片| 自拍欧美九色日韩亚洲蝌蚪91| 精品午夜福利在线看| svipshipincom国产片| 精品第一国产精品| 嫩草影院入口| 欧美国产精品va在线观看不卡| 国产乱来视频区| 十八禁高潮呻吟视频| 80岁老熟妇乱子伦牲交| 亚洲,欧美精品.| 香蕉丝袜av| 欧美亚洲 丝袜 人妻 在线| 午夜老司机福利片| 看免费av毛片| 伊人久久大香线蕉亚洲五| 成人亚洲精品一区在线观看| 色婷婷av一区二区三区视频| 一本久久精品| 在线观看一区二区三区激情| 精品福利永久在线观看| 搡老乐熟女国产| 青春草国产在线视频| 美女高潮到喷水免费观看| xxx大片免费视频| 亚洲欧美激情在线| 在线天堂中文资源库| 日本vs欧美在线观看视频| a级毛片黄视频| 深夜精品福利| 精品国产一区二区久久| 在现免费观看毛片| 久久久欧美国产精品| 99精品久久久久人妻精品| 黄色怎么调成土黄色| 久久精品国产a三级三级三级| 国产免费福利视频在线观看| 亚洲欧洲精品一区二区精品久久久 | 日韩欧美精品免费久久| 欧美黑人精品巨大| 黄频高清免费视频| 男女边吃奶边做爰视频| 中文乱码字字幕精品一区二区三区| 另类亚洲欧美激情| 国产熟女午夜一区二区三区| 9191精品国产免费久久| 国产成人系列免费观看| 日韩一本色道免费dvd| 日本爱情动作片www.在线观看| 亚洲国产欧美日韩在线播放| 国产熟女欧美一区二区| 激情五月婷婷亚洲| 国产一级毛片在线| 国产有黄有色有爽视频| 夫妻午夜视频| 亚洲av综合色区一区| 国产av码专区亚洲av| √禁漫天堂资源中文www| 国产精品久久久久久精品古装| 午夜福利在线免费观看网站| 日韩av免费高清视频| 国产精品久久久久久精品古装| 久久国产精品大桥未久av| 久久久久国产一级毛片高清牌| 一二三四在线观看免费中文在| 国产欧美亚洲国产| 亚洲av男天堂| 一二三四在线观看免费中文在| 亚洲精品美女久久av网站| 国产成人欧美在线观看 | 国产极品粉嫩免费观看在线| 好男人视频免费观看在线| avwww免费| 欧美亚洲 丝袜 人妻 在线| 王馨瑶露胸无遮挡在线观看| 日韩欧美一区视频在线观看| 亚洲精品,欧美精品| 精品久久久精品久久久| 一级爰片在线观看| 18在线观看网站| 久久综合国产亚洲精品| 老熟女久久久| 一级片免费观看大全| 校园人妻丝袜中文字幕| 国产野战对白在线观看| 亚洲精品aⅴ在线观看| av在线播放精品| 在线观看免费视频网站a站| 两性夫妻黄色片| 精品国产国语对白av| 热99久久久久精品小说推荐| 成人国产麻豆网| 亚洲欧美精品综合一区二区三区| 啦啦啦 在线观看视频| 国产成人欧美在线观看 | 国产探花极品一区二区| 久久精品久久久久久噜噜老黄| 亚洲欧美清纯卡通| 99re6热这里在线精品视频| 最近最新中文字幕免费大全7| 亚洲熟女毛片儿| 国产精品av久久久久免费| 黄片播放在线免费| 国产亚洲av片在线观看秒播厂| 男的添女的下面高潮视频| 人人妻人人添人人爽欧美一区卜| 日韩视频在线欧美| 大香蕉久久成人网| netflix在线观看网站| 人妻一区二区av| 99热网站在线观看| 一级黄片播放器| 亚洲中文av在线| 亚洲伊人久久精品综合| 少妇猛男粗大的猛烈进出视频| 一级爰片在线观看| 黄片无遮挡物在线观看| 亚洲自偷自拍图片 自拍| 成人午夜精彩视频在线观看| 国产成人免费观看mmmm| 一边摸一边做爽爽视频免费| 久久久久久久久久久免费av| 亚洲精品国产一区二区精华液| 纯流量卡能插随身wifi吗| 久久天躁狠狠躁夜夜2o2o | 欧美日韩国产mv在线观看视频| 成年动漫av网址| 国产极品粉嫩免费观看在线| 久久久久国产精品人妻一区二区| 成年人免费黄色播放视频| 啦啦啦在线观看免费高清www| 国产无遮挡羞羞视频在线观看| 80岁老熟妇乱子伦牲交| 波多野结衣一区麻豆| 婷婷色综合www| 一本一本久久a久久精品综合妖精| 亚洲av男天堂| 丰满少妇做爰视频| 美女中出高潮动态图| 亚洲精品自拍成人| 日本猛色少妇xxxxx猛交久久| 亚洲av综合色区一区| 日韩av不卡免费在线播放| 精品少妇内射三级| 国产一卡二卡三卡精品 | 精品久久久精品久久久| 亚洲第一青青草原| 十分钟在线观看高清视频www| 国产精品国产三级国产专区5o| 亚洲成色77777| 久久人人爽av亚洲精品天堂| 欧美av亚洲av综合av国产av | 婷婷色av中文字幕| 国产精品 国内视频| 亚洲精品国产av成人精品| 19禁男女啪啪无遮挡网站| 久久影院123| 久久狼人影院| 精品久久久久久电影网| 婷婷色av中文字幕| 天天操日日干夜夜撸| 亚洲成人手机| 久久av网站| 国产亚洲午夜精品一区二区久久| 丝瓜视频免费看黄片| 在线观看免费日韩欧美大片| 女人爽到高潮嗷嗷叫在线视频| 男女床上黄色一级片免费看| 国产成人啪精品午夜网站| videos熟女内射| 亚洲美女黄色视频免费看| 男人爽女人下面视频在线观看| 久久久久久久久久久免费av| 一边摸一边抽搐一进一出视频| 在线观看免费午夜福利视频| 国产亚洲av高清不卡| 香蕉丝袜av| 美女福利国产在线| 18禁国产床啪视频网站| 日韩中文字幕视频在线看片| 18禁观看日本| 亚洲精品,欧美精品| av女优亚洲男人天堂| 国产伦人伦偷精品视频| 国产99久久九九免费精品| 欧美激情 高清一区二区三区| 国产亚洲欧美精品永久| 黑人巨大精品欧美一区二区蜜桃| 在线观看免费日韩欧美大片| 亚洲精品日本国产第一区| 老司机影院毛片| 一区二区三区四区激情视频| 久久天堂一区二区三区四区| 国产精品人妻久久久影院| 天天躁夜夜躁狠狠躁躁| 街头女战士在线观看网站| 少妇人妻精品综合一区二区| 国产av码专区亚洲av| 国产成人a∨麻豆精品| 五月开心婷婷网| 国产99久久九九免费精品| 免费在线观看完整版高清| 多毛熟女@视频| 国产日韩欧美在线精品| 少妇被粗大猛烈的视频| 一边摸一边做爽爽视频免费| 男的添女的下面高潮视频| 国语对白做爰xxxⅹ性视频网站| 欧美激情极品国产一区二区三区| 成人影院久久| 精品一品国产午夜福利视频| 在线观看免费午夜福利视频| 一区二区三区激情视频| 久久天躁狠狠躁夜夜2o2o | 国产片特级美女逼逼视频| 久久毛片免费看一区二区三区| 亚洲av成人精品一二三区| 国产爽快片一区二区三区| 久久久亚洲精品成人影院| www日本在线高清视频| 亚洲av日韩在线播放| 老司机深夜福利视频在线观看 | 国产亚洲午夜精品一区二区久久| 美女中出高潮动态图| 一边亲一边摸免费视频| 日韩电影二区| 777米奇影视久久| 男女午夜视频在线观看| 又大又黄又爽视频免费| 午夜精品国产一区二区电影| 国产一区二区三区av在线| 亚洲精品成人av观看孕妇| 大话2 男鬼变身卡| 亚洲精品国产av成人精品| 欧美日韩亚洲综合一区二区三区_| 亚洲国产欧美网| 成人免费观看视频高清| 日日摸夜夜添夜夜爱| 亚洲精品美女久久av网站| 综合色丁香网| 在线精品无人区一区二区三| 日本爱情动作片www.在线观看| 国产精品二区激情视频| 男女国产视频网站| 少妇被粗大的猛进出69影院| 男女边吃奶边做爰视频| 一区二区日韩欧美中文字幕| 国产一区亚洲一区在线观看| av在线app专区| 成人国产av品久久久| av国产精品久久久久影院| 中文字幕人妻丝袜一区二区 | 久久狼人影院| 各种免费的搞黄视频| 国产免费又黄又爽又色| 少妇人妻久久综合中文| 999久久久国产精品视频| 国产国语露脸激情在线看| 成年av动漫网址| 婷婷色综合大香蕉| 欧美 日韩 精品 国产| 欧美日韩福利视频一区二区| 国产亚洲av高清不卡| 国产精品成人在线| 久久久久久免费高清国产稀缺| 青草久久国产| 日本欧美国产在线视频| 制服丝袜香蕉在线| av女优亚洲男人天堂| 日韩人妻精品一区2区三区| 国语对白做爰xxxⅹ性视频网站| 中文字幕人妻丝袜制服| 国产片特级美女逼逼视频| 天天躁夜夜躁狠狠久久av| 国产精品国产三级国产专区5o| 午夜日本视频在线| 韩国av在线不卡| 国产精品一国产av| 晚上一个人看的免费电影| 国产黄频视频在线观看| 蜜桃国产av成人99| 观看av在线不卡| av线在线观看网站| 欧美日韩一级在线毛片| 99久久人妻综合| 操美女的视频在线观看| 亚洲精品一区蜜桃| 国产男人的电影天堂91| 亚洲少妇的诱惑av| 中文字幕色久视频| 欧美黑人精品巨大| 国产日韩一区二区三区精品不卡| 久久天堂一区二区三区四区| 久久热在线av| 日韩,欧美,国产一区二区三区| 午夜福利视频精品| 性色av一级| 亚洲一卡2卡3卡4卡5卡精品中文| 九九爱精品视频在线观看| 午夜老司机福利片| 国产日韩欧美亚洲二区| 十分钟在线观看高清视频www| 国产xxxxx性猛交| 日日撸夜夜添| 亚洲国产看品久久| 成人影院久久| 亚洲精品美女久久久久99蜜臀 | 咕卡用的链子| 色网站视频免费| 国产在视频线精品| 国产精品久久久久久人妻精品电影 | 精品一区在线观看国产| 国产一卡二卡三卡精品 | 国产av国产精品国产| 91精品三级在线观看| 我的亚洲天堂| 国产成人精品福利久久| 好男人视频免费观看在线| 51午夜福利影视在线观看| 一二三四在线观看免费中文在| 亚洲熟女精品中文字幕| 久久精品国产a三级三级三级| 中国三级夫妇交换| 人妻 亚洲 视频| 亚洲精品乱久久久久久| 80岁老熟妇乱子伦牲交| 啦啦啦中文免费视频观看日本| 人体艺术视频欧美日本| 黄色视频在线播放观看不卡| 亚洲美女黄色视频免费看| 新久久久久国产一级毛片| 成人三级做爰电影| 亚洲精华国产精华液的使用体验| 日日爽夜夜爽网站| 狠狠婷婷综合久久久久久88av| 成年人午夜在线观看视频| 中文欧美无线码| www.自偷自拍.com|