• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      內(nèi)皮祖細(xì)胞培養(yǎng)上清對高氧暴露新生大鼠肺結(jié)構(gòu)的改善作用*

      2017-09-03 03:23:28陸愛珍張小媚錢莉玲
      中國病理生理雜志 2017年8期
      關(guān)鍵詞:高氧祖細(xì)胞微血管

      李 志, 陸愛珍, 張小媚, 錢莉玲

      (復(fù)旦大學(xué)附屬兒科醫(yī)院, 上海 201102)

      內(nèi)皮祖細(xì)胞培養(yǎng)上清對高氧暴露新生大鼠肺結(jié)構(gòu)的改善作用*

      李 志, 陸愛珍, 張小媚, 錢莉玲△

      (復(fù)旦大學(xué)附屬兒科醫(yī)院, 上海 201102)

      目的: 研究內(nèi)皮祖細(xì)胞培養(yǎng)上清(endothelial progenitor cell-conditioned medium,EPC-CM)對高氧暴露新生大鼠肺損傷時肺泡結(jié)構(gòu)的改善作用及其機(jī)制。方法: 從新生SD大鼠骨髓中獲取內(nèi)皮祖細(xì)胞并鑒定,收集第3代細(xì)胞的培養(yǎng)上清備用。另取新生SD大鼠40只隨機(jī)分為4組,即空氣組:仔鼠在空氣(21% O2)中喂養(yǎng)21天;高氧組:仔鼠在85% O2中喂養(yǎng)21天;內(nèi)皮細(xì)胞基礎(chǔ)培養(yǎng)基 (endothelial cell basal medium, EBM)干預(yù)組:仔鼠在85% O2中喂養(yǎng)至第14天時,經(jīng)氣道給予100 μL EBM,然后喂養(yǎng)至第21天;EPC-CM干預(yù)組:仔鼠在85% O2中喂養(yǎng)至第14天,經(jīng)氣道給予100 μL EPC-CM,喂養(yǎng)至第21天。第21天處死小鼠,左肺用4%多聚甲醛固定,留作石蠟切片,隨后HE染色進(jìn)行肺組織病理形態(tài)學(xué)觀察,并做輻射狀肺泡計數(shù)(radical alveolar count,RAC)及肺泡平均線性截距(mean linear intercept,MLI)測量;免疫組織化學(xué)方法對血管內(nèi)皮細(xì)胞FVIII染色,計數(shù)肺組織微血管密度;右肺留作實時熒光定量PCR檢測肺組織KGF、VEGF、SP-A和SP-C的mRNA表達(dá)。結(jié)果: 培養(yǎng)所得細(xì)胞具有典型的EPCs形態(tài)改變,能結(jié)合異硫氰酸熒光素標(biāo)記的荊豆凝集素1并攝取DiI熒光標(biāo)記的乙?;兔芏戎鞍?。高氧組及EBM干預(yù)組的仔鼠體重、RAC、MLI和微血管密度較空氣組顯著降低(P<0.05),EPC-CM干預(yù)組的RAC和微血管密度較高氧組和EBM干預(yù)組明顯增加(P<0.05),而體重和MLI的變化無明顯差異,但有增高的趨勢。高氧組和EBM干預(yù)組肺組織KGF、VEGF、SP-A和SP-C的mRNA表達(dá)較空氣組顯著降低(P<0.05),EPC-CM干預(yù)組的表達(dá)顯著高于高氧組和EBM干預(yù)組(P<0.05)。結(jié)論: EPC-CM可改善高氧暴露新生大鼠的肺泡化和肺血管發(fā)育,可能與促進(jìn)肺內(nèi)KGF和VEGF mRNA的表達(dá)相關(guān)。

      高氧; 內(nèi)皮祖細(xì)胞; 肺損傷; 旁分泌

      支氣管肺發(fā)育不良(bronchopulmonary dysplasia,BPD)是一種好發(fā)于早產(chǎn)兒的常見慢性肺部疾病,主要是由于囊泡期肺組織發(fā)育異常所致[1],病理表現(xiàn)為肺血管異常和肺泡簡化。目前對于BPD的治療仍無有效的措施。BPD發(fā)病機(jī)制的研究顯示在肺組織發(fā)育過程中,肺泡管的發(fā)生與肺組織血管網(wǎng)的形成是同步的[2],抑制肺組織內(nèi)血管形成可導(dǎo)致肺泡發(fā)育簡化[3-4],因此基于通過促進(jìn)肺組織內(nèi)血管網(wǎng)的形成來同步改善肺組織的肺泡化成為治療BPD的新思路。內(nèi)皮祖細(xì)胞(endothelial progenitor cells,EPCs)是內(nèi)皮細(xì)胞的前體細(xì)胞,具有很強(qiáng)的自我更新和高度增殖能力,并能分化為血管內(nèi)皮細(xì)胞參與血管生成。臨床研究和動物實驗均發(fā)現(xiàn)EPCs的數(shù)量和功能與BPD發(fā)生相關(guān)[5-7]。然而,有實驗表明內(nèi)皮細(xì)胞前體祖細(xì)胞并未直接通過分化為內(nèi)皮細(xì)胞參與血管的形成[8],動物研究顯示移植EPCs定植于損傷的肺組織數(shù)量極少,EPCs旁分泌因子能促進(jìn)血管形成,維持血管內(nèi)皮結(jié)構(gòu)的完整,促進(jìn)肺泡發(fā)育[9]。因此,本實驗主要研究EPCs培養(yǎng)上清對新生鼠高氧肺損傷的治療作用及其可能的機(jī)制。

      材 料 和 方 法

      1 EPCs的分離、培養(yǎng)與鑒定[10-11]

      用10%水合氯醛麻醉出生5~7 d清潔級SD大鼠,75%酒精消毒四肢,分離出股骨、脛骨和肱骨,在超凈臺中用D-PBS沖洗骨髓腔,收集骨髓沖洗液,應(yīng)用Ficoll淋巴細(xì)胞分離液(Sigma-Aldrich)密度梯度離心分離出骨髓中的單個核細(xì)胞,用添加hEGF、Hydrocortisone、VEGF、hFGF-B、R3-IGF-1、Ascorbic acid、FBS等成分的EBM培養(yǎng)基,即EGM-2MV完全培養(yǎng)基(LONZA)重懸,以每孔2×106的密度接種于纖連蛋白(Sigma-Aldrich)包被過夜的6孔板中培養(yǎng)3 d,去除未貼壁細(xì)胞,每3 d換液,待細(xì)胞融合度達(dá)70%時進(jìn)行傳代。倒置顯微鏡下觀察記錄細(xì)胞的生長特點。

      培養(yǎng)所得的爬片細(xì)胞與DiI-ac-LDL(Biomedical Technologie, 終濃度 10 mg/L) 37 ℃避光孵育4 h,D-PBS洗3遍,4%多聚甲醛固定20 min,D-PBS洗3遍,再與FITC-UEA-1(Sigma;終濃度為10 mg/L)孵育1 h,熒光顯微鏡下觀察雙染細(xì)胞即為EPCs。

      2 實驗方法

      2.1 EPCs培養(yǎng)上清的收集 培養(yǎng)的第3代EPCs用PBS清洗后,加入不含生長因子的內(nèi)皮細(xì)胞基礎(chǔ)培養(yǎng)基(endothelial cell basal medium, EBM;購自LONZA),培養(yǎng)24 h后收集上清,移入Amicon? ultra-4,10 kD超濾管(Millipore)內(nèi),4 ℃ 3 000×g離心35 min,收集濃縮后上清備用。Bradford法測蛋白濃度,調(diào)整蛋白濃度至50 μg/100 μL, -80 ℃保存?zhèn)溆谩?/p>

      2.2 實驗對象分組 清潔級健康SD孕鼠(復(fù)旦大學(xué)上海醫(yī)學(xué)院動物中心),待其自然分娩,選擇1日齡新生鼠作為研究對象,雌雄不限。隨機(jī)分為空氣組(control組)、高氧(hyperoxia,H)組、EBM干預(yù)組和內(nèi)皮祖細(xì)胞培養(yǎng)上清(endothelial progenitor cell-conditioned medium, EPC-CM)干預(yù)組,每組10只。各組處理如下:空氣組:仔鼠在空氣(21% O2)中飼養(yǎng)21 d;高氧組:仔鼠在85% O2中飼養(yǎng)21 d;EBM干預(yù)組:仔鼠在85% O2中飼養(yǎng)21 d,在第14天時經(jīng)氣管給予每只仔鼠100 μL EBM 1次;EPC-CM干預(yù)組:仔鼠在85% O2中飼養(yǎng)21 d,在第14天時經(jīng)氣管給予每只仔鼠100 μL EPC-CM(含50 μg 蛋白)。

      2.3 高氧BPD模型的建立[11]訂制塑料高氧箱52 cm×40 cm×31 cm,在容器上設(shè)立3個不同的孔區(qū),一個作為進(jìn)氣孔,一個用作出氣孔,第3孔區(qū)與測氧儀相連,箱內(nèi)放溫度濕度計監(jiān)測箱內(nèi)溫度和濕度,使箱內(nèi)溫度控制在25 ℃~26 ℃,同時濕度控制在60%~70%。高氧組將1日齡SD新生鼠置于氧箱中,不間斷輸入氧氣,測氧儀每日3次監(jiān)測箱內(nèi)氧氣濃度,使氧濃度維持在85%左右,每天定時開箱30 min添加水及飼料,更換墊料和干燥劑,并與正常對照組交換母鼠以避免母鼠因氧中毒致喂養(yǎng)能力下降。正常對照組置于同一室內(nèi)空氣中。EBM干預(yù)組和EPC-CM干預(yù)組在第14天,用異氟烷麻醉仔鼠,在頸部切開一小口,分離尋找到氣管,用100 μL微量注射器分別給予100 μL EBM或100 μL EPC-CM。第21天腹腔注射10%水合氯醛(8 mL/kg)處死小鼠,打開胸腔,結(jié)扎右側(cè)肺門,取出右肺,用于mRNA的檢測; 0.9%生理鹽水持續(xù)灌流沖洗肺循環(huán)以去除循環(huán)細(xì)胞,經(jīng)氣管注入4%多聚甲醛固定左肺組織,完整取出后置于4%多聚甲醛中固定24 h,石蠟包埋,制備常規(guī)5 μm切片,留做病理檢測。所有動物實驗均通過我院動物實驗倫理委員會批準(zhǔn)。

      2.4 檢測指標(biāo)及方法 (1)肺發(fā)育形態(tài)學(xué)觀察: 常規(guī)制備5 μm切片,經(jīng)HE染色后,于光鏡下(×100)觀察肺組織形態(tài)變化;(2)肺組織輻射狀肺泡計數(shù)(radical alveolar count,RAC)測量:從呼吸性細(xì)支氣管中心至最近纖維隔(或胸膜)作垂線,計數(shù)垂線經(jīng)過的肺泡數(shù),每只仔鼠取4張切片,每張切片隨機(jī)選取10個非重復(fù)視野計數(shù),取平均值;(3)肺組織肺泡平均線性截距(mean linear intercept,MLI)測量:利用Image-Pro Plus軟件,每只仔鼠取5張切片,每張切片在光鏡(×200)下選取至少10個視野,十字交叉法測量經(jīng)十字線的肺泡間隔(NS)數(shù)目,同時測量十字線的總長(L),根據(jù)公式MLI=L/NS計算;(4)微血管密度(microvascular density)測定:FVIII存在于血管內(nèi)皮細(xì)胞胞漿內(nèi),免疫組織化學(xué)方法檢測FVIII在肺組織的表達(dá),參考Weidner血管計數(shù)法[12],在低倍鏡(×100)下尋找血管密度較高的區(qū)域,然后在高倍鏡(×200)下計數(shù)血管密度,每只仔鼠取3張切片,每張切片取10個非重復(fù)視野,計數(shù)VIII因子染色陽性的血管數(shù);(5)肺組織角質(zhì)細(xì)胞生長因子(keratinocyte growth factor,KGF)、血管內(nèi)皮生長因子(vascular endothelial growth factor,VEGF)、表面活性蛋白A(surfactant protein A,SP-A)和表面活性蛋白C(surfactant protein C,SP-C) mRNA表達(dá)的檢測:利用Trizol (Invitrogen)提取肺組織總RNA,將1 mg的RNA用PrimeScript? RT試劑盒(TaKaRa)逆轉(zhuǎn)錄成cDNA。每個生物學(xué)指標(biāo)用2 μL 的cDNA 采用SYBR? Premix Ex TaqTMII試劑盒(TaKaRa)進(jìn)行實時熒光PCR分析。反應(yīng)條件為: 95 ℃ 30 s; 95 ℃ 5 s, 60 ℃ 30 s, 40個循環(huán);生成熔解曲線。GAPDH 作為內(nèi)參照。各生物學(xué)指標(biāo)的引物見表1。檢驗?zāi)康幕蚝蛢?nèi)參基因擴(kuò)增效率是否一致,如果一致,采用2-ΔΔCt方法進(jìn)行相對定量分析。

      3 統(tǒng)計學(xué)處理

      表1 引物序列

      應(yīng)用SPSS 19.0統(tǒng)計軟件進(jìn)行統(tǒng)計學(xué)處理。數(shù)據(jù)均以均數(shù)±標(biāo)準(zhǔn)差(mean±SD)表示。多組間比較采用單因素方差分析,兩兩比較采用Bonferroni法,以P<0.05為差異有統(tǒng)計學(xué)意義。

      結(jié) 果

      1 EPCs的培養(yǎng)與鑒定

      倒置顯微鏡下觀察收集的骨髓單個核細(xì)胞,第3天可見貼壁細(xì)胞大部分為小圓形,部分細(xì)胞呈短梭形,培養(yǎng)至第5~7天可見細(xì)胞呈典型鋪路石樣集落生長(圖1)。貼壁細(xì)胞用DiI-acLDL和FITC-UEA-1行熒光化學(xué)染色鑒定,EPCs胞漿攝取DiI-acLDL呈紅色;細(xì)胞膜結(jié)合FITC-UEA-1呈綠色,雙染色陽性為橙色,表明是正在分化的EPCs,見圖2。

      Figure 1.The morphological observation of endothelial progenitor cells (×100). On the 3rd day, the cells were small and round; on the 6th day, typical cobblestone-like colony appeared.

      圖1 內(nèi)皮祖細(xì)胞形態(tài)學(xué)特點

      2 動物體重的變化

      空氣組、高氧組、EBM干預(yù)組及EPC-CM干預(yù)組新生大鼠在第 1天體重間差異無統(tǒng)計學(xué)顯著性,至第21天,4組體重的差異具有統(tǒng)計學(xué)意義(P<0.05),高氧組和EBM干預(yù)組較空氣組體重顯著下降(P<0.05),EPC-CM干預(yù)組與空氣組體重間的差異無統(tǒng)計學(xué)顯著性,見表2。

      Figure 2.The abilities of EPCs to uptake DiI-ac-LDL and bind to FITC-UEA-1 (×100). EPCs uptaking DiI-ac-LDL appeared red under fluorescence microscope, and EPCs binding to FITC-UEA-1 appeared green. The double staining was orange, suggesting the differentiating EPCs. The nucleus was blue with DAPI.

      圖2 EPC攝取DiI-ac-LDL和結(jié)合FITC-UEA-1的熒光圖像

      表2 各組大鼠體重的變化

      Table 2.The changes of the body weight of the rats with different treatments (g.Mean±SD.n=10)

      Age(d)AirgroupHyperoxiagroupHyperoxia+EBMgroupHyperoxia+EPC?CMgroup16.44±0.666.34±0.816.31±0.906.45±0.872142.79±5.5631.68±7.42?30.93±7.68?35.34±7.93

      *P<0.05vsair group.

      3 肺泡化的觀察

      光鏡下觀察HE染色肺組織顯示,空氣組肺泡結(jié)構(gòu)規(guī)整,肺泡大小均一,肺泡間隔較?。桓哐踅M與EBM干預(yù)組肺泡數(shù)量減少,肺泡腔增大出現(xiàn)肺泡簡化,同時可見局部肺泡間隔增厚;EPC-CM干預(yù)組肺泡腔增大程度較高氧組和EBM干預(yù)組改善,見圖3。

      Figure 3.HE staining of lung tissue under light microscope. The scale bar=200 μm. Control: air group; H: hyperoxia group; H-EBM: hyperoxia+EBM group; H-EPC-CM: hyperoxia+EPC-CM group.

      圖3 光鏡下肺組織HE染色觀察

      4組仔鼠肺組織RAC計數(shù)分別為:空氣組(9.02±0.30)個,高氧組(3.67±0.51)個,EBM干預(yù)組(3.81±0.11)個,EPC-CM干預(yù)組(6.97±0.36)個。4組間RAC計數(shù)差異有統(tǒng)計學(xué)意義(P<0.05),高氧組、EBM干預(yù)組及EPC-CM干預(yù)組的RAC計數(shù)較空氣組明顯降低(P<0.05),高氧組及EBM干預(yù)組較EPC-CM干預(yù)組明顯降低(P<0.05),見圖4。

      4組仔鼠肺組織MLI測量分別為:空氣組為(37.18±3.44) μm,高氧組為(43.31±3.33) μm,EBM干預(yù)組為(42.81±2.66) μm,EPC-CM干預(yù)組為(40.02±3.86) μm。4組間MLI的差異有統(tǒng)計學(xué)意義(P<0.05),高氧組、EBM干預(yù)組的MLI較空氣組顯著增寬(P<0.05),EPC-CM干預(yù)組與空氣組相比MLI的差異無統(tǒng)計學(xué)顯著性,EPC-CM干預(yù)組和高氧組、EBM干預(yù)組的MLI比較差異無統(tǒng)計學(xué)顯著性,但可見降低的趨勢,見圖4。

      Figure 4.The radical alveolar count (RAC; A) and the alveolar mean linear intercept (MLI; B) in each group. Control: air group; H: hyperoxia group; H-EBM: hyperoxia+EBM group; H-EPC-CM: hyperoxia+EPC-CM group. Mean±SD.n=10.*P<0.05vscontrol;#P<0.05vsH-EPC-CM.

      圖4 各組間輻射狀肺泡計數(shù)和肺泡平均線性截距

      4 肺微血管密度的測量

      各組肺組織VIII因子的免疫組化染色顯示肺組織血管密度,胞漿黃棕色顆粒為陽性染色,陽性分布為圍繞血管內(nèi)皮細(xì)胞的棕黃色染色(圖5)。4組間微血管密度的差異存在統(tǒng)計學(xué)顯著性(P<0.05),高氧組和EBM干預(yù)組的微血管密度較空氣組顯著降低(P<0.05),高氧組和EBM干預(yù)組的微血管密度較EPC-CM干預(yù)組顯著降低(P<0.05),而EPC-CM干預(yù)組的微血管密度與空氣組相比差異無統(tǒng)計學(xué)顯著性,見圖6。

      Figure 5.Factor VIII staining for microvascular density (×200). The scale bar=100 μm. Control: air group; H: hyperoxia group; H-EBM: hyperoxia+EBM group; H-EPC-CM: hyperoxia+EPC-CM group.

      圖5 FVIII染色顯示微血管密度

      Figure 6.The microvascular density in each group. Control: air group; H: hyperoxia group; H-EBM: hyperoxia+EBM group; H-EPC-CM: hyperoxia+EPC-CM group. Mean±SD.n=10.*P<0.05vscontrol;#P<0.05vsH-EPC-CM.

      圖6 各組微血管密度計數(shù)

      5 肺組織KGF和VEGF的mRNA表達(dá)

      4組肺組織KGF和VEGF的mRNA表達(dá)水平差異有統(tǒng)計學(xué)意義(P<0.05)。高氧組、EBM干預(yù)組及EPC-CM干預(yù)組較空氣組顯著降低(P<0.05),高氧組與EBM干預(yù)組較EPC-CM干預(yù)組顯著降低(P<0.05),見圖7。

      6 肺組織SP-A和SP-C的mRNA表達(dá)

      4組肺組織SP-A和SP-C的mRNA表達(dá)水平的比較見圖8。高氧組、EBM干預(yù)組和EPC-CM干預(yù)組較空氣組明顯降低(P<0.05),并且高氧組和EBM干預(yù)組較EPC-CM干預(yù)組明顯降低(P<0.05)。

      Figure 7.The relative mRNA expression of KGF (A) and VEGF (B) in each group. Control: air group; H: the hyperoxia group; H-EBM: hyperoxia+EBM group; H-EPC-CM: hyperoxia+EPC-CM group. Mean±SD.n=10.*P<0.05vscontrol;#P<0.05vsH-EPC-CM.

      圖7 各組間 KGF和VEGF mRNA的相對表達(dá)

      討 論

      本實驗表明在85% O2的環(huán)境下暴露21 d可抑制終末肺泡腔的形成,造成肺泡腔變大,發(fā)生肺泡簡化,并抑制肺組織內(nèi)血管的形成,使新生鼠肺組織發(fā)生類似BPD的病理變化,本課題組的前期研究[11,13]已成功地建立此高氧BPD模型。

      我們的研究發(fā)現(xiàn)經(jīng)氣管滴入EPC-CM可改善高氧對肺組織造成的傷害,增加肺泡數(shù)量,降低MLI,增加肺組織內(nèi)血管密度,提示EPC培養(yǎng)上清對高氧暴露大鼠肺結(jié)構(gòu)有改善作用。Rehman等[14]早在2003年就證實EPC能通過旁分泌方式表達(dá)和釋放許多信號分子,如VEGF、肝細(xì)胞生長因子(hepatocyte growth factor,HGF)、粒細(xì)胞集落刺激因子(gra-nulocyte colony-stimulating factor,G-CSF)、粒-巨噬細(xì)胞集落刺激因子(granulocyte-macrophage colony-stimulating factor,GM-CSF)等。Kim等[15]的研究也表明具有內(nèi)皮祖細(xì)胞特性的人臍帶血來源的干細(xì)胞(human cord blood-derived stem cells,hCB-SCs)能夠分泌多種細(xì)胞因子及趨化因子,如轉(zhuǎn)化生長因子β(transforming growth factor-β,TGF-β)、血小板源性生長因子(platelet-derived growth factor,PDGF)、堿性成纖維細(xì)胞生長因子(basic fibroblast growth factor,bFGF)、表皮生長因子(epidermal growth factor,EGF)、KGF和VEGF,并且能分泌具有募集干細(xì)胞功能的細(xì)胞因子G-CSF和GM-CSF,hCB-SCs可通過這些分泌因子促進(jìn)內(nèi)皮細(xì)胞或內(nèi)皮祖細(xì)胞向傷口處聚集,加速傷口愈合。本課題組前期的研究也發(fā)現(xiàn),EPCs可分泌VEGF、FGF10等肺發(fā)育相關(guān)生長因子,其旁分泌因子可促進(jìn)高氧暴露下的肺泡II型上皮細(xì)胞增殖,抑制其分化為肺泡 I 型上皮細(xì)胞[10]。有研究發(fā)現(xiàn)EPC-CM 可抑制肺微血管內(nèi)皮細(xì)胞凋亡,促進(jìn)其增殖[16]。Alphonse 等[9]研究發(fā)現(xiàn)內(nèi)皮細(xì)胞集落形成細(xì)胞培養(yǎng)上清(endothelial colony-forming cells-derived conditioned media,ECFC-CdM) 可促進(jìn)體外培養(yǎng)的ECFC 網(wǎng)狀結(jié)構(gòu)的形成,避免高氧所造成的損傷;將ECFC-CdM 經(jīng)腹腔注入高氧暴露的新生小鼠也可促進(jìn)肺泡發(fā)育,肺血管形成,降低肺動脈高壓的發(fā)生。Baker 等[17]的研究也證明了內(nèi)皮祖細(xì)胞來源的旁分泌因子可促進(jìn)肺動脈內(nèi)皮細(xì)胞及肺泡II型細(xì)胞的增殖,促進(jìn)高氧暴露下肺動脈內(nèi)皮管樣結(jié)構(gòu)的形成。Ikutomi等[18]的研究表明晚期集落形成EPCs(late-outgrowth EPCs,LOC)不單是通過直接分化為內(nèi)皮細(xì)胞,還通過旁分泌因子來改善血管內(nèi)皮的損傷,抑制血管內(nèi)膜的增生。

      Figure 8.The relative mRNA expression of SP-A (A) and SP-C (B) in each group. Control:air group; H: hyperoxia group; H-EBM: hyperoxia+EBM group; H-EPC-CM: hyperoxia+EPC-CM group. Mean±SD.n=10.*P<0.05vscontrol;#P<0.05vsH-EPC-CM.

      圖8 各組間SP-A和SP-C mRNA的相對表達(dá)

      我們進(jìn)一步通過RT-PCR檢測肺組織內(nèi)KGF、VEGF、SP-A和SP-C在mRNA水平上的表達(dá),發(fā)現(xiàn)KGF、VEGF、SP-A和SP-C的表達(dá)在EPC-CM治療組較單純高氧組顯著增高。在肺組織內(nèi)KGF主要由間質(zhì)細(xì)胞產(chǎn)生[19],是一種具有促進(jìn)AECII增殖,抑制炎癥反應(yīng)的生長因子[20-22]。Fons 等[23]的研究發(fā)現(xiàn)成纖細(xì)胞生長因子(fibroblast growth factor,F(xiàn)GF)/成纖維細(xì)胞生長因子受體(fibroblast growth factor receptor,F(xiàn)GFR)通路激活可募集循環(huán)EPCs至血管形成部位,促進(jìn)血管的生成,KGF作為FGF的家族成員,EPCs分泌蛋白在促進(jìn)肺組織KGF生成的同時,也許會促進(jìn)FGF家族其它成員的增加,參與高氧肺組織的損傷修復(fù)。另外,F(xiàn)rank 等[24]的研究發(fā)現(xiàn)KGF也可調(diào)控肺泡上皮間質(zhì)性改變,降低肺組織纖維化,改善肺組織形態(tài)結(jié)構(gòu)。結(jié)合我們的研究結(jié)果,EPC-CM改善肺結(jié)構(gòu)可能與促進(jìn)肺內(nèi)KGF基因高表達(dá)相關(guān)。VEGF是一種重要的血管內(nèi)皮生長因子,其高表達(dá)可明顯增加血管的形成,促進(jìn)肺組織肺泡化[25],并對不成熟肺組織的發(fā)育有促進(jìn)作用[26]。我們的研究中,EPC-CM組肺內(nèi)VEGF mRNA的表達(dá)顯著增高,提示EPC-CM能夠促進(jìn)肺內(nèi)VEGF高表達(dá),發(fā)揮促血管生成和修復(fù)血管內(nèi)皮的作用。SP-A和SP-C是重要的肺表面活性物質(zhì),由II型肺泡上皮細(xì)胞合成,SP-A主要參與肺組織免疫應(yīng)答,保護(hù)肺組織上皮細(xì)胞免受炎癥因子的損傷[27-29]。SP-C主要降低肺表面張力的增加,充足的SP-C有助于維持肺泡擴(kuò)張,避免發(fā)生肺不張。EPC-CM干預(yù)組,SP-A和SP-C mRNA的表達(dá)增加提示,EPC-CM 可能直接或間接地作用于肺泡II型上皮細(xì)胞,促進(jìn)、維持和修復(fù)肺泡II型上皮細(xì)胞的活性與功能。

      本研究采用新生大鼠骨髓來源EPCs,更好地保留了EPCs的干細(xì)胞特性,其增殖分泌能力較成年大鼠骨髓來源EPCs強(qiáng)。首次將EPCs培養(yǎng)上清經(jīng)氣道干預(yù)高氧暴露所致BPD大鼠模型,使EPC-CM直接作用于肺組織,避免了對其它部位造成的影響,更有利于最大限度地發(fā)揮在肺內(nèi)的作用。EPCs移植是目前血管修復(fù)和再生領(lǐng)域有前景的治療策略,也是BPD 防治的重要方法。但移植EPCs的功能受體內(nèi)環(huán)境的影響,治療效果并不理想。本研究表明,應(yīng)用EPC-CM可促進(jìn)高氧暴露肺損傷大鼠肺泡化和肺血管發(fā)育,這可能與其促進(jìn)肺內(nèi)KGF和VEGF mRNA的表達(dá)相關(guān)。該結(jié)果提示優(yōu)化單純的細(xì)胞移植方法,如應(yīng)用EPCs分泌蛋白或相當(dāng)?shù)暮铣芍苿┠M生理性EPCs旁分泌功能,或應(yīng)用某一基因修飾的EPCs,可為BPD 防治策略提供新思路。

      [1] Shahzad T, Radajewski S, Chao CM, et al. Pathogenesis of bronchopulmonary dysplasia: when inflammation meets organ development[J]. Mol Cell Pediatr, 2016, 3(1):23.

      [2] Cardoso WV. Molecular regulation of lung development[J]. Annu Rev Physiol, 2001, 63:471-494.

      [3] Thebaud B, Ladha F, Michelakis ED, et al. Vascular endothelial growth factor gene therapy increases survival, promotes lung angiogenesis, and prevents alveolar damage in hyperoxia-induced lung injury: evidence that angiogenesis participates in alveolarization[J]. Circulation, 2005, 112(16):2477-2486.

      [4] Stenmark KR, Balasubramaniam V. Angiogenic therapy for bronchopulmonary dysplasia: rationale and promise[J]. Circulation, 2005, 112(16):2383-2385.

      [5] Qi Y, Jiang Q, Chen C, et al. Circulating endothelial progenitor cells decrease in infants with bronchopulmonary dysplasia and increase after inhaled nitric oxide[J]. PLoS One, 2013, 8(11):e79060.

      [6] Borghesi A, Massa M, Campanelli R, et al. Circulating endothelial progenitor cells in preterm infants with bronchopulmonary dysplasia[J]. Am J Respir Crit Care Med, 2009, 180(6):540-546.

      [7] Bertagnolli M, Nuyt AM, Thebaud B, et al. Endothelial progenitor cells as prognostic markers of preterm birth-associated complications[J]. Stem Cells Transl Med, 2017, 6(1):7-13.

      [8] Purhonen S, Palm J, Rossi D, et al. Bone marrow-derived circulating endothelial precursors do not contribute to vascular endothelium and are not needed for tumor growth[J]. Proc Natl Acad Sci U S A, 2008, 105(18):6620-6625.

      [9] Alphonse RS, Vadivel A, Fung M, et al. Existence, functional impairment, and lung repair potential of endothelial colony-forming cells in oxygen-induced arrested alveolar growth[J]. Circulation, 2014, 129(21):2144-2157.

      [10]王傳凱, 陸愛珍, 祁媛媛, 等. 內(nèi)皮祖細(xì)胞培養(yǎng)上清對高氧暴露下Ⅱ型肺泡上皮細(xì)胞增殖和分化的影響[J]. 中國病理生理雜志, 2016, 32(1):8-14.

      [11]Lu A, Sun B, Qian L. Combined iNO and endothelial progenitor cells improve lung alveolar and vascular structure in neonatal rats exposed to prolonged hyperoxia[J]. Pediatr Res, 2015, 77(6):784-792.

      [12]Weidner N. Intratumor microvessel density as a prognostic factor in cancer[J]. Am J Pathol, 1995, 147(1):9-19.

      [13]Chang LW, Qian LL, Rong ZH, et al. Pathogenetic role of matrix metalloproteinases and its tissue inhibitors in preterm rat lungs exposed to hyperoxia[J]. Acta Pharmacol Sin, 2002, 23(Suppl):59-63.

      [14]Rehman J, Li J, Orschell CM, et al. Peripheral blood "endothelial progenitor cells" are derived from monocyte/macrophages and secrete angiogenic growth factors[J]. Circulation, 2003, 107(8):1164-1169.

      [15]Kim J, Lee JH, Yeo SM, et al. Stem cell recruitment factors secreted from cord blood-derived stem cells that are not secreted from mature endothelial cells enhance wound healing[J]. In Vitro Cell Dev Biol Anim, 2014, 50(2):146-154.

      [16]Xia L, Fu GS, Yang JX, et al. Endothelial progenitor cells may inhibit apoptosis of pulmonary microvascular endothelial cells: new insights into cell therapy for pulmonary arterial hypertension[J]. Cytotherapy, 2009, 11(4):492-502.

      [17]Baker CD, Seedorf GJ, Wisniewski BL, et al. Endothelial colony-forming cell conditioned media promote angiogenesisinvitroand prevent pulmonary hypertension in experimental bronchopulmonary dysplasia[J]. Am J Physiol Lung Cell Mol Physiol, 2013, 305(1):L73-L81.

      [18]Ikutomi M, Sahara M, Nakajima T, et al. Diverse contribution of bone marrow-derived late-outgrowth endothelial progenitor cells to vascular repair under pulmonary arterial hypertension and arterial neointimal formation[J]. J Mol Cell Cardiol, 2015, 86:121-135.

      [19]Rubin JS, Osada H, Finch PW, et al. Purification and characterization of a newly identified growth factor specific for epithelial cells[J]. Proc Natl Acad Sci U S A, 1989, 86(3):802-806.

      [20]Sakamoto S, Yazawa T, Baba Y, et al. Keratinocyte growth factor gene transduction ameliorates pulmonary fibrosis induced by bleomycin in mice[J]. Am J Respir Cell Mol Biol, 2011, 45(3):489-497.

      [21]Shyamsundar M, McAuley DF, Ingram RJ, et al. Keratinocyte growth factor promotes epithelial survival and resolution in a human model of lung injury[J]. Am J Respir Crit Care Med, 2014, 189(12):1520-1529.

      [22]Fehrenbach H, Kasper M, Tschernig T, et al. Keratinocyte growth factor-induced hyperplasia of rat alveolar type II cellsinvivois resolved by differentiation into type I cells and by apoptosis[J]. Eur Respir J, 1999, 14(3):534-544.

      [23]Fons P, Gueguen-Dorbes G, Herault J, et al. Tumor vasculature is regulated by FGF/FGFR signaling-mediated angiogenesis and bone marrow-derived cell recruitment: this mechanism is inhibited by SSR128129E, the first allosteric antagonist of FGFRs[J]. J Cell Physiol, 2015, 230(1):43-51.

      [24]Frank L. Protective effect of keratinocyte growth factor against lung abnormalities associated with hyperoxia in prematurely born rats[J]. Neonatology, 2003, 83(4):263-272.

      [25]Thebaud B, Ladha F, Michelakis ED, et al. Vascular endothelial growth factor gene therapy increases survival, promotes lung angiogenesis, and prevents alveolar damage in hyperoxia-induced lung injury: evidence that angiogenesis participates in alveolarization[J]. Circulation, 2005, 112(16):2477-2486.

      [26]Compernolle V, Brusselmans K, Acker T, et al. Loss of HIF-2alpha and inhibition of VEGF impair fetal lung maturation, whereas treatment with VEGF prevents fatal respiratory distress in premature mice[J]. Nat Med, 2002, 8(7):702-710.

      [27]Carreto-Binaghi LE, Aliouat EM, Taylor ML. Surfactant proteins, SP-A and SP-D, in respiratory fungal infections: their role in the inflammatory response[J]. Respir Res, 2016, 17(1):66.

      [28]Saito A, Ariki S, Sohma H, et al. Pulmonary surfactant protein A protects lung epithelium from cytotoxicity of human beta-defensin 3[J]. J Biol Chem, 2012, 287(18):15034-15043.

      [29]Goto H, Mitsuhashi A, Nishioka Y. Role of surfactant protein A in non-infectious lung diseases[J]. J Med Invest, 2014, 61(1-2):1-6.

      (責(zé)任編輯: 林白霜, 羅 森)

      TGF-β/Smad2/3信號在肌成纖維細(xì)胞增殖期間需要Wnt/β-catenin信號的激活

      動物模型與人類疾病中的纖維化與Wnt/β-連環(huán)蛋白(β-catenin)通路的異常活化有關(guān)。盡管經(jīng)過廣泛的研究努力,目前科學(xué)家仍未發(fā)現(xiàn)有效治療纖維化的方法。肌成纖維細(xì)胞(myofibroblasts)是纖維化的主要效應(yīng)細(xì)胞,負(fù)責(zé)細(xì)胞外基質(zhì)沉積。抑制肌成纖維細(xì)胞增殖對于纖維化的治療至關(guān)重要。肌成纖維細(xì)胞的增殖可引發(fā)一系列效應(yīng),從而導(dǎo)致纖維化。近年來,Wnt通路被認(rèn)為是纖維化疾病的主要影響因素,但其介導(dǎo)的促纖維化的具體機(jī)制仍不甚清楚的。轉(zhuǎn)化生長因子β(transforming growth factor-β, TGF-β)和肌成纖維細(xì)胞活性在纖維化發(fā)病機(jī)制中的核心作用已經(jīng)被普遍接受,然而這兩個過程之間相互作用的細(xì)節(jié)仍不清楚。Xu等的研究檢測了纖維化標(biāo)志性蛋白[波形蛋白(vimentin)、α-平滑肌肌動蛋白(α-smooth muscle actin, α-SMA)和膠原蛋白I(collagen I)]和TGF-β信號通路分子(包括 Smad2/3 及其磷酸化形式p-Smad2/3)的持續(xù)表達(dá)水平,并詳細(xì)分析β-catenin介導(dǎo)的可能分子機(jī)制,包括上皮-間充質(zhì)轉(zhuǎn)化(epithelial-mesenchymal transition)和成纖維細(xì)胞向肌成纖維細(xì)胞的轉(zhuǎn)變,以及信號網(wǎng)絡(luò)的調(diào)節(jié)中β-catenin活性增強(qiáng),以抵消自分泌的TGF-β/Smad2/3信號。該研究主要提出了對纖維化機(jī)制的新認(rèn)識,即TGFβ1-Smad2/3信號通過Wnt/β-catenin激活上皮和間充質(zhì)細(xì)胞,從而有助于肺纖維化的形成。

      J Cell Mol Med, 2017, 21(8):1545-1554(李肖肖)

      Endothelial progenitor cell-conditioned medium improves lung structure in neonatal rats exposed to hyperoxia

      LI Zhi, LU Ai-zhen, ZHANG Xiao-mei, QIAN Li-ling

      (Children’sHospitalofFudanUniversity,Shanghai201102,China.E-mail:llqian@126.com)

      AIM: To investigate the therapeutic effect of endothelial progenitor cell-conditioned medium (EPC-CM) on the lung structure of neonatal rat exposed to hyperoxia, and to explore the mechanisms.METHODS: Bone marrow-derived endothelial progenitor cells (EPCs) were collected from new born Sprague-Dawley (SD) rats and the EPCs were identified. The conditioned medium from the passage 3 EPCs was collected. Newborn SD rats (n=40) were randomly divided into 4 groups. The rats in room air group were exposed to the room air (21% O2) for 21 d. The rats in hyperoxia group were exposed to hyperoxia (85% O2) for 21 d. The rats in endothelial cell basal medium (EBM) group were exposed to hyperoxia for 21 d, and

      100 μL EBM on postnatal day 14 (P14) in a single intratracheal (IT) injection. The rats in EPC-CM group were exposed to hyperoxia for 21 d, and received 100 μL EPC-CM on P14 in a singlie IT injection. The rats were sacrified on the 21st day. The left lungs were excised, placed in 4% paraformaldehyde, serially dehydrated in ethanol and embedded by paraffin. Serial sectioning of the paraffin-embedded left lung tissues was prepared for 5 μm thickness, and stained with hematoxylin and eosin. The pulmonary radical alveolar count (RAC) and alveolar mean linear intercept (MLI) were then calculated. The microvascular density was determined by FVIII immunostaining. The mRNA expression of KGF, VEGF, SP-A and SP-C in the right lung tissues was detected by real-time fluorescence quantitative PCR. RESULTS: The cultured cells had typical EPC morphological characteristics, and had the abilities to bind to FITC-UEA-1 and uptake DiI-ac-LDL. The body weight of the rats on day 21, RAC, MLI and microvascular density were significantly lower in hyperoxia group and EBM group than those in room air group (P<0.05). The EPC-CM group had significantly higher RAC and microvascular density than those in hyperoxia group and EBM group (P<0.05), but the body weight and MLI had no significant difference. The mRNA expression levels of KGF, VEGF, SP-A and SP-C in hyperoxia group and EBM group were significantly lower than those in room air group (P<0.05). The mRNA expression levels of KGF, VEGF, SP-A and SP-C in EPC-CM group were significantly higher than those in hyperoxia group and EBM group (P<0.05). CONCLUSION: EPC-CM promotes the lung alveolarization and microvascular formation in neonatal rats exposed to hyperoxia. These benefits may be correlated with the increased KGF and VEGF mRNA expression.

      Hyperoxia; Endothelial progenitor cells; Lung injury; Paracrine

      1000- 4718(2017)08- 1467- 08

      2017- 03- 07

      2017- 04- 17

      國家自然科學(xué)基金資助項目(No. 81270727)

      R363; R722.1

      A

      10.3969/j.issn.1000- 4718.2017.08.020

      雜志網(wǎng)址: http://www.cjpp.net

      △通訊作者 Tel: 021-64931913; E-mail: llqian@126.com

      猜你喜歡
      高氧祖細(xì)胞微血管
      淺談高氧氣調(diào)保鮮技術(shù)在食品加工中的應(yīng)用現(xiàn)狀
      高氧處理對鮮切蘋果貯藏特性的影響
      新型冠狀病毒肺炎重癥患者高氧血癥的危害及精準(zhǔn)氧氣治療
      乙型肝炎病毒與肝細(xì)胞癌微血管侵犯的相關(guān)性
      維甲酸對高氧環(huán)境下原代培養(yǎng)肺泡Ⅱ型上皮細(xì)胞損傷的保護(hù)機(jī)制
      Wnt3a基因沉默對內(nèi)皮祖細(xì)胞增殖的影響
      內(nèi)皮祖細(xì)胞在缺血性腦卒中診治中的研究進(jìn)展
      IMP3在不同宮頸組織中的表達(dá)及其與微血管密度的相關(guān)性
      上皮性卵巢癌組織中miR-126、EGFL7的表達(dá)與微血管密度的檢測
      顯微血管減壓術(shù)治療面肌痙攣的臨床觀察
      拉萨市| 邳州市| 错那县| 仁怀市| 陵川县| 新民市| 张家港市| 永新县| 云阳县| 岳阳市| 磐安县| 湖口县| 兰考县| 长丰县| 黔东| 临沂市| 睢宁县| 开阳县| 南召县| 天台县| 韩城市| 双牌县| 林甸县| 崇文区| 丹巴县| 古田县| 祁东县| 原平市| 纳雍县| 开化县| 鄂州市| 静乐县| 东明县| 房山区| 漳浦县| 柯坪县| 凤阳县| 南乐县| 盐池县| 青浦区| 扶沟县|