• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Drawing behavior of melt-spun poly(vinyl alcohol) fibers

    2017-08-30 20:45:34LiLiChenNingLiuQing
    合成纖維工業(yè) 2017年4期
    關(guān)鍵詞:圣泉腈綸原液

    Li Li, Chen Ning, Liu Qing

    (State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065)

    Drawing behavior of melt-spun poly(vinyl alcohol) fibers

    Li Li, Chen Ning*, Liu Qing

    (State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065)

    Poly(vinyl alcohol)(PVA) was plasticized by deionized water and was melt-spun into PVA fiber. The stress-strain curves of the melt-spun PVA fibers with 35% and 5% water by mass fraction at different drawing temperatures were measured as well as the activation energy. The results showed that the effect of drawing temperature on the apparent extensional viscosity of melt-spun PVA fibers containing 35% water by mass fraction could be divided into three zones: 30-100 ℃, 100-190 ℃ and 190-210 ℃, i.e. there were three different activation mechanisms and the fiber could be drawn at least through three steps; the stretching of the filaments was largely affected by the water content in the system; the motion ability of PVA molecular chains decreased and the apparent extensional viscosity of the melt-spun fibers increased with the reduction of the water content in system; the apparent extersional viscosity of the melt-spun PVA fiber with 5% water by mass fraction changed differently within two different temperature ranges, indicating two different activation mechanisms, so the as-spun fibers could be drawn through two steps.

    poly(vinyl alcohol) fiber; melt-spinning; extensional viscosity; activation energy

    Poly(vinyl alcohol) (PVA) fiber is widely used in many important high-tech areas owing to its excellent comprehensive properties, such as good mechanical properties, superior thermal properties and weather durability, excellent acid, alkaline and organic solvents resistance, etc. However, the melting point and decomposition temperature of PVA are so close that the melt spinning of PVA becomes very difficult due to the multi-hydroxyl structure. So far, PVA fiber has been produced by solution spinning[1], which is associated with low strength and modulus, high manufacturing cost caused by a large amount of energy consumption, long dissolving and drying time and recycle of coagulating bath.

    Generally, the key point to realize the melt spinning of PVA is to obtain thermal processing window, i.e. decreasing the melting point of PVA and increasing its decomposition temperature, which can be performed by addition of plasticisers[2-3], chemical modification[4]and blending[5]. Among them, the plasticized melt spinning is simple, highly efficient and environmental friendly, which is the development direction of PVA melt spinning.

    The author successfully realized the melt spinning of PVA according to the intermolecular complexation and plasticization.And the PVA as-spun fibers with uniform structure, circular cross-section and controllable diameter were obtained. Water, the key plasticizer for the melt spinning of PVA, exists in melt-spun PVA fibers in three different states[7], i.e., free water, freezable bound water and non-freezing water, which provides as-spun PVA fiber with good drawability at room temperature. However, excessive water would evaporate during the hot-drawing process of as-spun PVA fiber, resultting in the formation of internal defects. As a result, the drawability of PVA fibers was reduced. In this paper, the drawing behavior of melt-spun PVA fibers under different drawing temperature were studied; the apparent extensional viscosity as well as the activation energy were calculated, and the effect of water content on drawing behavior and drawing mechanism were analyzed, which provides theoretical basis for the preparation of PVA fibers at high draw ratio.

    1 Experimental

    1.1 Materials

    PVA-1799F with an alcoholysis degree of 99.9% was commercially provided from Sichuan Vinylon Works,SINOPEC. The PVA raw materials were washed with deionized water until a pH value of 7 and dried at 80 ℃ to constant weight as the experimental sample in a vacuum oven.

    1.2 Preparation of melt-spun PVA fibers

    A modified PVA was obtained by adding pre-dried PVA into quantitative deionized water and then letting the solutions completely seep into PVA at 80 ℃ in a sealed vessel. Finally, the modified PVA was melt-spun in a melt spinning apparatus, which consisted of a single screw extruder with the diameter of 25 mm and length-diameter ratio of 25, a prefilter, a spin pump, spinnerets and a conventional take-up device. The capillary diameter of the spinnerets was 0.15 mm. The temperature of extruder and spin head was 120-150 ℃. The draw ratio was 1.5-2.0. The as-spun PVA fibers with 5% water by mass fraction were obtained by drying the melt-spun PVA fibers with 35% water by mass fraction at 200 ℃ for 3 min in an air-circulating oven.

    1.3 Measurement of drawing behavior of melt-spun PVA fiber

    The stress-strain curves of melt-spun PVA fibers were measured by a universal testing machine RGL-10(Shenzhen Reger Instrument Co., Ltd., China) at drawing temperature 30-220 ℃. The apparent extensional viscosity(ηε) was calculated by the following equations[8-9].

    ηε=σε/ε

    (1)

    σε=F/At

    (2)

    ε=V/λtL0

    (3)

    Where,Atis cross-sectional area of PVA fiber at timet;Fis axial tensile force;Vis drawing speed;L0is initial length of melt-spun PVA fiber;λtis draw ratio at timet.

    2 Results and discussion

    2.1 Drawing behavior of melt-spun PVA fiber with 35% water by mass fraction

    As shown in Fig.1, the drawability of melt-spun PVA fiber was sensitive to the drawing temperature. With the drawing temperature increasing, the hydrogen bonds interactions among PVA molecules were weakened, the motion ability of PVA molecule chain was enhanced, the tensile stress was decreased, and the stretch degree of PVA chains along the drawing direction and the elongation at break of the melt-spun PVA fiber were increased. However, the extremely high temperature made the water molecules move faster in melt-spun PVA fibers, which weakened the hydrogen bonds interaction between PVA and water. As a result, the water in melt-spun PVA fibers changed from bound water to free water and evaporated rapidly, causing internal defects to form in PVA fibers and the draw ratio to decrease. The transition temperature was 170-180 ℃.

    Fig.1 Stress-strain curves of melt-spun PVA fibers with 35% water by mass fraction drawn at different temperature1—30 ℃;2—60 ℃;3—80 ℃;4—110 ℃;5—120 ℃;6—140 ℃;7—170 ℃;8—180 ℃;9—200 ℃;10—220 ℃

    From Fig.2, it can be found thatηεkept rising with the draw ratio(λ) increasing, but the rise slowed down when the drawing temperature increased. The main reason is that the increase ofλmade PVA molecule chains orient, the molecular distance decrease, free water evaporate and the motion ability of PVA molecules weaken. Furthermore, the orientation of PVA molecule chains made hydrogen bond rebuilt and restricted the stretchability of PVA fibers. As a result,ηεof melt-spun PVA fibers increased with the increase ofλ.

    Fig.2 Relationship between ηε and λ of melt-spun PVA fibers with 35% water by mass fraction drawn at different temperature■—80 ℃;●—100 ℃;▲—120 ℃;▼—140 ℃;◆—160 ℃;?—180 ℃;?—200 ℃;○—210 ℃

    The high drawing temperature weakened the hydrogen bonds interactions among PVA molecules and promoted the movement of PVA chain, which improved the stretchability of melt-spun PVA fibers. Soηεdecreased with the increase of drawing temperature, which indicated that the drawing temperature played an important role in the drawing process of melt-spun PVA fiber and the tensile stress could be profoundly decreased by increasing temperature.

    The relation betweenηεand drawing temperature (T) can be described by Eyring-Frenkel equation. From a graphic representation (Fig.3) of the experimental data of lnηεagainst 1/T, the extensional activation energy (Ea) can be determined by the slope of the linear plot. The values ofEaare listed in Tab.1. From Fig.3 and Tab.1, it can be seen thatηεof PVA fibers decreased with the increase of drawing temperature. The relationship between lnηεand 1/Texhibited three-segment straight line with inflection point temperature of 100 ℃ and 190 ℃. The correspondingEawas divided into three regions, i.e. 11.5-12.5 kJ/mol in the lower-temperature region of 30-100 ℃,12.9-24.7 kJ/mol in the middle-temperature region of 100-190 ℃, and 69.5-141.0 kJ/mol in the higher-temperature region of 190-210 ℃ .

    Fig.3 Relationship between ηε and 1/T of melt-spun PVA fibers at different λ ■—4;●—5;▲—6;▼—7;◆—8;?—9;?—10

    λEa/(kJ·mol-1)30-100℃100-190℃190-210℃411.512.969.5512.014.871.2612.317.881.1713.120.393.0812.521.1109.5919.8125.41024.7141.0

    In lower-temperature region, the melt-spun PVA fibers contained more water,which offered the plasticization and lubrication effect in the fiber,and was not sensitive to temperature during the drawing process. So it can be speculated that there mainly happened the shrink of free volumes and distortion of amorphous region in PVA fiber, resulting in lowEa.

    In middle-temperature region, free water totally evaporated.The freezable bound water and drawing temperature exerted synergistic effect on the drawability of PVA fibers, which made the large deformation of PVA fiber and the increase ofEa.

    In higher-temperature region, freezable bound water evaporated completely. The deformation of melt-spun PVA fibers was mainly affected by drawing temperature. The chain-folded lamellae was melted in a certain extent. The drawing temperature was close to the melt point of PVA fibers. The structure of PVA fibers changed distinctly and became more sensitive to drawing temperature, causingEato increase. In addition, PVA is a typical polar polymer, so the molecular chains would gradually get close to each other to make more chances for self-hydrogen bonds to rebuilt while increasing the draw ratio.Eawould increase with the increase of draw ratio because hydrogen bonds are sensitive to temperature. The change tendency ofEawith temperature indicated three different activation mechanisms and the fiber could be drawn at least by three steps.

    2.2 Drawing behavior of melt-spun PVA fibers with 5% water by mass fraction

    According to the comparison between Fig.1 and Fig.4, it can be found that the plasticization effect of water on PVA fibers was weakened, the self-hydrogen bonds of PVA were partly rebuilt, the motion ability of PVA chains was decreased and the tensile stress was increased when the water content decreased. In addition, the drawing behavior of PVA fibers changed and the yield phenomenon was clearly observed in the stress-strain curves of PVA fibers with 5% water by mass fraction. As compared with that of the melt-spun PVA fiber with 35% water by mass fraction, the draw ratio of the melt-spun PVA fibers with 5% water by mass fraction was lower in the drawing temperature below 100 ℃, but higher in the drawing temperature above 140 ℃.

    Fig.4 Stress-strain curves of melt-spun PVA fibers with 5% water by mass fraction drawn at different temperature 1—30 ℃;2—60 ℃;3—80 ℃;4—100 ℃;5—110 ℃;6—120 ℃;7—130 ℃;8—140 ℃;9—180 ℃;10—190 ℃;11—200 ℃;12—210 ℃

    The main reason is that the motion ability of PVA molecular chains was mainly affected by water at lower temperature below 100 ℃, therefore, the higher water content in PVA fibers, the greater damage to PVA self-hydrogen bond, the more singnificant plasticization effect, the better drawability of PVA fibers, and the higher draw ratio of PVA fibers. What′s more, water evaporated constantly with the increase of temperature, making the fibers generate bubbles and defects and fracture finally. But the melt-spun PVA fiber with lower water content was effectively constrained by water, making water hardly evaporate. So it had few defects resulting from water evaporation, better high-temperature drawablity and higher draw ratio as well, as compared with the fiber with 35% water by mass fraction.

    The effect of water on self-hydrogen bonds of PVA was weakened, the self-hydrogen bonds were partly rebuilt and the structure of PVA fiber became denser as the water content in melt-spun PVA fibers was decreased. So the motion ability of PVA molecular chains was depressed andηεwas increased. The change tendency ofηεwith the draw ratio and temperature was similar to that of fiber with 35% water by mass fraction.

    The experimental data of lnηεagainst 1/Twere showed in Fig.5, which exhibited two-segment straight line with inflection point temperature being about 200 ℃ which was higher than that of fiber with 35% water by mass fraction.

    Fig.5 Relationship between ηε and 1/T of melt-spun PVA fibers with 5% water by mass fraction at different λ■—4;●—5;▲—6;▼—7;◆—8;?—9;?—10;○—11

    As shown in Tab.2,the correspondingEaof PVA fibers with 5% water by mass fraction showed two regions,i.e.24.6-33.2 kJ/mol at 30-200 ℃,higher than that of PVA fiber with 35% water by mass fraction in the lower temperature and middle temperature regions,and 111.3-140.6 kJ/mol at 200-220 ℃,also higher than that of PVA fiber with 35% water by mass fraction in higher temperature region. Therefore, there existed two different activation mechanisms,so at least two steps should be adopted during drawing process.The increase ofEaand the change of activation mechanisms of melt-spun PVA fiber with 5% water by mass fraction was due to self-hydrogen bonds rebuilding and dense structure of PVA fibers caused by the decrease of water content.

    Tab.2 Ea of melt-spun PVA fibers with 5% water by mass fraction drawn in different temperature regions

    3 Conclusions

    a. The effect of temperature onηεof melt-spun PVA fiber with 35% water by mass fraction can be divided into three regions, lower-temperature region of 30-100 ℃, middle-temperature region of 100-190 ℃ and higher-temperature region of 190-210 ℃, which indicated that there were three different activation mechanisms and the fiber could be drawn at least with three steps.

    b. When the water content of melt-spun PVA fibers was 5% by mass fraction, water could hardly evaporate during hot drawing, the self-hydrogen bonds of PVA were partly rebuilt, the structure of PVA became dense, the motion ability of PVA molecular chains decreased andηεincreased in two regions, i.e. lower-temperature region of 30-200 ℃ and higher-temperature region of 200-220 ℃. The activation mechanisms were different in these two regions.

    c. The lower water content was beneficial to the oriented stretch of PVA molecules and stabilization of oriented structure. The water content of the system should be rationally decreased during drawing process to acquire the better stretchability at high temperatures and more outstanding mechanical properties of the melt-spun fibers.

    [1] Zhao Huan. Poly(vinyl alcohol) fibers[M]. Beijing: Chemical Industry Press, 2014:7-8.

    [2] Bai Hongjun, Yang Zhongkai, Tang Chuanjiang, et al. Rheological behavior of plasticized poly(vinyl alcohol) melt[J]. Chin Syn Fiber Ind, 2015,38(2):43-47.

    [3] Lin C A, Ku T. Shear and elongational flow properties of thermoplastic polyvinyl alcohol melts with different plasticizer contents and degrees of polymerization[J]. J Mater Proc Tech, 2008, 200: 331-338.

    [4] Hiroshi N, Nobuo D, Takeaki M. Preparation and thermal properties of thermoplastic poly(vinyl alcohol) complexes with boronic acids[J]. J Polym Sci, Part A: Polym Chem, 1998,36(17):3045-3050.

    [5] Ku T H, Lin C A. Elongational flow properties of thermoplastic polyvinyl alcohol/polypropylene from the melt spinning method[J]. Text Res J, 2014,84(9):932-940.

    [6] Wang Qi, Li Li, Chen Ning. Thermal processing of poly(Vinyl alcohol) [J]. Polym Mater Sci Eng, 2014,30(2):192-197.

    [7] Wang Ning, Zhao Lipeng, Zhang Chuhong,et al. Water states and thermal processability of boric acid modified poly (vinyl alcohol) [J]. J Appl Polym Sci,2016,133(13):43246-43252.

    [8] Pan Lijun, Hu Zuming, Liu Zhaofeng. A study of elongational rheological behavior of UHME-PE gel fiber[J]. J Chin Text Univ, 1993,19(6): 67-72.

    [9] Smook J, Pennings A. The effect of temperature and deformation rate on the hot-drawing behavior of porous high-molecular-weight polyethylene fibers[J]. J Appl Polym Sci, 1982, 27(6): 2209-2228.

    ?國內(nèi)外動態(tài)?

    80 kt/a 高性能再生聚酯纖維項(xiàng)目落戶宜賓

    2017年7月12日,由浙江億興達(dá)紡織有限公司、紹興新綸機(jī)械制造有限公司、佛山中泰光進(jìn)出口公司共同出資建設(shè)的80 kt/a 高性能再生聚酯纖維及紡紗織布產(chǎn)業(yè)化項(xiàng)目正式落戶宜賓屏山縣工業(yè)園區(qū)。據(jù)了解,該項(xiàng)目總投資5.2億元,用地約100畝,分二期建設(shè),其中,一期項(xiàng)目選址石盤產(chǎn)業(yè)園區(qū),用地約45畝,預(yù)計(jì)總投資2億元;二期項(xiàng)目擬選址王場產(chǎn)業(yè)園區(qū),用地約55畝,預(yù)計(jì)總投資3.2億元。該項(xiàng)目全部建成并投產(chǎn)后將形成 80 kt/a 高性能再生聚酯纖維及紡紗織布生產(chǎn)能力,實(shí)現(xiàn)年產(chǎn)值10億元、利稅1.5億元,新增就業(yè)300人以上。目前,該項(xiàng)目正在開展廠房設(shè)計(jì)等前期工作。

    (通訊員 楊 朝)

    圣泉集團(tuán)首創(chuàng)石墨烯功能纖維

    2017年6月3日,濟(jì)南圣泉集團(tuán)股份有限公司“生物質(zhì)石墨烯宏量制備及石墨烯在功能纖維中的產(chǎn)業(yè)化應(yīng)用”成果鑒定發(fā)布,該項(xiàng)目是中國紡織工業(yè)聯(lián)合會科技指導(dǎo)性項(xiàng)目,由圣泉集團(tuán)承擔(dān),并由工信部、中國化學(xué)纖維工業(yè)聯(lián)合會、中國石化聯(lián)合會共同鑒定完成。

    由中國工程院院士孫晉良等權(quán)威專家組成的鑒定委員會一致認(rèn)為:該成果發(fā)明了天然生物質(zhì)纖維素制備生物質(zhì)石墨烯的“基團(tuán)配位組裝析碳法”,在國際上首次實(shí)現(xiàn)了生物質(zhì)石墨烯材料的宏量制備;研發(fā)出具有遠(yuǎn)紅外、抗菌抑菌、抗靜電、防紫外等多功能的石墨烯改性纖維,開發(fā)其在服飾、家紡、軍工、輕工、醫(yī)療、精細(xì)化工等領(lǐng)域的應(yīng)用;該成果對提高紡織工業(yè)科技創(chuàng)新能力、紡織行業(yè)技術(shù)升級和高附加值產(chǎn)品開發(fā)具有深遠(yuǎn)意義;在國際上首次實(shí)現(xiàn)了生物質(zhì)石墨烯宏量制備及石墨烯在功能纖維中的產(chǎn)業(yè)化應(yīng)用,達(dá)到了國際領(lǐng)先水平,屬國際首創(chuàng)。

    圣泉集團(tuán)此次成功突破生物質(zhì)石墨烯宏量制備及石墨烯在功能纖維中的產(chǎn)業(yè)化應(yīng)用,開發(fā)了具有低溫遠(yuǎn)紅外、防紫外線、改善微循環(huán)、抗菌抑菌、抗靜電、增溫保溫等功能性紡織品,高性能化、多功能化、智能化的紡織纖維材料體系初現(xiàn)。此外,圣泉集團(tuán)正研發(fā)和儲備石墨烯在軍民融合領(lǐng)域、醫(yī)療用品、防腐涂料、電池材料、增強(qiáng)材料等領(lǐng)域的技術(shù)。

    (通訊員 錢伯章)

    齊魯石化制成石墨烯腈綸

    2017年7月,齊魯石化腈綸廠與山東濟(jì)南圣泉集團(tuán)合作,成功完成石墨烯腈綸試樣的制備工作。經(jīng)國家紡織制品質(zhì)量監(jiān)督檢驗(yàn)中心對使用該原料制作成織物的試樣進(jìn)行檢測,產(chǎn)品的抗靜電性、抗菌抑菌性、遠(yuǎn)紅外性能及耐水洗色牢度等指標(biāo)全部達(dá)到并超過國家標(biāo)準(zhǔn)。該廠與濟(jì)南圣泉集團(tuán)協(xié)商,確定了放大實(shí)驗(yàn)設(shè)備的技術(shù)需求和具體參數(shù),開始了石墨烯實(shí)驗(yàn)設(shè)備采購程序。該項(xiàng)目是提升腈綸產(chǎn)品附加值的有效途徑。

    (通訊員 鄭寧來)

    上海石化原液著色腈綸銷量增長

    2017年1~6月,上海石化腈綸部原液著色腈綸的銷量同比增長49%。原液著色腈綸是該部自行開發(fā)的新產(chǎn)品,填補(bǔ)了國內(nèi)空白,豐富了國內(nèi)腈綸的品種,使腈綸生產(chǎn)技術(shù)水平得到了提升,逐步為國內(nèi)客戶所接受。該部原液著色腈綸銷售量的擴(kuò)大,得益于品種的增加。2015年,該部還只能生產(chǎn)單一的黑色纖維,而現(xiàn)在,已有十多種顏色的腈綸進(jìn)入正常生產(chǎn)序列,另外還有二十多種顏色的腈綸產(chǎn)品進(jìn)入技術(shù)儲備序列。顏色增多,客戶選擇的余地也大了。另外,該部生產(chǎn)的原液著色腈綸原來僅用來做戶外產(chǎn)品,現(xiàn)在則已進(jìn)入了服用領(lǐng)域。

    (通訊員 錢伯章)

    聚乙烯醇熔紡初生纖維的拉伸行為研究

    李莉 陳寧 劉慶

    (1.四川大學(xué) 高分子材料工程國家重點(diǎn)實(shí)驗(yàn)室,高分子研究所,四川 成都 610065)

    采用去離子水溶脹聚乙烯醇(PVA),通過熔融紡絲法制備PVA纖維。研究了水質(zhì)量分?jǐn)?shù)35%和5%的PVA熔紡初生纖維在不同拉伸溫度下的應(yīng)力-應(yīng)變曲線,以及其拉伸活化機(jī)制。結(jié)果表明:拉伸溫度對水質(zhì)量分?jǐn)?shù)35%的PVA熔紡初生纖維表觀拉伸黏度的影響分為3個(gè)區(qū),即30~100 ℃,100~190 ℃,190~210 ℃,纖維在熱拉伸時(shí)存在3個(gè)不同機(jī)制的活化過程,至少可采用三級拉伸;初生纖維拉伸受體系中水含量的影響,水含量減少,PVA分子鏈運(yùn)動能力降低,表觀拉伸黏度增大,水質(zhì)量分?jǐn)?shù)5%的PVA熔紡初生纖維的表觀拉伸黏度隨溫度變化呈現(xiàn)兩個(gè)區(qū),活化機(jī)制改變,可采用兩步拉伸。

    聚乙烯醇纖維 熔融紡絲 拉伸黏度 活化能

    date:04-05-2017; revised date: 20- 06- 2017.

    National Natural Science Foundation of China(51433006) and Independent Project of State Key Laboratory of Polymer Materials Engineering of China(sklpme2014-3-15)

    TQ342+.41 Document code:A Article ID: 1001- 0041(2017)04- 0040- 05

    Biography: Li Li(1977-), female,Ph. D,is engaged in the structure and properties of polymers. E-mail:powerlily@scu.edu.cn.

    * Corresponding author: ningchen@scu.edu.cn.

    猜你喜歡
    圣泉腈綸原液
    羊毛/腈綸/棉纖維混紡產(chǎn)品定量化學(xué)分析方法探討
    Improvement of the spreading effect of atmospheric pressure microplasma jet treatment through shielding-gas-controlled focusing
    過武陵山區(qū)
    應(yīng)用前景廣闊的原液著色纖維
    2020春夏原液著色纖維色彩流行趨勢
    大慶石化公司腈綸廠成功生產(chǎn)超高收縮腈綸
    圣泉英賽德歐洲有限公司正式開工建設(shè)
    超細(xì)、原液著色聚酰亞胺纖維實(shí)現(xiàn)量產(chǎn)
    高品質(zhì)原液著色纖維項(xiàng)目“年審”
    腈綸打包機(jī)油缸頂蓋螺栓斷裂原因
    欧美日韩亚洲国产一区二区在线观看| 丁香六月欧美| 少妇熟女aⅴ在线视频| 欧美精品啪啪一区二区三区| 在线观看免费视频日本深夜| 最近在线观看免费完整版| 国产国语露脸激情在线看| 婷婷精品国产亚洲av在线| 亚洲av成人不卡在线观看播放网| 18禁黄网站禁片免费观看直播| 他把我摸到了高潮在线观看| 亚洲第一青青草原| 久久香蕉国产精品| 亚洲黑人精品在线| 麻豆成人午夜福利视频| 十分钟在线观看高清视频www| 色综合欧美亚洲国产小说| 日韩欧美国产在线观看| 亚洲国产欧美网| 一区二区三区激情视频| 国产欧美日韩一区二区三| 欧美日韩乱码在线| 老司机午夜十八禁免费视频| 亚洲av中文字字幕乱码综合 | 久久亚洲真实| 午夜福利成人在线免费观看| 免费在线观看视频国产中文字幕亚洲| 最好的美女福利视频网| 久久香蕉国产精品| 久久久久九九精品影院| 亚洲精华国产精华精| 麻豆国产av国片精品| 精品日产1卡2卡| 我的亚洲天堂| 久久久久国产精品人妻aⅴ院| 国内精品久久久久精免费| 女人爽到高潮嗷嗷叫在线视频| 国产精品1区2区在线观看.| 国产一级毛片七仙女欲春2 | 在线观看午夜福利视频| 99久久精品国产亚洲精品| 高清在线国产一区| 欧美绝顶高潮抽搐喷水| 在线观看www视频免费| 国产精品1区2区在线观看.| 18禁观看日本| 黄片小视频在线播放| av在线天堂中文字幕| 老鸭窝网址在线观看| 欧美乱妇无乱码| 国产区一区二久久| 丁香六月欧美| 一边摸一边做爽爽视频免费| 丁香欧美五月| 久久久久久国产a免费观看| 男女之事视频高清在线观看| 国内毛片毛片毛片毛片毛片| 中文字幕人妻熟女乱码| 高清在线国产一区| av电影中文网址| 国产亚洲精品av在线| 变态另类成人亚洲欧美熟女| 人人妻人人澡欧美一区二区| www.999成人在线观看| 国产伦人伦偷精品视频| 可以在线观看的亚洲视频| 成人亚洲精品av一区二区| 日日爽夜夜爽网站| 777久久人妻少妇嫩草av网站| 日韩精品青青久久久久久| 久久亚洲精品不卡| 免费看美女性在线毛片视频| 久久久国产成人免费| 最新在线观看一区二区三区| 看免费av毛片| 成人特级黄色片久久久久久久| 午夜福利18| 日本精品一区二区三区蜜桃| 母亲3免费完整高清在线观看| 精品无人区乱码1区二区| 久久国产精品人妻蜜桃| 国产精品98久久久久久宅男小说| 美女免费视频网站| a级毛片a级免费在线| 在线观看午夜福利视频| 免费在线观看亚洲国产| 亚洲中文日韩欧美视频| 女人高潮潮喷娇喘18禁视频| 亚洲人成77777在线视频| 俺也久久电影网| 日韩高清综合在线| 国产视频内射| 少妇的丰满在线观看| 国产av一区在线观看免费| 一卡2卡三卡四卡精品乱码亚洲| 淫妇啪啪啪对白视频| 亚洲色图av天堂| 777久久人妻少妇嫩草av网站| av免费在线观看网站| 一区二区三区激情视频| 午夜视频精品福利| 亚洲中文字幕一区二区三区有码在线看 | 禁无遮挡网站| 后天国语完整版免费观看| 久久久国产成人免费| 很黄的视频免费| 女人被狂操c到高潮| 国产精品久久电影中文字幕| 法律面前人人平等表现在哪些方面| 视频在线观看一区二区三区| 麻豆av在线久日| 亚洲五月婷婷丁香| 国产成人av教育| 中文字幕久久专区| 久久香蕉精品热| 亚洲精品在线美女| 香蕉av资源在线| 国产成人精品久久二区二区91| 三级毛片av免费| 真人做人爱边吃奶动态| 伊人久久大香线蕉亚洲五| 长腿黑丝高跟| 久久九九热精品免费| 精品久久久久久成人av| 欧美乱色亚洲激情| 久久人人精品亚洲av| 19禁男女啪啪无遮挡网站| 亚洲五月婷婷丁香| 精品一区二区三区av网在线观看| 美女国产高潮福利片在线看| 成人三级黄色视频| 中文字幕另类日韩欧美亚洲嫩草| 少妇的丰满在线观看| 搡老熟女国产l中国老女人| 亚洲成人久久性| 国产免费av片在线观看野外av| 一夜夜www| 18美女黄网站色大片免费观看| 精品欧美一区二区三区在线| 成人永久免费在线观看视频| 香蕉久久夜色| 国产精品亚洲美女久久久| 亚洲成人久久爱视频| 午夜免费观看网址| 亚洲性夜色夜夜综合| 视频在线观看一区二区三区| 欧美人与性动交α欧美精品济南到| 亚洲人成伊人成综合网2020| 亚洲色图 男人天堂 中文字幕| 国产视频内射| 两个人看的免费小视频| 可以在线观看毛片的网站| 精品久久久久久久人妻蜜臀av| 成人永久免费在线观看视频| 国产亚洲精品久久久久久毛片| 成人国产一区最新在线观看| 少妇被粗大的猛进出69影院| 美女免费视频网站| 久久久久久久午夜电影| 国产精品自产拍在线观看55亚洲| 中国美女看黄片| 女警被强在线播放| 欧美中文日本在线观看视频| 伦理电影免费视频| 两个人看的免费小视频| 一级毛片精品| 精品卡一卡二卡四卡免费| 国语自产精品视频在线第100页| 亚洲中文字幕一区二区三区有码在线看 | 午夜影院日韩av| 午夜免费观看网址| 久久中文字幕一级| 成人午夜高清在线视频 | 中文字幕人成人乱码亚洲影| 欧美激情高清一区二区三区| 无人区码免费观看不卡| 日本一本二区三区精品| 老司机在亚洲福利影院| 亚洲第一av免费看| 免费看美女性在线毛片视频| 成年免费大片在线观看| 人人妻人人看人人澡| 久久久久久人人人人人| www.999成人在线观看| 桃红色精品国产亚洲av| 亚洲avbb在线观看| 欧美乱码精品一区二区三区| 亚洲av成人一区二区三| 国产亚洲欧美精品永久| 色老头精品视频在线观看| 午夜福利18| 免费观看人在逋| 性欧美人与动物交配| 两性午夜刺激爽爽歪歪视频在线观看 | 国产熟女xx| 男人舔奶头视频| 一个人免费在线观看的高清视频| 久久香蕉激情| 怎么达到女性高潮| 亚洲精品在线美女| 波多野结衣高清作品| 精品欧美国产一区二区三| 中文字幕最新亚洲高清| 久热爱精品视频在线9| 久热这里只有精品99| 国产精品久久久久久人妻精品电影| 久久久久国产一级毛片高清牌| 中文资源天堂在线| 国产精品影院久久| 日韩视频一区二区在线观看| 一进一出抽搐动态| 国产精品电影一区二区三区| 999精品在线视频| 天堂动漫精品| 真人一进一出gif抽搐免费| 夜夜躁狠狠躁天天躁| 国产精品亚洲一级av第二区| 色综合亚洲欧美另类图片| 久久精品91无色码中文字幕| 中文在线观看免费www的网站 | 欧美成人午夜精品| 久久99热这里只有精品18| 中亚洲国语对白在线视频| 久久草成人影院| 国产精品国产高清国产av| 在线观看一区二区三区| 精品国产乱码久久久久久男人| 97超级碰碰碰精品色视频在线观看| 久久久久免费精品人妻一区二区 | 免费人成视频x8x8入口观看| 亚洲国产中文字幕在线视频| 日韩国内少妇激情av| 免费看a级黄色片| 精品国产乱码久久久久久男人| 亚洲第一欧美日韩一区二区三区| 日韩国内少妇激情av| 亚洲片人在线观看| 丝袜人妻中文字幕| 最近最新中文字幕大全电影3 | 天堂√8在线中文| 国产熟女午夜一区二区三区| 成人欧美大片| 午夜视频精品福利| 久久久精品欧美日韩精品| 性欧美人与动物交配| 手机成人av网站| 久久精品夜夜夜夜夜久久蜜豆 | 亚洲中文av在线| 在线观看免费午夜福利视频| 午夜日韩欧美国产| 巨乳人妻的诱惑在线观看| 日日干狠狠操夜夜爽| 色av中文字幕| 无限看片的www在线观看| av在线播放免费不卡| 男女视频在线观看网站免费 | 亚洲国产欧美网| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲av第一区精品v没综合| av福利片在线| 国产成人精品久久二区二区免费| 日本五十路高清| 亚洲七黄色美女视频| www.熟女人妻精品国产| 欧美成人午夜精品| 亚洲精品美女久久av网站| 久99久视频精品免费| 久久国产亚洲av麻豆专区| 亚洲全国av大片| 一级a爱片免费观看的视频| 久久天躁狠狠躁夜夜2o2o| 国产成人av激情在线播放| 韩国精品一区二区三区| or卡值多少钱| 亚洲欧美精品综合久久99| 女性被躁到高潮视频| 天天躁狠狠躁夜夜躁狠狠躁| av超薄肉色丝袜交足视频| 很黄的视频免费| 激情在线观看视频在线高清| 一进一出好大好爽视频| 久久性视频一级片| 九色国产91popny在线| 此物有八面人人有两片| av视频在线观看入口| 婷婷丁香在线五月| 婷婷精品国产亚洲av| 黄片小视频在线播放| 国产极品粉嫩免费观看在线| 韩国av一区二区三区四区| 午夜a级毛片| 成年人黄色毛片网站| netflix在线观看网站| 久久精品夜夜夜夜夜久久蜜豆 | 成人午夜高清在线视频 | 国产精品久久久久久精品电影 | 一进一出抽搐gif免费好疼| 亚洲性夜色夜夜综合| 精品欧美一区二区三区在线| 日本黄色视频三级网站网址| 国产精品日韩av在线免费观看| 国产视频内射| 婷婷精品国产亚洲av| 啦啦啦 在线观看视频| 免费看日本二区| 黄网站色视频无遮挡免费观看| 成人亚洲精品一区在线观看| 欧美另类亚洲清纯唯美| 亚洲精品中文字幕在线视频| 香蕉丝袜av| 日本在线视频免费播放| 悠悠久久av| 亚洲精品国产一区二区精华液| 变态另类成人亚洲欧美熟女| 久久久水蜜桃国产精品网| 最新在线观看一区二区三区| 麻豆成人av在线观看| 黄色视频不卡| 少妇的丰满在线观看| 熟女电影av网| 亚洲中文av在线| 欧美色欧美亚洲另类二区| 在线国产一区二区在线| 村上凉子中文字幕在线| 视频在线观看一区二区三区| 亚洲中文日韩欧美视频| 日韩精品免费视频一区二区三区| 久久精品成人免费网站| 中文字幕av电影在线播放| 午夜福利欧美成人| 午夜精品久久久久久毛片777| 国产伦一二天堂av在线观看| 欧美在线黄色| 十八禁人妻一区二区| 成人欧美大片| 日韩精品免费视频一区二区三区| 国产精华一区二区三区| netflix在线观看网站| 18禁国产床啪视频网站| 黄色片一级片一级黄色片| 欧美日韩瑟瑟在线播放| 99精品欧美一区二区三区四区| 美女 人体艺术 gogo| 变态另类成人亚洲欧美熟女| 91成年电影在线观看| 欧美中文综合在线视频| 欧美一区二区精品小视频在线| 亚洲一码二码三码区别大吗| 精品一区二区三区av网在线观看| 日韩欧美国产一区二区入口| 性色av乱码一区二区三区2| 免费观看精品视频网站| 日韩 欧美 亚洲 中文字幕| 欧美人与性动交α欧美精品济南到| 日本熟妇午夜| 亚洲精品美女久久av网站| 国内精品久久久久精免费| 国产野战对白在线观看| 中国美女看黄片| 国产熟女xx| 亚洲第一青青草原| 老司机午夜福利在线观看视频| 国产一区二区三区视频了| 欧美午夜高清在线| 老司机午夜十八禁免费视频| 亚洲人成网站在线播放欧美日韩| 久久久精品欧美日韩精品| 制服人妻中文乱码| 天天躁狠狠躁夜夜躁狠狠躁| 国产熟女午夜一区二区三区| 美女国产高潮福利片在线看| 国产精品日韩av在线免费观看| 成人18禁在线播放| 神马国产精品三级电影在线观看 | 99久久国产精品久久久| 曰老女人黄片| 久久久国产精品麻豆| 亚洲欧洲精品一区二区精品久久久| 神马国产精品三级电影在线观看 | 桃色一区二区三区在线观看| 国产视频一区二区在线看| 免费观看人在逋| 国产99久久九九免费精品| 国产精品久久久av美女十八| 久久久国产成人免费| 激情在线观看视频在线高清| 美女高潮到喷水免费观看| 最新美女视频免费是黄的| 国产又爽黄色视频| 欧美日韩福利视频一区二区| 成人国产综合亚洲| 精品久久久久久久毛片微露脸| 黄色丝袜av网址大全| 欧美日本亚洲视频在线播放| 真人一进一出gif抽搐免费| 欧美精品亚洲一区二区| 免费高清在线观看日韩| 91大片在线观看| 国产又爽黄色视频| x7x7x7水蜜桃| 亚洲国产欧美日韩在线播放| 欧美zozozo另类| 亚洲av成人一区二区三| 免费在线观看完整版高清| 狂野欧美激情性xxxx| 嫩草影视91久久| 久久性视频一级片| 亚洲一区中文字幕在线| 亚洲性夜色夜夜综合| 日本一本二区三区精品| avwww免费| 很黄的视频免费| 久久婷婷成人综合色麻豆| 1024视频免费在线观看| 国产伦在线观看视频一区| 波多野结衣高清作品| 国产高清videossex| 村上凉子中文字幕在线| 在线观看免费午夜福利视频| 亚洲人成网站在线播放欧美日韩| 亚洲av熟女| 国产亚洲精品综合一区在线观看 | 欧美性猛交╳xxx乱大交人| 人妻丰满熟妇av一区二区三区| 日韩精品免费视频一区二区三区| 亚洲免费av在线视频| 999久久久国产精品视频| 日韩大码丰满熟妇| www日本在线高清视频| 90打野战视频偷拍视频| 精品久久久久久久久久免费视频| 男女做爰动态图高潮gif福利片| 亚洲成国产人片在线观看| 午夜福利在线在线| 成年人黄色毛片网站| 国产精品1区2区在线观看.| 一夜夜www| 欧美乱码精品一区二区三区| 国产精品日韩av在线免费观看| 成人18禁高潮啪啪吃奶动态图| 国产又爽黄色视频| 欧美丝袜亚洲另类 | 叶爱在线成人免费视频播放| 久久 成人 亚洲| 久久精品影院6| 欧美久久黑人一区二区| 久久99热这里只有精品18| 欧美一级毛片孕妇| 人人妻,人人澡人人爽秒播| 午夜亚洲福利在线播放| 久久 成人 亚洲| 国产私拍福利视频在线观看| 欧美色欧美亚洲另类二区| 亚洲专区中文字幕在线| 国产一区二区三区视频了| 欧美zozozo另类| 久久精品亚洲精品国产色婷小说| 国产免费av片在线观看野外av| 欧美色欧美亚洲另类二区| 亚洲全国av大片| 在线观看日韩欧美| 亚洲中文字幕日韩| 日韩大码丰满熟妇| 久久国产精品影院| av超薄肉色丝袜交足视频| 又黄又爽又免费观看的视频| 午夜亚洲福利在线播放| 女人爽到高潮嗷嗷叫在线视频| 91成年电影在线观看| 日日爽夜夜爽网站| 亚洲精品美女久久久久99蜜臀| 成人18禁高潮啪啪吃奶动态图| avwww免费| 成人三级做爰电影| 午夜福利欧美成人| 久久久久国产一级毛片高清牌| 村上凉子中文字幕在线| 美女 人体艺术 gogo| 亚洲全国av大片| 人人妻人人澡人人看| 999久久久国产精品视频| 精品熟女少妇八av免费久了| 精品国产亚洲在线| 男人的好看免费观看在线视频 | 12—13女人毛片做爰片一| 亚洲精品久久国产高清桃花| 曰老女人黄片| 免费搜索国产男女视频| 成年版毛片免费区| 久久亚洲真实| 国产黄片美女视频| 日韩av在线大香蕉| 色老头精品视频在线观看| 成人午夜高清在线视频 | 亚洲黑人精品在线| 亚洲av五月六月丁香网| 99国产精品一区二区蜜桃av| www日本在线高清视频| 亚洲av第一区精品v没综合| 超碰成人久久| 两个人视频免费观看高清| 岛国在线观看网站| 一个人观看的视频www高清免费观看 | 午夜福利18| 亚洲一区高清亚洲精品| 无遮挡黄片免费观看| 99久久综合精品五月天人人| 99国产极品粉嫩在线观看| 日韩一卡2卡3卡4卡2021年| 亚洲av成人不卡在线观看播放网| 久久这里只有精品19| 亚洲专区中文字幕在线| 国产成人av教育| 精品人妻1区二区| xxxwww97欧美| 村上凉子中文字幕在线| 国产97色在线日韩免费| 无遮挡黄片免费观看| 亚洲欧美精品综合久久99| 国产精品香港三级国产av潘金莲| 特大巨黑吊av在线直播 | 午夜福利成人在线免费观看| 亚洲片人在线观看| 日本在线视频免费播放| 黄色女人牲交| 精品久久久久久久久久久久久 | 国产麻豆成人av免费视频| 日韩欧美国产一区二区入口| aaaaa片日本免费| 日韩成人在线观看一区二区三区| 久久精品国产99精品国产亚洲性色| 亚洲自拍偷在线| 国产区一区二久久| 国产在线观看jvid| 人妻久久中文字幕网| 国产一区在线观看成人免费| 精品午夜福利视频在线观看一区| 久久精品夜夜夜夜夜久久蜜豆 | 操出白浆在线播放| 日韩欧美国产一区二区入口| 日本撒尿小便嘘嘘汇集6| 久久久国产欧美日韩av| 欧美一级毛片孕妇| 国产真人三级小视频在线观看| 欧美另类亚洲清纯唯美| 久久精品国产亚洲av香蕉五月| 在线播放国产精品三级| 亚洲,欧美精品.| 日日摸夜夜添夜夜添小说| 国产精品精品国产色婷婷| 老司机深夜福利视频在线观看| 国产成人精品久久二区二区91| 激情在线观看视频在线高清| 久久精品成人免费网站| 精品国产超薄肉色丝袜足j| 99在线视频只有这里精品首页| 精品电影一区二区在线| aaaaa片日本免费| 精华霜和精华液先用哪个| 日本三级黄在线观看| 亚洲成人国产一区在线观看| 精品一区二区三区av网在线观看| 亚洲中文av在线| 欧美乱色亚洲激情| 男女视频在线观看网站免费 | 亚洲真实伦在线观看| 可以免费在线观看a视频的电影网站| 国产真人三级小视频在线观看| 国产精品永久免费网站| 波多野结衣高清作品| 精品国产国语对白av| 国产亚洲精品久久久久5区| av免费在线观看网站| 好男人在线观看高清免费视频 | 国产日本99.免费观看| 美女大奶头视频| 成熟少妇高潮喷水视频| 国产精品,欧美在线| 免费在线观看日本一区| 国产一区二区三区在线臀色熟女| 少妇熟女aⅴ在线视频| 亚洲精品久久国产高清桃花| 麻豆久久精品国产亚洲av| 国内精品久久久久久久电影| 巨乳人妻的诱惑在线观看| 国产人伦9x9x在线观看| 长腿黑丝高跟| 欧美乱码精品一区二区三区| 99国产精品一区二区蜜桃av| 亚洲 欧美 日韩 在线 免费| 三级毛片av免费| 午夜福利欧美成人| 亚洲在线自拍视频| 午夜福利免费观看在线| 亚洲自偷自拍图片 自拍| 久久精品成人免费网站| 日韩免费av在线播放| 老司机午夜福利在线观看视频| 国产欧美日韩一区二区三| 久久青草综合色| 丝袜美腿诱惑在线| 亚洲五月色婷婷综合| 女警被强在线播放| 欧美在线黄色| 人人澡人人妻人| 嫩草影院精品99| 手机成人av网站| 欧美人与性动交α欧美精品济南到| 国产野战对白在线观看| 日本在线视频免费播放| 黄色视频不卡| 欧美日韩瑟瑟在线播放| 成年人黄色毛片网站| 色在线成人网| 久久人妻av系列|