黃翔翔,楊哲,禹利君
湖南農(nóng)業(yè)大學(xué)園藝園林學(xué)院,國(guó)家植物功能成分利用工程技術(shù)研究中心,茶學(xué)教育部重點(diǎn)實(shí)驗(yàn)室,湖南省植物功能成分利用協(xié)同創(chuàng)新中心,湖南 長(zhǎng)沙 410128
綠茶、EGCG預(yù)防及緩解香煙煙霧誘導(dǎo)COPD的研究進(jìn)展
黃翔翔,楊哲,禹利君*
湖南農(nóng)業(yè)大學(xué)園藝園林學(xué)院,國(guó)家植物功能成分利用工程技術(shù)研究中心,茶學(xué)教育部重點(diǎn)實(shí)驗(yàn)室,湖南省植物功能成分利用協(xié)同創(chuàng)新中心,湖南 長(zhǎng)沙 410128
慢性阻塞性肺疾病是由吸煙引發(fā)的最常見(jiàn)肺部疾病之一。香煙煙霧誘導(dǎo)的氧化應(yīng)激、炎癥反應(yīng)及蛋白酶/抗蛋白酶失衡與慢性阻塞性肺疾病的發(fā)生、惡化密切關(guān)聯(lián)。飲用綠茶、攝入EGCG能夠清除人體內(nèi)活性氧自由基,預(yù)防及緩解其帶來(lái)的一系列呼吸道疾病。本文總結(jié)了近10年來(lái)眾多學(xué)者對(duì)綠茶、EGCG作用于慢性阻塞性肺疾病的研究文獻(xiàn),以期探討綠茶、EGCG預(yù)防及緩解慢性阻塞性肺疾病的機(jī)理,提高人們對(duì)綠茶、EGCG預(yù)防及緩解慢性阻塞性肺疾病的認(rèn)識(shí)。
香煙煙霧;氧化應(yīng)激;COPD;綠茶;EGCG
據(jù)世界衛(wèi)生組織統(tǒng)計(jì),慢性阻塞性肺疾?。–hronic obstructive pulmonary disease,COPD)是當(dāng)前導(dǎo)致人類死亡的第三大病癥,全世界COPD患者大約有32 900萬(wàn),即全世界 5%的人患有 COPD,年死亡人數(shù)超過(guò) 300萬(wàn)[1]。COPD的誘因包括個(gè)體因素及環(huán)境因素,個(gè)體的某些遺傳因素會(huì)增加 COPD的發(fā)病率[2-3],而環(huán)境因素是導(dǎo)致COPD的主要原因,例如:空氣污染物、香煙煙霧(Cigarette smoke,CS)及一些職業(yè)性粉塵等,一些傳染性病原體也會(huì)對(duì) COPD的發(fā)生及惡化起作用。吸煙產(chǎn)生的香煙煙霧是導(dǎo)致 COPD發(fā)病的一個(gè)重要環(huán)境因素。占吸煙總?cè)藬?shù)20%的煙民有很大概率患 COPD,終身煙民中有一半人患有COPD[4-5]。在美國(guó)及英國(guó),80%~95%的COPD患者都是煙民[5-7]。在非吸煙COPD患者中,被動(dòng)吸煙誘發(fā)的COPD占20%[7]。研究表明,COPD發(fā)生、發(fā)展及惡化與CS誘導(dǎo)的氧化應(yīng)激、氧化/抗氧化系統(tǒng)失衡、蛋白酶/抗蛋白酶失衡及炎癥反應(yīng)有著密切聯(lián)系,科研人員發(fā)現(xiàn)綠茶可激發(fā)體內(nèi)細(xì)胞的抗氧化防御系統(tǒng),減輕炎癥,誘導(dǎo)癌細(xì)胞凋亡,防止肝臟、肺、腎等器官損傷[8-19],大量攝入兒茶素及水果等抗氧化食品對(duì) COPD有預(yù)防及緩解作用[20]。表沒(méi)食子兒茶素沒(méi)食子酸酯(EGCG)是綠茶兒茶素的主要成分,約占綠茶兒茶素總量的60%。EGCG因富含酚羥基(圖1)而具有良好的抗氧化、抗炎癥及抗腫瘤活性,是使綠茶具有保健功能的主要活性物質(zhì)之一。本文對(duì)近10年來(lái)綠茶、EGCG作用于COPD的研究成果進(jìn)行了剖析,重點(diǎn)探討綠茶及EGCG對(duì)COPD的預(yù)防及緩解作用機(jī)理。
圖1 EGCG的化學(xué)結(jié)構(gòu)Fig. 1 The chemical structure of EGCG
COPD主要表現(xiàn)為持續(xù)性氣流受限,以全身性和局部性氧化應(yīng)激及慢性炎癥性反應(yīng)為特征,患者體內(nèi)具有反常的炎癥水平,癥狀主要包括呼吸短促、咳嗽和咯痰[21]。人們通過(guò)主動(dòng)、被動(dòng)吸煙產(chǎn)生大量活性氧(Reactive oxygen species, ROS)、活性氮(Reactive nitrogen species, RNS),引起體內(nèi)氧化/抗氧化失衡[22],當(dāng)體內(nèi)的自由基及其他活性組分抑制了抗氧化劑的有效性,氧化應(yīng)激就會(huì)出現(xiàn),造成促炎激酶及轉(zhuǎn)錄因子的產(chǎn)生和過(guò)表達(dá)、粘液分泌亢進(jìn)、自身免疫力降低等異常生理現(xiàn)象,最終導(dǎo)致一系列呼吸系統(tǒng)疾病,特別是 COPD的發(fā)生[23]。研究表明,服用抗氧化劑對(duì)COPD的治療是一種有效的預(yù)防及緩解措施[24]。
健康人體中 ROS及自由基的存在與清除處于一個(gè)動(dòng)態(tài)平衡,正常水平的ROS及自由基是機(jī)體必需的,它們和體內(nèi)的抗氧化系統(tǒng)如超氧化物歧化酶(Superoxide dismutase, SOD)、過(guò)氧化氫酶(Catalase, CAT)及谷胱甘肽(Glutathione, GSH)等相互制約,維持機(jī)體氧化/抗氧化系統(tǒng)穩(wěn)定。當(dāng)機(jī)體受到環(huán)境脅迫時(shí),會(huì)導(dǎo)致體內(nèi)產(chǎn)生過(guò)量ROS自由基,如吸煙產(chǎn)生大量自由基而無(wú)法被及時(shí)清除時(shí),氧化/抗氧化平衡就會(huì)被打破,氧化應(yīng)激隨之出現(xiàn)。
綠茶和EGCG擁有強(qiáng)大的抗氧化性,其抑制氧化應(yīng)激的能力對(duì)于COPD的預(yù)防及緩解,有著出色表現(xiàn)[25-26]。研究表明綠茶對(duì) CS誘導(dǎo)的自由基有直接清除作用[11,18,27-28],因而能抑制自由基大量增加誘發(fā)的氧化應(yīng)激。Chan K H等[28]對(duì)大鼠進(jìn)行每天 1 h,持續(xù) 56 d的 CS暴露,之后對(duì)大鼠進(jìn)行組織和生化學(xué)分析,發(fā)現(xiàn)經(jīng)過(guò)CS暴露的大鼠體內(nèi)氧化應(yīng)激水平提高,其血清中8-異前列腺素、肺部SOD及CAT活性顯著提高,但對(duì)大鼠進(jìn)行綠茶湯灌胃以后,這些值返回到正常值水平。苯并芘(Benzopyrene,BaP)是香煙中一類強(qiáng)致癌物,Kumar M等[15]用單劑量(125 mg·kg-1)BaP對(duì)Balb/c小鼠進(jìn)行灌胃,分析小鼠肝臟及肺組織后發(fā)現(xiàn)脂質(zhì)過(guò)氧化(Lipid peroxidation, LPO)水平增加,內(nèi)源抗氧化酶SOD被BaP的致癌作用抑制,導(dǎo)致SOD、CAT水平降低,GSH被大量ROS消耗,含量顯著減少;用綠茶湯對(duì)小鼠預(yù)處理 35 d,發(fā)現(xiàn)小鼠肝臟中谷胱甘肽還原酶(Glutathione reductase,GR)、SOD和CAT活性提高,并使肝、肺組織中GSH及LPO水平趨于正?;R陨舷嚓P(guān)研究結(jié)果表明,小鼠、大鼠經(jīng)CS暴露后,其全身性氧化應(yīng)激水平增加是導(dǎo)致肺部損傷的一個(gè)重要因素,綠茶和EGCG能夠提高抗氧化酶的活性,抑制CS誘導(dǎo)的氧化應(yīng)激,增強(qiáng)肺部抗氧化能力,防止細(xì)胞凋亡和壞死,保護(hù)肺部不受損傷[15, 18, 27, 29-30]。
基質(zhì)金屬蛋白酶(Matrix metalloproteinase,MMP)和人中性粒細(xì)胞彈性蛋白酶(Human neutrophil elastase, HNE)是與COPD密切相關(guān)的蛋白酶,造成促炎、降解免疫球蛋白、破壞肺組織等不良影響。肺部抗蛋白酶系統(tǒng)主要包括 α1-抗胰蛋白酶(Alpha(1)-antitrypsin,α1-AT)及組織金屬蛋白酶抑制劑(Tissue inhibitor of metallopro-teinase, TIMP),正常情況下兩個(gè)系統(tǒng)處于動(dòng)態(tài)平衡,當(dāng)機(jī)體受到 CS等環(huán)境因素的脅迫時(shí)蛋白酶數(shù)量增加,抗蛋白酶不足以抵消大量增加的蛋白酶時(shí)平衡被打破,造成彈性蛋白降解、肺組織受損等影響,最終導(dǎo)致COPD。
Chan K H等[13]研究發(fā)現(xiàn)大鼠飲用中國(guó)綠茶后顯著減少CS誘導(dǎo)的肺部LPO標(biāo)記及丙二醛(Malondialdhyde, MDA)含量,抑制支氣管肺泡灌洗液(Bronchoalveolar lavage fluid,BALF)和肺中由CS誘導(dǎo)的HNE及MMP-12濃度和活性的上調(diào),并提高α1-AT及分泌性白細(xì)胞蛋白酶抑制劑(Secretory leukoproteinase inhibitor, SLPI)的活性。說(shuō)明在CS接觸后大鼠氣道細(xì)胞中存在局部氧化應(yīng)激及蛋白酶/抗蛋白酶失衡,綠茶可減輕氧化應(yīng)激及蛋白酶/抗蛋白酶失衡。研究發(fā)現(xiàn),暴露于 CS的A/J小鼠模型體內(nèi)巨噬細(xì)胞、中性粒細(xì)胞、淋巴細(xì)胞數(shù)量增加,BALF中MMP-2和MMP-9的活性提高。使用 EGCG作為抗氧化劑治療能夠減少 BALF中炎癥細(xì)胞數(shù)量并降低乳酸脫氫酶活性,抑制MMP-9產(chǎn)生及ROS生成,調(diào)節(jié)炎癥細(xì)胞遷移,對(duì)支氣管哮喘的輔助治療有積極作用[31]。EGCG是HNE的天然抑制劑,在HNE處理后的A549細(xì)胞中,通過(guò)EGCG處理能提高α1-AT的表達(dá),改善HNE誘導(dǎo)的A549細(xì)胞轉(zhuǎn)移,該作用與EGCG直接結(jié)合HNE及調(diào)節(jié)磷脂酰肌醇-3-羥激酶(Phosphatidyl inositol 3-kinase, PI3K)和蛋白激酶B(Protein kinase B, AKT)信號(hào)通路有關(guān)[32]。所以EGCG能夠調(diào)節(jié)蛋白酶/抗蛋白酶機(jī)制,對(duì) COPD的預(yù)防和緩解起到正面醫(yī)療作用。但當(dāng)前對(duì)綠茶調(diào)節(jié)肺部蛋白酶/抗蛋白酶失衡的研究尚不多,未見(jiàn)綠茶及 EGCG對(duì)另一抗蛋白酶系統(tǒng)TIMP的研究,有待深入探討。
綠茶及EGCG具有較強(qiáng)大的抗炎癥能力。高遷移率族蛋白B(High mobility group box,HMGB1)是一種DNA結(jié)合蛋白,在細(xì)胞外有細(xì)胞因子功能,能啟動(dòng)免疫反應(yīng),引起細(xì)胞炎性效應(yīng)。研究表明,經(jīng)CS暴露后的大鼠,會(huì)釋放HMGB1到血液中,而綠茶提取物可降低血清中HMGB1的含量,增補(bǔ)綠茶提取物能夠引起有益的全身效應(yīng),通過(guò)抑制HMGB1釋放進(jìn)而抑制細(xì)胞炎癥反應(yīng)[10,33]。EGCG抑制HMGB1釋放的機(jī)理是通過(guò)誘導(dǎo)HMGB1于巨噬細(xì)胞中聚集及自噬降解完成的[34]。通過(guò)自噬調(diào)節(jié)法或許可以在未來(lái)發(fā)展成為一種新的消減炎癥的手段,從而起到預(yù)防及緩和COPD的作用。
核因子活化B細(xì)胞κ輕鏈增強(qiáng)子(Nuclearfactor kappa-light-chain-enhancer of activated B cells, NF-κB)在慢性炎癥和腫瘤的形成中起到重要作用,綠茶能夠調(diào)節(jié)吸煙導(dǎo)致的NF-κB及胞外信號(hào)調(diào)節(jié)激酶(Extracellular signal-regulated kinase, ERK)等信號(hào)通路,下調(diào)促凋亡蛋白的表達(dá)[35-36]。Syed D N等[37]通過(guò) EGCG(20~80 μmol·L-1)預(yù)處理正常人體氣道上皮細(xì)胞(Normal human bronchial epithelial cells, NHBE),發(fā)現(xiàn)CS誘導(dǎo)的細(xì)胞增生被顯著抑制,并抑制 IkappaBα的磷酸化作用、活化作用及 NF-κ/p65的核轉(zhuǎn)移。通過(guò)免疫印跡分析還發(fā)現(xiàn)用 EGCG預(yù)處理的NHBE細(xì)胞使 NF-κB調(diào)控的周期蛋白 D1(Cyclin D1)、MMP-9、白細(xì)胞介素-8(Interleukin-8,IL-8)和 iNOS顯著下調(diào);EGCG抑制CS誘導(dǎo)的ERK1/2、c-Jun氨基末端激酶(c-Jun n-terminal kinase,JNK)及p38絲裂原活化蛋白激酶(Mitogen-activated protein kinases,MAPKs)的磷酸化,并導(dǎo)致 PI3K、AKT和雷帕霉素靶分子(Mammalian target of rapamycin, mTOR)信號(hào)分子表達(dá)減少,表明EGCG在NHBE細(xì)胞中能夠抑制NF-κB及其他促存活信號(hào)通路如PI3K/AKT/mTOR和MAPKs的激活,有助于抑制由CS誘導(dǎo)的炎癥、惡性細(xì)胞增殖及血管增生的能力。尼古丁對(duì)MMP-9的表達(dá)起到重要調(diào)節(jié)作用,MMP-9參與細(xì)胞浸潤(rùn)轉(zhuǎn)移過(guò)程,研究發(fā)現(xiàn)EGCG抑制尼古丁誘導(dǎo)的人類內(nèi)皮細(xì)胞中 NF-κB、轉(zhuǎn)錄因子活化蛋白(AP-1)激活,也抑制尼古丁誘導(dǎo)的AP-1亞基c-fos和c-jun的激活,阻礙尼古丁誘導(dǎo)MMP-9的表達(dá),表現(xiàn)出抗侵襲效應(yīng)[38]。這些研究表明綠茶和EGCG對(duì)細(xì)胞表現(xiàn)出抗氧化、抗細(xì)胞凋亡及抗炎癥等保護(hù)作用,對(duì)CS誘導(dǎo)的MAPKs、NF-κB、PI3K等信號(hào)通路損傷起到重要調(diào)節(jié)作用(圖2),有助于預(yù)防及緩解COPD的發(fā)生及惡化。
圖2 EGCG調(diào)節(jié)CS誘導(dǎo)的MAPKs、NF-κB、PI3K信號(hào)通路的作用機(jī)理Fig. 2 The mechanism of EGCG in regulating CS induced MAPKs, NF-κB and PI3K signal pathways
研究發(fā)現(xiàn),持續(xù)兩周攝入綠茶兒茶素的健康男性吸煙者,血漿中 8-羥基脫氧鳥(niǎo)苷(8-hydroxy-2-deoxyguanosine, 8-OHdG)、IL-6和腫瘤壞死因子(Tumor necrosis factor alpha, TNF-α)水平顯著降低[39]。EGCG 在A549細(xì)胞、肺泡上皮細(xì)胞及小鼠肺部中,通過(guò)下調(diào)氧化應(yīng)激及細(xì)胞間黏附分子(Intercellular cell adhesion molecule-1, ICAM-1)的表達(dá)來(lái)消減 TNF-α介導(dǎo)的肺部炎癥,并減少小鼠BALF中肺血腫和白細(xì)胞(嗜酸性粒細(xì)胞及中性粒細(xì)胞)的數(shù)量。而且,EGCG能抑制 TNF-α誘導(dǎo)的氧化應(yīng)激、p47-phox易位、MAPKs活化、信號(hào)傳導(dǎo)及轉(zhuǎn)錄激活因子-3及轉(zhuǎn)錄激活因子-2磷酸化。EGCG也能減少TNFR1/TRAF2/Rac1/ p47-phox復(fù)合物的形成[40]。淋巴細(xì)胞減少會(huì)導(dǎo)致促炎性細(xì)胞因子產(chǎn)生,以綠茶飼喂肥胖大鼠模型,發(fā)現(xiàn)其促炎性細(xì)胞因子 IL-2、IL-6、IL-1β、TNF-α都有減少,并且減少Toll樣受體(TRL4)mRNA水平,表明綠茶處理能夠促使淋巴細(xì)胞形成抗炎性的小環(huán)境[41]。Marinovic M等[42]研究發(fā)現(xiàn)兒茶素的活動(dòng)無(wú)論是單獨(dú)使用還是與別的抗氧化劑組合使用,在人中性粒細(xì)胞中都能夠減少炎癥分子,包括抑制 TLR4、NF-κB及 iNOS蛋白的表達(dá),減少TNF-α,IL-1β及IL-6的遷移能力,抑制ROS、NO及過(guò)氧硝酸鹽的產(chǎn)生,所以,綠茶及 EGCG表現(xiàn)出的強(qiáng)大抗炎能力對(duì)COPD的預(yù)防及緩解是十分有效的。
這些研究成果說(shuō)明 CS影響細(xì)胞中蛋白激酶及磷酸酶的正常運(yùn)行,使蛋白質(zhì)被氧化或磷酸化,從而損傷細(xì)胞信號(hào)通路。通過(guò)綠茶及EGCG的攝入,能夠抑制氧化應(yīng)激,進(jìn)而修復(fù)受損的細(xì)胞信號(hào)通路、調(diào)節(jié)中介物的釋放,并且抑制CS誘導(dǎo)的持續(xù)性炎癥反應(yīng)。所以通過(guò)日常飲用綠茶或攝入 EGCG對(duì)COPD的發(fā)生、發(fā)展及惡化可以起到一定的預(yù)防及緩解作用。
國(guó)內(nèi)外關(guān)于綠茶及 EGCG對(duì) CS誘導(dǎo)COPD的研究,無(wú)論是在動(dòng)物學(xué)實(shí)驗(yàn)還是人體臨床實(shí)驗(yàn)中,都取得了可喜進(jìn)展。通過(guò)已有的研究我們分析總結(jié)發(fā)現(xiàn),吸煙誘導(dǎo)的氧化應(yīng)激、炎癥反應(yīng)及蛋白酶/抗蛋白酶系統(tǒng)失衡,導(dǎo)致 COPD發(fā)生,通過(guò)飲用綠茶或進(jìn)行適當(dāng) EGCG的攝入對(duì)其起到預(yù)防及緩解的效果(圖3)。但當(dāng)前EGCG的應(yīng)用遠(yuǎn)沒(méi)有維生素廣泛,關(guān)于 EGCG的一些作用機(jī)制也尚不明確。如何提高人體對(duì) EGCG的生物利用率也是一個(gè)亟待解決的問(wèn)題,EGCG是否能和其它的抗氧化劑聯(lián)合使用從而發(fā)揮更好的效果?這需要進(jìn)一步深入研究。在不遠(yuǎn)的將來(lái),EGCG或?qū)⒊蔀楹推渌行е委?COPD一樣的抗氧化保健藥物,可開(kāi)發(fā)成有效治療COPD的生物制劑。
圖3 EGCG預(yù)防及緩解CS誘導(dǎo)COPD的機(jī)制分析Fig. 3 The mechanism of EGCG for the prevention and mitigation of COPD induced by CS
[1] Colin D Mathers, Dejan Loncar. Projections of global mortality and burden of disease from 2002 to 2030 [J]. PLoS Med, 2006, 3(11): 2011-2030. doi: org/10.1371/journal.pmed. 0030442.
[2] UGENSKIENE R, SANAK M, SAKALAUSKAS R, et al.Genetic polymorphisms in chronic obstructive pulmonarydisease [J]. Medicina (Kaunas, Lithuania), 2005, 41(1):17-22.
[3] KRAUSS-ETSCHMANN S, MEYER K F, DEHMEL S, et al.Inter- and transgenerational epigenetic inheritance: evidence in asthma and COPD? [J]. Clinical Epigenetics, 2015, 7: 53.
[4] LANIADO-LABOR N R. Smoking and chronic obstructive pulmonary disease (COPD). Parallel epidemics of the 21st century [J]. International Journal of Environmental Research and Public Health, 2009, 6(1): 209-224.
[5] Shaddick Gavin, Toledano Mireille B, Ward Helen. Oxford handbook of epidemiology for clinicians [M]. New York:Oxford University Press, 2012, 289-290.
[6] SHARMA A. COPD in primary care [M]. UK: Radcliff Publishing, 2010
[7] RENNARD S. Clinical management of chronic obstructive pulmonary disease [M]. 2nd. Boca Raton (FL): CRC Press/Taylor & Francis, 2007
[8] HAKIM I A, CHOW H H, HARRIS R B. Green tea consumption is associated with decreased DNA damage among GSTM1-positive smokers regardless of their hOGG1 genotype [J]. The Journal of Nutrition, 2008, 138(8):1567S-1571S.
[9] 張俊敬, 羅云峰, 顏景奇, 等. 咖啡和綠茶的抗氧化活性研究[J]. 生物物理學(xué)報(bào), 2008, 24(6): 435-444.
[10] SAIWICHAI T, SANGALANGKARN V, KAWAHARA K, et al. Green tea extract supplement inhibition of HMGB1 release in rats exposed to cigarette smoke [J]. The Southeast Asian Journal of Tropical Medicine and Public Health, 2010,41(1): 250-258.
[11] LI Q, ZHAO H, ZHAO M, et al. Chronic green tea catechins administration prevents oxidative stress-related brain aging in C57BL/6J mice [J]. Brain Research, 2010, 1353: 28-35.
[12] 顧成波, 袁肖寒, 付玉杰, 等. 綠茶 EGCG防癌作用的分子靶點(diǎn)[J]. 茶葉科學(xué), 2010, 30(6): 414-422.
[13] CHAN K H, CHAN S C, YEUNG S C, et al. Inhibitory effect of Chinese green tea on cigarette smoke-induced up-regulation of airway neutrophil elastase and matrix metalloproteinase-12 via antioxidant activity [J]. Free Radical Research, 2012, 46(9): 1123-1129.
[14] HESSIEN M, EL-GENDY S, DONIA T, et al. Growth inhibition of human non-small lung cancer cells h460 by green tea and ginger polyphenols [J]. Anti-cancer Agents in Medicinal Chemistry, 2012, 12(4): 383-390.
[15] KUMAR M, SHARMA V L, SEHGAL A, et al. Protective effects of green and white tea against benzo(a)pyrene induced oxidative stress and DNA damage in murine model[J]. Nutrition and Cancer, 2012, 64(2): 300-306.
[16] LIN I H, HO M L, CHEN H Y, et al. Smoking, green tea consumption, genetic polymorphisms in the insulin-like growth factors and lung cancer risk [J]. PloS One, 2012, 7(2):e30951.
[17] 王婧, 陳信義, 侯麗, 等. 茶多酚對(duì)小鼠 Lewis肺癌移植瘤中 NF-κB、COX-2、Survivin表達(dá)的影響[J]. 中國(guó)肺癌雜志, 2012, 15(5): 271-276.
[18] AL-AWAIDA W, AKASH M, ABURUBAIHA Z, et al.Chinese green tea consumption reduces oxidative stress,inflammation and tissues damage in smoke exposed rats [J].Iranian Journal of Basic Medical Sciences, 2014, 17(10):740-746.
[19] 衣衛(wèi)杰, 謝筱, 卜勇軍, 等. 綠茶多酚可能通過(guò)促進(jìn)自噬發(fā)揮腎臟保護(hù)作用[J]. 營(yíng)養(yǎng)學(xué)報(bào), 2016, 38(5): 481-485.
[20] TABAK C, ARTS I C, SMIT H A, et al. Chronic obstructive pulmonary disease and intake of catechins, flavonols, and flavones: the morgen study [J]. American Journal of Respiratory and Critical Care Medicine, 2001, 164(1):61-64.
[21] VESTBO J, HURD S S, AGUSTI A G, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary[J]. American Journal of Respiratory and Critical Care Medicine, 2013, 187(4): 347-365.
[22] CAN U, YERLIKAYA F H, YOSUNKAYA S. Role of oxidative stress and serum lipid levels in stable chronic obstructive pulmonary disease [J]. Journal of the Chinese Medical Association: JCMA, 2015, 78(12): 702-708.
[23] DOMEJ W, OETTL K, RENNER W. Oxidative stress and free radicals in COPD—implications and relevance for treatment [J]. International Journal of Chronic Obstructive Pulmonary Disease, 2014, 9: 1207-1224.
[24] BISWAS S, HWANG J W, KIRKHAM P A, et al.Pharmacological and dietary antioxidant therapies for chronic obstructive pulmonary disease [J]. Current Medicinal Chemistry, 2013, 20(12): 1496-1530.
[25] SHANMUGAM T, SELVARAJ M, POOMALAI S.Epigallocatechin gallate potentially abrogates fluoride induced lung oxidative stress, inflammation via Nrf2/Keap1 signaling pathway in rats: An in-vivo and in-silico study [J].International Immunopharmacology, 2016, 39: 128-139.
[26] SHI J, DENG H P, PAN H C, et al.Epigallocatechin-3-gallate attenuates microcystin-LRinduced oxidative stress and inflammation in human umbilical vein endothelial cells [J]. Chemosphere, 2017, 168:25-31.
[27] HOLZER N, BRAUN K F, EHNERT S, et al. Green tea protects human osteoblasts from cigarette smoke-induced injury: possible clinical implication [J]. Langenbeck's Archives of Surgery, 2012, 397(3): 467-474.
[28] CHAN K H, HO S P, YEUNG S C, et al. Chinese green tea ameliorates lung injury in cigarette smoke-exposed rats [J].Respiratory Medicine, 2009, 103(11): 1746-1754.
[29] 卿春華, 陳平, 向旭東. 茶多酚對(duì)低劑量煙草懸凝物誘導(dǎo)人支氣管上皮細(xì)胞氧化損傷及凋亡的影響[J]. 中南大學(xué)學(xué)報(bào): 醫(yī)學(xué)版, 2010, 35(2): 123-128.
[30] 顧其華, 胡成平, 陳瓊, 等. 綠茶對(duì)苯并芘誘發(fā)大鼠肺癌的預(yù)防及其機(jī)制初探[J]. 中國(guó)肺癌雜志, 2008, 11(4):519-523.
[31] MARCH T H, WILDER J A, ESPARZA D C, et al.Modulators of cigarette smoke-induced pulmonary emphysema in A/J mice [J]. Toxicological Sciences: An Official Journal of the Society of Toxicology, 2006, 92(2):545-559.
[32] XIAOKAITI Y, WU H, CHEN Y, et al. EGCG reverses human neutrophil elastase-induced migration in A549 cells by directly binding to HNE and by regulating alpha1-AT [J].Scientific Reports, 2015, 5: 11494.
[33] CHEN X, LI W, WANG H. More tea for septic patients?--Green tea may reduce endotoxin-induced release of high mobility group box 1 and other pro-inflammatory cytokines [J]. Medical Hypotheses, 2006, 66(3): 660-663.
[34] LI W, ZHU S, LI J, et al. EGCG stimulates autophagy and reduces cytoplasmic HMGB1 levels in endotoxin-stimulated macrophages [J]. Biochemical Pharmacology, 2011, 81(9):1152-1163.
[35] PAL S, BHATTACHARJEE A, ALI A, et al. Chronic inflammation and cancer: potential chemoprevention through nuclear factor kappa B and p53 mutual antagonism [J]. J Inflamm-Lond, 2014, 11: 23
[36] CHEN L, MO H, ZHAO L, et al. Therapeutic properties of green tea against environmental insults [J]. The Journal of Nutritional Biochemistry, 2017, 40: 1-13.
[37] SYED D N, AFAQ F, KWEON M H, et al. Green tea polyphenol EGCG suppresses cigarette smoke condensate-induced NF-kappaB activation in normal human bronchial epithelial cells [J]. Oncogene, 2007, 26(5):673-682.
[38] KHOI P N, PARK J S, KIM J H, et al.(-)-Epigallocatechin-3-gallate blocks nicotine-induced matrix metalloproteinase-9 expression and invasiveness via suppression of NF-kappaB and AP-1 in endothelial cells [J].International Journal of Oncology, 2013, 43(3): 868-876.
[39] OYAMA J-I, MAEDA T, SASAKI M, et al. Green tea catechins improve human forearm vascular function and have potent anti-inflammatory and anti-apoptotic effects in smokers [J]. Internal Medicine, 2010, 49(23): 2553-2559.
[40] LEE I T, LIN C C, LEE C Y, et al. Protective effects of(-)-epigallocatechin-3-gallate against TNF-alpha-induced lung inflammation via ROS-dependent ICAM-1 inhibition[J]. J Nutr Biochem, 2013, 24(1): 124-136.
[41] MOLINA N, BOLIN A, OTTON R. Green tea polyphenols change the profile of inflammatory cytokine release from lymphocytes of obese and lean rats and protect against oxidative damage [J]. Int Immunopharmacol, 2015, 28(2):985-996.
[42] MARINOVIC M, MORANDI A, OTTON R. Green tea catechins alone or in combination alter functional parameters of human neutrophils via suppressing the activation of TLR-4/NFκB p65 signal pathway [J]. Toxicol In Vitro, 2015, 29(7): 1766-1778.
Research Progress of Green Tea and EGCG for the Prevention and Mitigation of Chronic Obstructive Pulmonary Disease Caused by Cigarette Smoke
HUANG Xiangxiang, YANG Zhe, YU Lijun*
College of Horticulture and Landscape, Hunan Agricultural University, National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Key Laboratory of Tea Science of Ministry of Education, Collaborative Innovation Center of Utilization of Functional Ingredients from Botanicals, Changsha 410128, China
Chronic obstructive pulmonary disease (COPD) is one of the most common diseases induced by cigarette smoking. Cigarette smoke-induced oxidative stress, inflammation response, proteases and anti-proteases imbalance are intimately associated with the occurrence and exacerbation of COPD. Green tea consumption and EGCG oral administration can scavenge reactive oxygen species and free radicals in the human body, and inhibit a series of respiratory diseases caused by reactive oxygen species and free radicals. In this article, the research advance of the effects of green tea and EGCG on COPD for the past 10 years was reviewed in the purpose of exploring the mechanism and improving public knowledge of the preventing effects of green tea and EGCG on COPD.
cigarette smoke, oxidative stress, COPD, green tea, EGCG
TS272.5+1;Q946.84+1
A
1000-369X(2017)04-332-07
2017-03-29
2017-04-21
國(guó)家茶葉產(chǎn)業(yè)技術(shù)體系項(xiàng)目(CARS-23-11B)、湖南省植物功能成分利用協(xié)同創(chuàng)新項(xiàng)目(HNCR-2014003)
黃翔翔,男,碩士研究生,主要從事茶及其關(guān)鍵功能成分的應(yīng)用開(kāi)發(fā)利用研究。*通訊作者:yulijun_tea@qq.com