• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Models and detection of spontaneous recurrent seizures in laboratory rodents

    2017-08-24 07:50:10BinGuKatherineDalton
    Zoological Research 2017年4期

    Bin Gu, Katherine A. Dalton

    ?

    Models and detection of spontaneous recurrent seizures in laboratory rodents

    Bin Gu1,*, Katherine A. Dalton2

    1Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA2Psychology & Neuroscience Program, University of North Carolina, Chapel Hill, NC 27599, USA

    Epilepsy, characterized by spontaneous recurrent seizures (SRS), is a serious and common neurological disorder afflicting an estimated 1% of the population worldwide. Animal experiments, especially those utilizing small laboratory rodents, remain essential to understanding the fundamental mechanisms underlying epilepsy and to prevent, diagnose, and treat this disease. While much attention has been focused on epileptogenesis in animal models of epilepsy, there is little discussion on SRS, the hallmark of epilepsy. This is in part due to the technical difficulties of rigorous SRS detection. In this review, we comprehensively summarize both genetic and acquired models of SRS and discuss the methodology used to monitor and detect SRS in mice and rats.

    Spontaneous recurrent seizures; Animal model; Epilepsy

    INTRODUCTION

    Epilepsy, a chronic neurological disorder that is characterized by spontaneous recurrent seizures (SRS), is the fourth most common neurological disorder (Hirtz et al., 2007). Epilepsy was first described over 2500 years ago, yet there is still relatively little known about the underlying cause and currently no disease-modifying therapies exist. Current treatment options include antiepileptic drugs (AEDs), ketogenic diet, neurosurgical resection, and electrical stimulation of the central nervous system (CNS), which work for some but not all afflicted individuals (Laxer et al., 2014). Thus, there is an urgent unmet clinical need to discover treatments for the entire epileptic population. Most currently available AEDs were first identified using simple acute seizure models (i.e., pentylenetetrazol induced seizure and maximal electroshock seizure models) (L?scher, 2011). These acute models fail to mirror the spontaneous nature of seizures seen in epilepsy. This issue is hypothesized to contribute to the large percentage of epileptic patients (~30%) for whom AEDs fail to prevent or control SRS. Therefore, studying epilepsy using laboratory animals exhibiting SRS will provide an important tool to explore the underlying mechanism of epilepsy and develop novel therapeutic approaches.

    Epilepsy has been studied in a wide range of species of laboratory animals from simple organisms (e.g.,,and) to non-human primates. Along this spectrum,(rat) and(mouse) are the two most commonly used laboratory animals given their small size, docility, rapid breeding, and availability of advanced genetic tools. Importantly, rat and mouse models provide good construct, face, and predictive validities of epilepsy and demand relatively low cost and maintenance for chronic study of SRS. In this review, we discuss the methodology of SRS recording, and summarize both genetic and acquired models of SRSin rat and mouse, with particular emphasis on modeling and detection of SRS. Mechanism and treatment of epileptogenesis are addressed in other reviews (Goldberg & Coulter, 2013; L?scher et al., 2013; McNamara et al., 2006; Pitk?nen & Lukasiuk, 2011; Varvel et al., 2015).

    MONITORING AND DETECTION OF SRS IN RODENTS

    Chronic recording and detection of SRS in rodents is fundamental for preclinical research of epilepsy. Rigorous monitoring of SRS requires continuous time-locked video-EEG 24/7 in freely moving rodents. To capture biopotentials of the brain, most studies utilize single or multiple unipolar or bipolar recording electrodes which are intracranially placed. Skull or intracerebral electrode arrays are also used to cover broader brain regions. EEGs are acquired via either tethered or telemetry (wireless) recording systems in free-roaming, conscious rodents (Figure 1A). If a telemeter is used, it is either directly mounted on the head or tunneled and secured subcutaneously on the back or abdomen of rodents, providing the advantage of eliminating a wired interface between the animal and instrumentation. This minimizes the electrical noise and movement artifacts inherent in a tethered system. An inductive charging technique enables the telemeter to work 24/7 without the interruption of recharging the batteries.

    Figure 1 Schematic of video-EEG recording and EEG analyses

    A: Schematic of video-EEG recording of mouse using tethered (Left panel) or radio telemetry (right panel) system; B: Representative EEG trace (top panel) and spectrogram (bottom panel) of SRS and movement artifact.

    Given the rare, unpredictable nature and extremely diverse morphologies of SRS, identification of SRS is a technically challenging task. In most basic research settings, off-line visual inspection of EEG is performed by investigators to identify possible discrete epileptiform episodes, which are further confirmed by reviewing the time-locked video for behavioral correlates. Typical electrographic SRS features rhythmic neuronal firing characterized by increase of frequency and amplitude (especially in the gamma band) with clear initiation, propagation and termination (Figure 1B, left panel). In rodents, discrete epileptic discharges typically last seconds and are frequently followed by postictal suppression, which lasts minutes until normal electrographic activities resume. Electrographic SRS coincide with behavior phenotypes including rigid posture, facial automatisms, myoclonus, jumping and wild running, loss of postural control, tonic hindlimb extension, and death, which can be further semi-quantified using modified Racine’s scale (Ben-Ari, 1985; Racine, 1972). Spontaneous absence seizures characterized by spike-wave discharges (SWD) and behavioral arrest are also frequently observed in some models.

    To achieve successful SRS monitoring and detection, the following factors also need to be considered: (1) depending on models, SRS are relatively rare and tend to cluster. The seizure-free latent or interictal period may last days or even weeks before first or subsequent SRS emerge. Therefore, long-term (weeks to months) recording is required to achieve meaningful interpretation; (2) in most studies, brain areas covered by electrodes are limited. Electrographic seizures may occur out of the recording site, and in the absence of overt behavior change; (3) rodents are commonly singly housed during monitoring to minimize damage of recording device and facilitate video analysis. How social isolation affects SRS needs to be evaluated; (4) to visualize animal behavior during dark cycles, in some studies, the recording area is illuminated, thereby disrupting the normal light/dark cycle of monitored animals. Infrared light and imaging devices are recommended for behavior monitoring during dark cycle if circadian rhythm is considered (Cho, 2012; Hofstra & De Weerd, 2009); (5) SRS automatic detection algorithm is available, but manual validation is strongly recommended.

    SRS IN RODENT MODELS OF EPILEPSY

    SRS in genetic models of epilepsy

    Approximately 40% of epilepsies are idiopathic. Genetics play a significant role in the development, maintenance, and difficulty of treatingepilepsy. A growing number of epilepsy-related single gene mutations have been identified. Animals possessing analogous genetic manipulations (engineered or spontaneous) have proven useful in the search for the possible treatment for idiopathic epilepsy (Table 1).

    Ion channel genes

    Ion channels control the electrical transduction of cells, thereby playing a pivotal role in regulating neuronal excitability. Most epilepsy-related genes encode proteins composing voltage- or ligand-gated ion channels. Below we summarize genetic models of epilepsy that result from mutations in various types of ion channels.

    Of the many ion channels, a number of disruptions in genes encoding voltage-gated sodium channels have been described in multiple human epilepsies, including genetic epilepsy with febrile seizures plus (GEFS+) and Dravet syndrome. Disruptions of genes encoding either α (SCN1A, SCN2A and SCN8A) or β (SCN1B) subunits of voltage-gated sodium channels are sufficient to trigger SRS in rodents (Chen et al., 2004, 2007; Dutton et al., 2013; Kearney et al., 2001; Martin et al., 2010; Ogiwara et al., 2007; Papale et al., 2009; Wagnon et al., 2015; Yu et al., 2006). In addition, two modifier loci (and) and multiple candidate modifier genes that influence theScn2aepilepsy phenotype have also been identified and refined (Hawkins & Kearney, 2012).

    Table 1 SRS in transgenic models of epilepsy

    Continued

    Gene ModificationLatency Frequency and features of SRSReferences Shank3Shank3OEN/AHyperexcitability discharges accompanied by EEG SRSHan et al., 2013 CNTNAP2CNTNAP2-/-6 moSRS with generalized interictal spike dischargesPe?agarikano et al., 2011 Epm2AEpm2A-/-<9 mo80% exhibited myoclonic SRS, more frequent during dark cycle Ganesh et al., 2002 Celf4Celf4Ff/Ff or Celf4Ff/+3 moRecurrent tonic-clonic seizures or absence seizures*Yang et al., 2007 Map2k1caMEK1 flox/flox::Nestin-Cre6–8 wkLifetime behavioral arrest and forelimb myoclonus (6.2 SRS/7 hr) Nateri et al., 2007

    *: model or strain dependent phenotype; ECS: editing site complementary sequence; OE: overexpression; SRS: spontaneous recurrent seizures; SUDEP: sudden unexpected death in epilepsy; SWD: spike-wave discharges.

    Potassium channels also play an important role in action potentials by helping to return the neuron back to its resting membrane potential.andencode a pair of proteins (Kv1.1 and 1.2) which are members of the voltage-dependent potassium channel subfamily A.orknockout mice display frequent, severe SRS throughout their lives. In addition, SRS caused death in 50% oforknockout mice beginning from three weeks of age (Brew et al., 2007; Douglas et al., 2007; Smart et al., 1998). Mutations ofand, whichencode subfamily Q of voltage-gated potassium channels have been found in patients with benign familial neonatal convulsions (BFNC).ormutant mice exhibit early onset generalized tonic-clonic SRS concurrent with M-current defects (Singh et al., 2008). Mice carryingScn2atransgene together withmutations (or V182M) result in an exacerbated epileptic phenotype (Kearney et al., 2006). A gain-of-function mutation of genewhich encodes calcium-activated potassium channel accessory β4 subunit also led to SRS (Brenner et al., 2005).

    Calcium channels are important for neuronal excitability and intracellular signaling. Activation of T-type calcium channels evoke burst-firing in the thalamocortical circuitry that gives rise to SWD associated with absence epilepsy (Chen et al., 2014; Cheong & Shin, 2013). α1G T-type calcium currents play a critical role in the genesis of spontaneous absence seizures resulting from hypofunctioning P/Q-type channels (α1) (Jun et al., 1999; Song et al., 2004). These attacks have also been shown to reflect absence seizures in(),(tg) and() mice, which have spontaneously occurring mutant (Fletcher et al., 1996; Jun et al., 1999; Zwingman et al., 2001). In addition to pore-forming α1 subunit, loss of function mutations in ancillary subunits of calcium channels, including naturally occurring mutations in the β subunit gene) mouse, loss of α2δ2 subunit protein inmouse (anddu) and dysfunctional calcium channel γ2 subunits in() and() mice also result in SRS (Burgess et al., 1997; Zamponi et al., 2010).

    In addition to voltage-gated ion channels, mutations of ligand-gated ion channel genes also result in SRS in mice. Heterozygous mice carrying an editing-deficient GRIA2 subunit allele express AMPA receptors with increased calcium permeability and develop SRS (Brusa et al., 1995). Fast ionotropic nicotinic acetylcholine receptor (nAChR) subunit genes, α2 (), α4 () and β2 (), have been affiliated with autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) when mutated. Mice withmutations (S252For+L264) exhibited frequent SRS with diverse seizure semiology ranging from behavioral arrest to convulsive jerking (Klaassen et al., 2006). GABAAγ2-subunites have five known seizure associated mutations. Of these mutations, the R43Q mutation is of particular interest because it is related to childhood absence epilepsy and febrile seizures (Wallace et al., 2001). Both heterozygousknock-out and R43Q knock-in mice exhibited spontaneous absence seizures accompanied by SWD (Reid et al., 2013; Tan et al., 2007).

    Non-ion channel genes

    SRS are also related to interruptions of non-ion channel genes that are involved in diverse neurological disorders including tuberous sclerosis complex (TSC), Alzheimer’s disease(AD) and autism. Notably, SRS can arise as a comorbid phenotype and/or secondary consequence of gene modification from germline.

    Epilepsy is the most common presenting symptom in TSC. Up to 80%–90% of individuals with TSC will develop epilepsy during their lifetime. Two genes,and, encoding the proteins hamartin and tuberin, respectively, have been identified as causing TSC. Both genes, when conditionally inactivated in mice, have been shown to contribute to epileptic phenotype, among whichled to more severe and frequent seizures (Zeng et al., 2011).

    Prevalence of epilepsy in Alzheimer’s disease is significantly higher than in age-matched control populations. Manipulation of AD related genes (e.g.,and) can also cause SRS in mice. One study showed thatknockout mice were predisposed to both spontaneous and chemically induced seizures (Hitt et al., 2010). Autosomal-dominant mutations in amyloid precursor protein (APP) cause hereditary early-onset familial Alzheimer's disease (FAD). Transgenic mice overexpressing a mutant form of human APP (hAPP) have spontaneous nonconvulsive seizure activity in cortical and hippocampal networks (Palop et al., 2007). It was shown that 65% of mice carrying human APP with Swedish double mutation () cointegrated with human preselinin-1 with exon 9 deletion () exhibited unprovoked seizures (Minkeviciene et al., 2009; Um et al., 2012).

    Autism spectrum disorder (ASD) related genes are also extensively studied given the fact that epilepsy is common in individuals with autistic-like behavior resulting from particular genetic predisposition. A null mutation of maternalgene (exon 1–2 or exon 15 and 16) results in core pathologies of Angelman syndrome including spontaneous EEG abnormality in mice (Jiang et al., 1998b; Miura et al., 2002). Spontaneous behavioral seizures were witnessed in mice with 1.6Mb large deletion (to) and loss ofselectively from the GABAergic neurons (Jiang et al., 2010; Judson et al., 2016). Global or conditional manipulation ofgene in Rett syndrome model mice is also sufficient to elicit SRS, including spontaneous epileptiform discharges (Chao et al., 2010; D'Cruz et al., 2010; Shahbazian et al., 2002; Zhang et al., 2014). Mutations in the gene encoding SHANK3 and large duplications of the region spanning SHANK3 both cause ASD. Overexpression of SHANK3 in mice leads to SRS and maniac-like behavior (Han et al., 2013). Thegene which encodes a transmembrane protein that is essential in interactions between neurons and glia is strongly associated with ASD. Deletion ofleads to autistic-like behavior as well as SRS (Pe?agarikano et al., 2011).

    Along these lines, disruption of non-ion channel genes involved in many other disorders with epileptic manifestation also results in SRS in mice. Disruption of fibroblast growth factors 13 (FGF13) on the X chromosome is associated with GEFS+. Female mice in which oneallele was deleted exhibited SRS (Puranam et al., 2015). Leucin-rich, glioma inactivated 1 (LGI1) is a secreted protein linked to human autosomal dominant epilepsy with auditory features (ADEAF).deletion in mice results in early onset SRS and seizure-related death. Selective deletion of(Boillot et al., 2014; Chabrol et al., 2010). The genehas been indicated in an autosomal recessive disorder known as Lafora Disease. Deletion ofcan cause spontaneous myoclonic seizures with approximately 80% penetrance at the age of 9 months (Ganesh et al., 2002). Disruption of expression of doublecortin (Nosten-Bertrand et al., 2008), synapsin (Ketzef et al., 2011), CELF4 (Yang et al., 2007) or conditional expression of a constitutively active form of MAP/ERK kinases (Nateri et al., 2007) in the murine brain all led to SRS.

    Besides genetically modified mice, SRS are also found in rats and mice withmutations reported periodically in laboratories worldwide, like GAERS rat, WAG/Rij rat, lde/lde rat and,tg,mice (Noebels, 2006). Among these strains, GAERS rat and WAG/Rij rat are well validated genetic models of human absence epilepsy. Spontaneous absence seizures featuring SWD first appear at P30–P40 in GAERS rat, whereas they are observed at around P60–P80 in WAG/Rij rat. SWD in both strains are fully manifested with age and last throughout their lifetime (Coenen & van Luijtelaar, 2003; De Sarro et al., 2015; Marescaux et al., 1992). The progression of absence seizures with age in WAG/Rij and GAERS rats resembles genetically-determined epileptogenesis similar to post-brain insult epileptogenesis (Russo et al., 2016).

    SRS in acquired models of epilepsy

    It is estimated that up to 50% of all epilepsy cases are initiated by neurological insults also known as acquired epilepsy. To model acquired epilepsy in rodents, an episode of prolonged seizures, namely status epilepticus (SE), is commonly induced to trigger SRS (Table 2).

    Table 2 SRS in acquired models of epilepsy

    *: model or strain dependent phenotype; SE: status epilepticus; TBI: traumatic brain injury; KA: Kainic acid;DSP-4: N-(2-Chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride; TLE: temporal lobe epilepsy; SRS: spontaneous recurrent seizures; BLA: basolateral amygdala; AB: angular bundle: CCI: controlled cortical impact; LFP: lateral fluid percussion.

    Post-SE models

    Kainic acid (KA, an ionotropic glutamate receptors agonist) and pilocarpine (a cholinergic muscarinic agonist) are two of the most commonly used chemicals to trigger SE (Ben-Ari, 1985; Ben-Ari et al., 1980; Turski et al., 1987, 1989). Systemic or intracerebral administration of KA causes SE followed by the emergence of SRS with remarkable histopathological correlation of hippocampal sclerosis in both rats and mice (Lévesque & Avoli, 2013). Compared to KA, pilocarpine-induced SE (in the presence or absence of lithium) results in higher mortality and wider spread brain damage in general along with SRS. The latency to onset of SRS and frequency of SRS varies depending on dose and administration route of chemicals as well as strains of animal. Convulsive SE can also be induced by microinjection of bicuculine into the anterior piriform cortex after a lesion of the locus coeruleus, which results in SRS in rat (Giorgi et al., 2006). In addition to chemically-induced convulsive SE, convulsive or non-convulsive SE can be induced by sustained electrical stimulation in the angular bundle or the basolateral amygdala of a rat, and can evoke SRS along with hippocampal sclerosis (Brandt et al., 2003; Gorter et al., 2001; Norwood et al., 2010). SE that occurred during early developmental stage can also cause SRS in adults. Unilateral injection of tetanus toxin into the hippocampus of P10 rats produces recurrent seizures for one week followed by epileptiform burst discharges (electrographic seizures on rare occasions) in adults (Jiang et al., 1998a; Lee et al., 1995). Both longitudinal and retrospective clinical studies reveal early life febrile SE causes temporal lobe epilepsy (TLE) in adults. Similarly, prolonged febrile seizures induced by hyperthermia in P10 rats render 35.2% of them epileptic in adulthood (Dubé et al., 2006).

    Brain insults

    SRS can also develop following direct brain insults such as traumatic brain injury (TBI), stroke and viral infection in both human and rodents in the absence of SE. TBI caused by controlled cortical impact (CCI) or lateral fluid-percussion injury (FPI) is able to elicit SRS in rats and mice (Bolkvadze & Pitk?nen, 2012; D'ambrosio et al., 2004; Hunt et al., 2009; Kharatishvili et al., 2006). Rats that experienced global hypoxia at P10 or hypoxic-ischemic insult at P7 developed progressive SRS in adulthood (Kadam et al., 2010; Rakhade et al., 2011; Williams et al., 2004). Rats exposed to methylazoxymethanol in utero exhibited altered GluRs expression and developed sporadic SRS in adulthood (Harrington et al., 2007). Viral encephalitis of the CNS causes severe brain damage and epilepsy. Libbey et al. described the first mouse model of viral-induced epilepsy after intracerebral infection with Theiler's murine encephalomyelitis virus, where the seizures were transient and remitted after 10 days post infection (Libbey & Fujinami, 2011; Libbey et al., 2008).

    Kindling models

    Kindling is the process in which a train of repeated subconvulsive or subthreshold stimuli (electrical, audiogenic or chemical) renders a na?ve animal more susceptible to subsequent stimuli. Kindling is a canonical model used for the study of epileptogenesis, yet it receives increasing criticism due to the lack of SRS. However, over-electrical kindling ultimately results in SRS (Kogure et al., 2000; McIntyre et al., 2002). Recent research revealed eight day consecutive flurothyl-kindling is sufficient to elicit SRS immediately after kindling, which remits weeks later (Kadiyala et al., 2016).

    CONCLUDING REMARKS

    Chronic rodent SRS recording is fundamental to preclinical study of epilepsy. A lack of standard methodology for SRS recording hampers the reproducibility of available models as well as the discovery of novel animal models of SRS. We recommend chronic 24/7 simultaneous video-EEG recording for rigorous study of SRS in rodents, and the recording period should vary from weeks to months depending on the model that is being used. Exclusive EEG recording often results in false positives because movement artifacts from grooming, drinking, and eating frequently generate epileptiform-like activity with rhythmic increases of frequency and amplitude (Figure 1B, right panel). Simultaneous analysis of behavior and EEG is necessary because exclusive video monitoring commonly fails to identify focal seizures or absence seizures since these lack overt behavioral manifestations.

    While there are many ways to model SRS in rodents, the researcher first needs to decide what type of epilepsy they want to most closely recapitulate. Idiopathic or acquired epilepsy? TLE or absence seizures? Then the researcher needs to weigh the risks and benefits of each model that is chosen by studying the mortality and success rates and taking into consideration the developmental stage, length of latent period, frequency of SRS, electrographic and behavioral features of SRS,etc. Successful implication of rodent model of SRS will facilitate our knowledge of epilepsy and finally lead to discovery of potential biomarkers and therapies.

    ACKNOWLEDGEMENTS

    We thank Kamesh Krishnamurthy (Duke University, USA) for critical discussions and reading of the manuscript.

    Ben-Ari Y, Tremblay E, Ottersen OP. 1980. Injections of kainic acid into the amygdaloid complex of the rat: an electrographic, clinical and histological study in relation to the pathology of epilepsy.5(3): 515-528.

    Ben-Ari Y. 1985. Limbic seizure and brain damage produced by kainic acid: mechanisms and relevance to human temporal lobe epilepsy.14(2): 375-403.

    Boillot M, Huneau C, Marsan E, Lehongre K, Navarro V, Ishida S, Dufresnois B, Ozkaynak E, Garrigue J, Miles R, Martin B, Leguern E, Anderson MP, Baulac S. 2014. Glutamatergic neuron-targeted loss ofepilepsy gene results in seizures.137: 2984-2996.

    Bolkvadze T, Pitk?nen A. 2012. Development of post-traumatic epilepsy after controlled cortical impact and lateral fluid-percussion-induced brain injury in the mouse.29(5): 789-812.

    Brandt C, Glien M, Potschka H, Volk H, L?scher W. 2003. Epileptogenesis and neuropathology after different types of status epilepticus induced by prolonged electrical stimulation of the basolateral amygdala in rats.55(1-2): 83-103.

    Brenner R, Chen QH, Vilaythong A, Toney GM, Noebels JL, Aldrich RW. 2005. BK channel β4 subunit reduces dentate gyrus excitability and protects against temporal lobe seizures.8(12): 1752-1759.

    Brew HM, Gittelman JX, Silverstein RS, Hanks TD, Demas VP, Robinson LC, Robbins CA, McKee-Johnson J, Chiu SY, Messing A, Tempel BL. 2007. Seizures and reduced life span in mice lacking the potassium channel subunit Kv1.2, but hypoexcitability and enlarged Kv1 currents in auditory neurons.98(3): 1501-1525.

    Brusa R, Zimmermann F, Koh DS, Feldmeyer D, Gass P, Seeburg PH, Sprengel R. 1995. Early-onset epilepsy and postnatal lethality associated with an editing-deficient-allele in mice.270(5242): 1677-1680.

    Burgess DL, Jones JM, Meisler MH, Noebels JL. 1997. Mutation of the Ca2+channel β subunit geneis associated with ataxia and seizures in the lethargic () mouse.88(3): 385-392.

    Chabrol E, Navarro V, Provenzano G, Cohen I, Dinocourt C, Rivaud-Péchoux S, Fricker D, Baulac M, Miles R, LeGuern E, Baulac S. 2010. Electroclinical characterization of epileptic seizures in leucine-rich, glioma-inactivated 1-deficient mice.133(9): 2749-2762.

    Chao HT, Chen HM, Samaco RC, Xue MS, Chahrour M, Yoo J, Neul JL, Gong S, Lu HC, Heintz N, Ekker M, Rubenstein JLR, Noebels JL, Rosenmund C, Zoghbi HY. 2010. Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes.468(7321): 263-269.

    Chen CL, Westenbroek RE, Xu XR, Edwards CA, Sorenson DR, Chen Y, McEwen DP, O'malley HA, Bharucha V, Meadows LS, Knudsen GA, Vilaythong A, Noebels JL, Saunders TL, Scheuer T, Shrager P, Catterall WA, Isom LL. 2004. Mice lacking sodium channel1 subunits display defects in neuronal excitability, sodium channel expression, and nodal architecture.24(16): 4030-4042.

    Chen CL, Dickendesher TL, Oyama F, Miyazaki H, Nukina N, Isom LL. 2007. Floxed allele for conditional inactivation of the voltage-gated sodium channel β1 subunit.45(9): 547-553.

    Chen YC, Parker WD, Wang KL. 2014. The role of T-type calcium channel genes in absence seizures.5: 45.

    Cheong E, Shin HS. 2013. T-type Ca2+channels in absence epilepsy.1828(7): 1560-1571.

    Cho CH. 2012. Molecular mechanism of circadian rhythmicity of seizures in temporal lobe epilepsy.6: 55.

    Coenen AM, van Luijtelaar ELJM. 2003. Genetic animal models for absence epilepsy: a review of the WAG/Rij strain of rats.33(6): 635-655.

    D'ambrosio R, Fairbanks JP, Fender JS, Born DE, Doyle DL, Miller JW. 2004. Post-traumatic epilepsy following fluid percussion injury in the rat.127: 304-314.

    D'Cruz JA, Wu C, Zahid T, El-Hayek Y, Zhang L, Eubanks JH. 2010. Alterations of cortical and hippocampal EEG activity in MeCP2-deficient mice.38(1): 8-16.

    De Sarro G, Russo E, Citraro R, Meldrum BS. 2015. Genetically epilepsy-prone rats (GEPRs) and DBA/2 mice: two animal models of audiogenic reflex epilepsy for the evaluation of new generation AEDs.2015, doi: 10.1016/j.yebeh.2015.06.030.

    Douglas CL, Vyazovskiy V, Southard T, Chiu SY, Messing A, Tononi G, Cirelli C. 2007. Sleep inknockout mice.5: 42.

    Dubé C, Richichi C, Bender RA, Chung G, Litt B, Baram TZ. 2006. Temporal lobe epilepsy after experimental prolonged febrile seizures: prospective analysis.129: 911-922.

    Dutton SB, Makinson CD, Papale LA, Shankar A, Balakrishnan B, Nakazawa K, Escayg A. 2013. Preferential inactivation ofin parvalbumin interneurons increases seizure susceptibility.49: 211-220.

    Fletcher CF, Lutz CM, O'Sullivan TN, Shaughnessy JD Jr, Hawkes R, Frankel WN, Copeland NG, Jenkins NA. 1996. Absence epilepsy in tottering mutant mice is associated with calcium channel defects.87(4): 607-617.

    Ganesh S, Delgado-Escueta AV, Sakamoto T, Avila MR, Machado-Salas J, Hoshii Y, Akagi T, Gomi H, Suzuki T, Amano K, Agarwala KL, Hasegawa Y, Bai DS, Ishihara T, Hashikawa T, Itohara S, Cornford EM, Niki H, Yamakawa K. 2002. Targeted disruption of thegene causes formation of Lafora inclusion bodies, neurodegeneration, ataxia, myoclonus epilepsy and impaired behavioral response in mice.11(11): 1251-1262.

    Giorgi FS, Mauceli G, Blandini F, Ruggieri S, Paparelli A, Murri L, Fornai F. 2006. Locus coeruleus and neuronal plasticity in a model of focal limbic epilepsy.47 Suppl 5: 21-25.

    Goldberg EM, Coulter DA. 2013. Mechanisms of epileptogenesis: a convergence on neural circuit dysfunction.14(5): 337-349.

    Gorter JA, Van Vliet EA, Aronica E, Da Silva FHL. 2001. Progression of spontaneous seizures after status epilepticus is associated with mossy fibre sprouting and extensive bilateral loss of hilar parvalbumin and somatostatin-immunoreactive neurons.13(4): 657-669.

    Han K, Holder JL Jr, Schaaf CP, Lu H, Chen HM, Kang H, Tang JR, Wu ZY, Hao S, Cheung SW, Yu P, Sun H, Breman AM, Patel A, Lu HC, Zoghbi HY. 2013.overexpression causes manic-like behaviour with unique pharmacogenetic properties.503(7474): 72-77.

    Harrington EP, M?ddel G, Najm IM, Baraban SC. 2007. Altered glutamate receptor-transporter expression and spontaneous seizures in rats exposed to methylazoxymethanol in utero.48(1): 158-168.

    Hawkins NA, Kearney JA. 2012. Confirmation of an epilepsy modifier locus on mouse chromosome 11 and candidate gene analysis by RNA-Seq.11(4): 452-460.

    Hirtz D, Thurman DJ, Gwinn-Hardy K, Mohamed M, Chaudhuri AR, Zalutsky R. 2007. How common are the "common" neurologic disorders?68(5): 326-337.

    Hitt BD, Jaramillo TC, Chetkovich DM, Vassar R. 2010. BACE1-/- mice exhibit seizure activity that does not correlate with sodium channel level or axonal localization.5: 31.

    Hofstra WA, de Weerd AW. 2009. The circadian rhythm and its interaction with human epilepsy: a review of literature.13(6): 413-420.

    Hunt RF, Scheff SW, Smith BN. 2009. Posttraumatic epilepsy after controlled cortical impact injury in mice.215(2): 243-252.

    Jiang MH, Lee CL, Smith KL, Swann JW. 1998a. Spine loss and other persistent alterations of hippocampal pyramidal cell dendrites in a model of early-onset epilepsy.18(20): 8356-8368.

    Jiang YH, Armstrong D, Albrecht U, Atkins CM, Noebels JL, Eichele G, Sweatt JD, Beaud AL. 1998b. Mutation of the Angelman ubiquitin ligase in mice causes increased cytoplasmic p53 and deficits of contextual learning and long-term potentiation.21(4): 799-811.

    Jiang YH, Pan YZ, Zhu L, Landa L, Yoo J, Spencer C, Lorenzo I, Brilliant M, Noebels J, Beaud AL. 2010. Altered ultrasonic vocalization and impaired learning and memory in Angelman syndrome mouse model with a large maternal deletion fromto.5(8): e12278.

    Judson MC, Wallace ML, Sidorov MS, Burette AC, Gu B, van Woerden GM, King IF, Han JE, Zylka MJ, Elgersma Y, Weinberg RJ, Philpot BD. 2016. GABAergic neuron-specific loss ofcauses angelman syndrome-like EEG abnormalities and enhances seizure susceptibility.90(1): 56-69.

    Jun K, Piedras-Rentería ES, Smith SM, Wheeler DB, Lee SB, Lee TG, Chin H, Adams ME, Scheller RH, Tsien RW, Shin HS. 1999. Ablation of P/Q-type Ca2+channel currents, altered synaptic transmission, and progressive ataxia in mice lacking the α1A-subunit.96(26): 15245-15250.

    Kadam SD, White AM, Staley KJ, Dudek FE. 2010. Continuous electroencephalographic monitoring with radio-telemetry in a rat model of perinatal hypoxia-ischemia reveals progressive post-stroke epilepsy.30(1): 404-415.

    Kadiyala SB, Yannix JQ, Nalwalk JW, Papandrea D, Beyer BS, Herron BJ, Ferland RJ. 2016. Eight flurothyl-induced generalized seizures lead to the rapid evolution of spontaneous seizures in mice: a model of epileptogenesis with seizure remission.36(28): 7485-7496.

    Kearney JA, Plummer NW, Smith MR, Kapur J, Cummins TR, Waxman SG, Goldin AL, Meisler MH. 2001. A gain-of-function mutation in the sodium channel generesults in seizures and behavioral abnormalities.102(2): 307-317.

    Kearney JA, Yang Y, Beyer B, Bergren SK, Claes L, DeJonghe P, Frankel WN. 2006. Severe epilepsy resulting from genetic interaction betweenand.15(6): 1043-1048.

    Ketzef M, Kahn J, Weissberg I, Becker AJ, Friedman A, Gitler D. 2011. Compensatory network alterations upon onset of epilepsy in synapsin triple knock-out mice.189: 108-122.

    Kharatishvili I, Nissinen JP, Mcintosh TK, Pitk?nen A. 2006. A model of posttraumatic epilepsy induced by lateral fluid-percussion brain injury in rats.140(2): 685-697.

    Klaassen A, Glykys J, Maguire J, Labarca C, Mody I, Boulter J. 2006. Seizures and enhanced cortical GABAergic inhibition in two mouse models of human autosomal dominant nocturnal frontal lobe epilepsy.103(50): 19152-19157.

    Kogure S, Kitayama M, Matsuda Y. 2000. Simultaneous kindling of the bilateral hippocampi: an advanced model for epilepsy research.41(8): 929-932.

    Laxer KD, Trinka E, Hirsch LJ, Cendes F, Langfitt J, Delanty N, Resnick T, Benbadis SR. 2014. The consequences of refractory epilepsy and its treatment.37: 59-70.

    Lee CL, Hrachovy RA, Smith KL, Frost Jr JD, Swann JW. 1995. Tetanus toxin-induced seizures in infant rats and their effects on hippocampal excitability in adulthood.677(1): 97-109.

    Lévesque M, Avoli M. 2013. The kainic acid model of temporal lobe epilepsy.37(10): 2887-2899.

    Libbey JE, Kirkman NJ, Smith MCP, Tanaka T, Wilcox KS, White HS, Fujinami RS. 2008. Seizures following picornavirus infection.49(6): 1066-1074.

    Libbey JE, Fujinami RS. 2011. Neurotropic viral infections leading to epilepsy: focus on Theiler's murine encephalomyelitis virus.6(11): 1339-1350.

    L?scher W. 2011. Critical review of current animal models of seizures and epilepsy used in the discovery and development of new antiepileptic drugs.20(5): 359-368.

    L?scher W, Klitgaard H, Twyman RE, Schmidt D. 2013. New avenues for anti-epileptic drug discovery and development.12(10): 757-776.

    Marescaux C, Vergnes M, Depaulis A. 1992. Genetic absence epilepsy in rats from strasbourg-a review.35: 37-69.

    Martin MS, Dutt K, Papale LA, Dubé CM, Dutton SB, de Haan G, Shankar A, Tufik S, Meisler MH, Baram TZ, Goldin AL, Escayg A. 2010. Altered function of thevoltage-gated sodium channel leads to γ-aminobutyric acid-ergic (GABAergic) interneuron abnormalities.285(13): 9823-9834.

    McIntyre DC, Poulter MO, Gilby K. 2002. Kindling: some old and some new.50(1-2): 79-92.

    McNamara JO, Huang YZ, Leonard AS. 2006. Molecular signaling mechanisms underlying epileptogenesis.2006(356): re12.

    Minkeviciene R, Rheims S, Dobszay MB, Zilberter M, Hartikainen J, Fül?p L, Penke B, Zilberter Y, Harkany T, Pitk?nen A, Tanila H. 2009. Amyloid β-induced neuronal hyperexcitability triggers progressive epilepsy.29(11): 3453-3462.

    Miura K, Kishino T, Li E, Webber H, Dikkes P, Holmes GL, Wagstaff J. 2002. Neurobehavioral and electroencephalographic abnormalities inmaternal-deficient mice.9(2): 149-159.

    Nateri AS, Raivich G, Gebhardt C, Da Costa C, Naumann H, Vreugdenhil M, Makwana M, Brandner S, Adams RH, Jefferys JGR, Kann O, Behrens A. 2007. ERK activation causes epilepsy by stimulating NMDA receptor activity.26(23): 4891-4901.

    Noebels JL. 2006. CHAPTER 17-spontaneous epileptic mutations in the mouse A2-Pitk?nen, Asla. schwartzkroin PA and Moshé SL.: Models of Seizures and Epilepsy. Burlington: Academic Press, 223-232.

    Norwood BA, Bumanglag AV, Osculati F, Sbarbati A, Marzola P, Nicolato E, Fabene PF, Sloviter RS. 2010. Classic hippocampal sclerosis and hippocampal-onset epilepsy produced by a single "cryptic" episode of focal hippocampal excitation in awake rats.518(16): 3381-3407.

    Nosten-Bertrand M, Kappeler C, Dinocourt C, Denis C, Germain J, Tuy FPD, Verstraeten S, Alvarez C, Métin C, Chelly J, Giros B, Miles R, Depaulis A, Francis F. 2008. Epilepsy inknockout mice associated with discrete lamination defects and enhanced excitability in the hippocampus.3(6): e2473.

    Ogiwara I, Miyamoto H, Morita N, Atapour N, Mazaki E, Inoue I, Takeuchi T, Itohara S, Yanagawa Y, Obata K, Furuichi T, Hensch TK, Yamakawa K. 2007. Nav1.1 localizes to axons of parvalbumin-positive inhibitory interneurons: a circuit basis for epileptic seizures in mice carrying angene mutation.27(22): 5903-5914.

    Palop JJ, Chin J, Roberson ED, Wang J, Thwin MT, Bien-Ly N, Yoo J, Ho KO, Yu GQ, Kreitzer A, Finkbeiner S, Noebels JL, Mucke L. 2007. Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory hippocampal circuits in mouse models of Alzheimer's disease.55(5): 697-711.

    Papale LA, Beyer B, Jones JM, Sharkey LM, Tufik S, Epstein M, Letts VA, Meisler MH, Frankel WN, Escayg A. 2009. Heterozygous mutations of the voltage-gated sodium channelare associated with spike-wave discharges and absence epilepsy in mice.18(9): 1633-1641.

    Pe?agarikano O, Abrahams BS, Herman EI, Winden KD, Gdalyahu A, Dong HM, Sonnenblick LI, Gruver R, Almajano J, Bragin A, Golshani P, Trachtenberg JT, Peles E, Geschwind DH. 2011. Absence of CNTNAP2 leads to epilepsy, neuronal migration abnormalities, and core autism-related deficits.147(1): 235-246.

    Pitk?nen A, Lukasiuk K. 2011. Mechanisms of epileptogenesis and potential treatment targets.10(2): 173-186.

    Puranam RS, He XP, Yao LJ, Le T, Jang W, Rehder CW, Lewis DV, McNamara JO. 2015. Disruption ofcauses synaptic excitatory-inhibitory imbalance and genetic epilepsy and febrile seizures plus.35(23): 8866-8881.

    Racine RJ. 1972. Modification of seizure activity by electrical stimulation: II. Motor seizure.32(3): 281-294.

    Rakhade SN, Klein PM, Huynh T, Hilario-Gomez C, Kosaras B, Rotenberg A, Jensen FE. 2011. Development of later life spontaneous seizures in a rodent model of hypoxia-induced neonatal seizures.52(4): 753-765.

    Reid CA, Kim T, Phillips AM, Low J, Berkovic SF, Luscher B, Petrou S. 2013. Multiple molecular mechanisms for a single GABAAmutation in epilepsy.80(11): 1003-1008.

    Russo E, Citraro R, Constanti A, Leo A, Lüttjohann A, van Luijtelaar G, De Sarro G. 2016. Upholding WAG/Rij rats as a model of absence epileptogenesis: hidden mechanisms and a new theory on seizure development.71: 388-408.

    Shahbazian M, Young JI, Yuva-Paylor LA, Spencer CM, Antalffy BA, Noebels JL, Armstrong DL, Paylor R, Zoghbi HY. 2002. Mice with truncated MeCP2 recapitulate many Rett syndrome features and display hyperacetylation of histone H3.35(2): 243-254.

    Singh NA, Otto JF, Dahle EJ, Pappas C, Leslie JD, Vilaythong A, Noebels JL, White HS, Wilcox KS, Leppert MF. 2008. Mouse models of humanandmutations for benign familial neonatal convulsions show seizures and neuronal plasticity without synaptic reorganization.586(14): 3405-3423.

    Smart SL, Lopantsev V, Zhang CL, Robbins CA, Wang H, Chiu SY, Schwartzkroin PA, Messing A, Tempel BL. 1998. Deletion of the KV1.1 potassium channel causes epilepsy in mice.20(4): 809-819.

    Song I, Kim D, Choi S, Sun M, Kim Y, Shin HS. 2004. Role of the α1G T-type calcium channel in spontaneous absence seizures in mutant mice.24(22): 5249-5257.

    Tan HO, Reid CA, Single FN, Davies PJ, Chiu C, Murphy S, Clarke AL, Dibbens L, Krestel H, Mulley JC, Jones MV, Seeburg PH, Sakmann B, Berkovic SF, Sprengel R, Petrou S. 2007. Reduced cortical inhibition in a mouse model of familial childhood absence epilepsy.104(44): 17536-17541.

    Turski L, Cavalheiro EA, Czuczwar SJ, Turski WA, Kleinrok Z. 1987. The seizures induced by pilocarpine: behavioral, electroencephalographic and neuropathological studies in rodents.39(5): 545-555.

    Turski L, Ikonomidou C, Turski WA, Bortolotto ZA, Cavalheiro EA. 1989. Review: cholinergic mechanisms and epileptogenesis. The seizures induced by pilocarpine: a novel experimental model of intractable epilepsy.3(2): 154-171.

    Um JW, Nygaard HB, Heiss JK, Kostylev MA, Stagi M, Vortmeyer A, Wisniewski T, Gunther EC, Strittmatter SM. 2012. Alzheimer amyloid-β oligomer bound to postsynaptic prion protein activates fyn to impair neurons.15(9): 1227-1235.

    Varvel NH, Jiang JX, Dingledine R. 2015. Candidate drug targets for prevention or modification of epilepsy., 55: 229-247.

    Wagnon JL, Korn MJ, Parent R, Tarpey TA, Jones JM, Hammer MF, Murphy GG, Parent JM, Meisler MH. 2015. Convulsive seizures and SUDEP in a mouse model ofepileptic encephalopathy.24(2): 506-515.

    Wallace RH, Marini C, Petrou S, Harkin LA, Bowser DN, Panchal RG, Williams DA, Sutherland GR, Mulley JC, Scheffer IE, Berkovic SF. 2001. Mutant GABAAreceptor γ2-subunit in childhood absence epilepsy and febrile seizures.28(1): 49-52.

    Williams PA, Dou P, Dudek FE. 2004. Epilepsy and synaptic reorganization in a perinatal rat model of hypoxia-ischemia.45(10): 1210-1218.

    Yang Y, Mahaffey CL, Béerubé N, Maddatu TP, Cox GA, Frankel WN. 2007. Complex seizure disorder caused bydeficiency in mice.3(7): e124.

    Yu FH, Mantegazza M, Westenbroek RE, Robbins CA, Kalume F, Burton KA, Spain WJ, McKnight GS, Scheuer T, Catterall WA. 2006. Reduced sodium current in GABAergic interneurons in a mouse model of severe myoclonic epilepsy in infancy.9(9): 1142-1149.

    Zamponi GW, Lory P, Perez-Reyes E. 2010. Role of voltage-gated calcium channels in epilepsy.460(2): 395-403.

    Zeng LH, Rensing NR, Zhang B, Gutmann DH, Gambello MJ, Wong M. 2011.gene inactivation causes a more severe epilepsy phenotype thaninactivation in a mouse model of tuberous sclerosis complex.20(3): 445-454.

    Zhang W, Peterson M, Beyer B, Frankel WN, Zhang ZW. 2014. Loss of MeCP2 from forebrain excitatory neurons leads to cortical hyperexcitation and seizures.34(7): 2754-2763.

    Zwingman TA, Neumann PE, Noebels JL, Herrup K. 2001. Rocker is a new variant of the voltage-dependent calcium channel gene.21(4): 1169-1178.

    05 April 2017; Accepted: 20 June 2017

    This study was supported by the American Epilepsy Society Fellowship (2016)

    , E-mail: bin_gu@med.unc.edu

    10.24272/j.issn.2095-8137.2017.042

    大型黄色视频在线免费观看| 99国产极品粉嫩在线观看| 淫妇啪啪啪对白视频| 人妻久久中文字幕网| 亚洲精品456在线播放app | 亚洲,欧美精品.| 国产精品av视频在线免费观看| 亚洲精品在线美女| 白带黄色成豆腐渣| 免费av观看视频| 色综合婷婷激情| 国产精品电影一区二区三区| 国产av一区在线观看免费| 日韩欧美在线二视频| 久久久色成人| 18美女黄网站色大片免费观看| 一个人观看的视频www高清免费观看| 18禁裸乳无遮挡免费网站照片| 别揉我奶头~嗯~啊~动态视频| 国模一区二区三区四区视频| 国产一区二区激情短视频| www.999成人在线观看| 99热只有精品国产| 久久久久久久久久黄片| 宅男免费午夜| 国产高清视频在线观看网站| 88av欧美| 久久人人爽人人爽人人片va | 日本免费a在线| 嫩草影院精品99| 超碰av人人做人人爽久久| 欧美一区二区亚洲| 免费看美女性在线毛片视频| 深爱激情五月婷婷| 91在线精品国自产拍蜜月| 一个人观看的视频www高清免费观看| 毛片一级片免费看久久久久 | 国产欧美日韩一区二区三| 日本 av在线| 五月伊人婷婷丁香| 国产伦精品一区二区三区视频9| 高清日韩中文字幕在线| 亚洲av.av天堂| 丰满人妻一区二区三区视频av| 深夜a级毛片| 亚洲精品亚洲一区二区| 中文字幕人成人乱码亚洲影| 丰满人妻一区二区三区视频av| 国产黄a三级三级三级人| 午夜福利免费观看在线| 午夜亚洲福利在线播放| 男女之事视频高清在线观看| 中国美女看黄片| 亚洲成av人片免费观看| 亚洲人与动物交配视频| 婷婷丁香在线五月| av黄色大香蕉| 国产色婷婷99| 免费一级毛片在线播放高清视频| 熟妇人妻久久中文字幕3abv| 一级黄色大片毛片| 日韩欧美 国产精品| 日韩人妻高清精品专区| 日韩成人在线观看一区二区三区| 日本熟妇午夜| 日日摸夜夜添夜夜添小说| 免费av观看视频| 国产探花极品一区二区| 黄色日韩在线| 999久久久精品免费观看国产| 夜夜看夜夜爽夜夜摸| 成人国产一区最新在线观看| 欧美一区二区精品小视频在线| 婷婷精品国产亚洲av| netflix在线观看网站| 国产精品嫩草影院av在线观看 | 婷婷色综合大香蕉| 亚洲成人久久性| 欧美又色又爽又黄视频| 国产毛片a区久久久久| 99久久精品一区二区三区| 国产大屁股一区二区在线视频| 精品午夜福利视频在线观看一区| 国产精品久久久久久久久免 | 夜夜躁狠狠躁天天躁| 日日夜夜操网爽| 国内精品久久久久精免费| 天堂影院成人在线观看| 色av中文字幕| 午夜福利视频1000在线观看| 精品无人区乱码1区二区| 久99久视频精品免费| 69av精品久久久久久| 亚洲狠狠婷婷综合久久图片| 哪里可以看免费的av片| 亚洲国产欧美人成| 亚洲精品一区av在线观看| 此物有八面人人有两片| 好男人电影高清在线观看| 亚洲av成人不卡在线观看播放网| 国产免费一级a男人的天堂| 国产成+人综合+亚洲专区| 赤兔流量卡办理| 亚洲中文日韩欧美视频| 亚洲欧美精品综合久久99| 亚洲不卡免费看| 精品久久久久久成人av| 老司机午夜福利在线观看视频| 国内精品久久久久久久电影| www.熟女人妻精品国产| 一卡2卡三卡四卡精品乱码亚洲| 国产单亲对白刺激| 国产视频内射| 欧美高清性xxxxhd video| 午夜福利成人在线免费观看| 免费观看精品视频网站| 乱码一卡2卡4卡精品| 观看免费一级毛片| 天堂影院成人在线观看| 极品教师在线视频| 怎么达到女性高潮| 日韩欧美国产在线观看| 精品久久久久久久久久免费视频| 人妻久久中文字幕网| 夜夜躁狠狠躁天天躁| 日韩大尺度精品在线看网址| 最近最新中文字幕大全电影3| 国产精品久久电影中文字幕| av黄色大香蕉| 日本一本二区三区精品| 国产精品永久免费网站| 在线看三级毛片| 午夜激情欧美在线| 黄色丝袜av网址大全| 丰满人妻熟妇乱又伦精品不卡| 中出人妻视频一区二区| 国产不卡一卡二| 深夜a级毛片| 国内揄拍国产精品人妻在线| 天堂√8在线中文| 最新中文字幕久久久久| 久久99热这里只有精品18| 国产一区二区激情短视频| 天堂√8在线中文| 国产精品三级大全| 一级毛片久久久久久久久女| 男人的好看免费观看在线视频| www.www免费av| 国产高清有码在线观看视频| 精品久久国产蜜桃| 国产黄a三级三级三级人| 中文字幕熟女人妻在线| 嫩草影院入口| 久久亚洲真实| 99久久无色码亚洲精品果冻| 欧美性猛交╳xxx乱大交人| 超碰av人人做人人爽久久| 制服丝袜大香蕉在线| 欧美黑人巨大hd| 欧美黑人巨大hd| 亚洲成a人片在线一区二区| 很黄的视频免费| 久久午夜亚洲精品久久| 欧美日韩亚洲国产一区二区在线观看| 国产精品伦人一区二区| 久久久久性生活片| 青草久久国产| 久久久久久久精品吃奶| 在线免费观看不下载黄p国产 | 亚洲国产精品sss在线观看| 又紧又爽又黄一区二区| 动漫黄色视频在线观看| 永久网站在线| 美女免费视频网站| 日本五十路高清| avwww免费| 男人舔奶头视频| 神马国产精品三级电影在线观看| 国内揄拍国产精品人妻在线| 久久婷婷人人爽人人干人人爱| 日韩中字成人| www.色视频.com| 搡老妇女老女人老熟妇| 一夜夜www| 老鸭窝网址在线观看| 欧美xxxx黑人xx丫x性爽| 99热6这里只有精品| 色视频www国产| 国产v大片淫在线免费观看| 中文字幕免费在线视频6| 中文字幕免费在线视频6| 麻豆一二三区av精品| 欧美乱色亚洲激情| 国产成+人综合+亚洲专区| 欧美日本视频| 欧美日韩黄片免| 麻豆一二三区av精品| av专区在线播放| 欧美色欧美亚洲另类二区| 99热6这里只有精品| 亚洲欧美激情综合另类| 欧美一级a爱片免费观看看| 久久国产精品人妻蜜桃| 十八禁国产超污无遮挡网站| 国产熟女xx| 亚洲av成人精品一区久久| 中文字幕av在线有码专区| 日韩国内少妇激情av| 亚洲,欧美,日韩| 欧美三级亚洲精品| 亚洲经典国产精华液单 | 亚洲无线在线观看| 午夜福利免费观看在线| 国产三级黄色录像| 国产精品三级大全| 99在线人妻在线中文字幕| 超碰av人人做人人爽久久| 91久久精品国产一区二区成人| 免费看美女性在线毛片视频| 成人av在线播放网站| a在线观看视频网站| 欧美黑人巨大hd| 欧美成狂野欧美在线观看| 91麻豆av在线| 真实男女啪啪啪动态图| 国产探花在线观看一区二区| 搡老熟女国产l中国老女人| 国产成+人综合+亚洲专区| 人人妻人人澡欧美一区二区| 香蕉av资源在线| 欧美一区二区亚洲| 婷婷丁香在线五月| 日本三级黄在线观看| 日日摸夜夜添夜夜添小说| 麻豆成人av在线观看| 91av网一区二区| 国产91精品成人一区二区三区| 琪琪午夜伦伦电影理论片6080| 日本免费a在线| x7x7x7水蜜桃| 色尼玛亚洲综合影院| 99久久精品一区二区三区| 国产一区二区三区视频了| 日韩欧美国产一区二区入口| www.色视频.com| 精品午夜福利在线看| 亚洲精华国产精华精| 给我免费播放毛片高清在线观看| 少妇人妻精品综合一区二区 | 亚洲专区国产一区二区| 亚洲色图av天堂| 免费在线观看影片大全网站| 自拍偷自拍亚洲精品老妇| 亚洲狠狠婷婷综合久久图片| 亚洲精品影视一区二区三区av| 麻豆成人午夜福利视频| 99热这里只有是精品50| 天堂av国产一区二区熟女人妻| 在线观看舔阴道视频| 国产精品久久久久久久电影| 757午夜福利合集在线观看| 国产熟女xx| 欧美不卡视频在线免费观看| 少妇人妻一区二区三区视频| 欧美性感艳星| 色精品久久人妻99蜜桃| 精品人妻熟女av久视频| 日日夜夜操网爽| 波野结衣二区三区在线| 美女大奶头视频| 搡老妇女老女人老熟妇| 99riav亚洲国产免费| x7x7x7水蜜桃| 国产精品人妻久久久久久| 黄色日韩在线| ponron亚洲| 亚洲国产欧美人成| 欧美成人a在线观看| 很黄的视频免费| 亚洲一区二区三区不卡视频| 99视频精品全部免费 在线| 久久婷婷人人爽人人干人人爱| 一本久久中文字幕| 很黄的视频免费| 久久久久精品国产欧美久久久| 一级黄色大片毛片| 日韩欧美国产一区二区入口| 亚州av有码| 偷拍熟女少妇极品色| 女人被狂操c到高潮| 别揉我奶头 嗯啊视频| 中文字幕av在线有码专区| 午夜福利在线在线| 亚洲av美国av| 最近中文字幕高清免费大全6 | 麻豆久久精品国产亚洲av| 成人毛片a级毛片在线播放| 久久婷婷人人爽人人干人人爱| 深爱激情五月婷婷| 国产精品久久久久久久久免 | 国产亚洲精品av在线| 亚洲专区国产一区二区| 国内少妇人妻偷人精品xxx网站| 亚洲精品日韩av片在线观看| 深夜a级毛片| 亚洲狠狠婷婷综合久久图片| 成年免费大片在线观看| 国产精品电影一区二区三区| 三级国产精品欧美在线观看| 精华霜和精华液先用哪个| 中文字幕熟女人妻在线| 亚洲欧美精品综合久久99| 国产在线男女| 麻豆久久精品国产亚洲av| 一个人免费在线观看的高清视频| 欧美xxxx黑人xx丫x性爽| 久久草成人影院| 网址你懂的国产日韩在线| 婷婷精品国产亚洲av在线| 亚洲精品亚洲一区二区| 免费看美女性在线毛片视频| 久久久国产成人免费| 色综合婷婷激情| 亚洲精品在线美女| 亚洲国产精品999在线| 亚洲黑人精品在线| 国产成人av教育| 观看免费一级毛片| 日本黄大片高清| avwww免费| 国产精品精品国产色婷婷| 最后的刺客免费高清国语| 久久99热6这里只有精品| 一卡2卡三卡四卡精品乱码亚洲| 久久久精品大字幕| 中文字幕av成人在线电影| 他把我摸到了高潮在线观看| 国产精品精品国产色婷婷| 老司机福利观看| 看免费av毛片| 欧美精品啪啪一区二区三区| 九九久久精品国产亚洲av麻豆| 18禁在线播放成人免费| 精品久久久久久成人av| 一本综合久久免费| 精品人妻偷拍中文字幕| 免费观看人在逋| 简卡轻食公司| 亚洲av一区综合| 亚洲av一区综合| 无人区码免费观看不卡| 午夜日韩欧美国产| 午夜福利高清视频| 黄色女人牲交| 亚洲最大成人av| 特大巨黑吊av在线直播| 色5月婷婷丁香| 草草在线视频免费看| 日日干狠狠操夜夜爽| 人妻久久中文字幕网| 中文字幕av在线有码专区| 日韩人妻高清精品专区| 欧美日韩乱码在线| 色精品久久人妻99蜜桃| 国产成人aa在线观看| 特级一级黄色大片| 久久久久久久久大av| 亚洲人成电影免费在线| 欧美乱色亚洲激情| 欧美日韩黄片免| 在线观看美女被高潮喷水网站 | 久久久久九九精品影院| 国产欧美日韩精品一区二区| 欧美区成人在线视频| 黄色女人牲交| 中亚洲国语对白在线视频| 欧美一级a爱片免费观看看| 国产精品乱码一区二三区的特点| 亚洲精品在线观看二区| 国内揄拍国产精品人妻在线| 亚洲欧美清纯卡通| 丰满人妻熟妇乱又伦精品不卡| 久久精品国产亚洲av涩爱 | 一级作爱视频免费观看| 亚洲天堂国产精品一区在线| 在线观看66精品国产| 九九在线视频观看精品| 久久伊人香网站| 日本a在线网址| 国产午夜精品久久久久久一区二区三区 | а√天堂www在线а√下载| 国产亚洲精品久久久com| 亚洲精品乱码久久久v下载方式| 在线a可以看的网站| 久久精品夜夜夜夜夜久久蜜豆| 日韩av在线大香蕉| 精品一区二区三区av网在线观看| 欧美区成人在线视频| 午夜福利欧美成人| 一区二区三区四区激情视频 | 男人舔奶头视频| 91麻豆精品激情在线观看国产| 可以在线观看的亚洲视频| 色尼玛亚洲综合影院| 亚洲av二区三区四区| 亚州av有码| 婷婷丁香在线五月| 国产伦在线观看视频一区| 日韩欧美精品v在线| a在线观看视频网站| 亚洲av成人精品一区久久| 亚洲国产日韩欧美精品在线观看| 日韩精品青青久久久久久| 亚洲熟妇中文字幕五十中出| 老司机午夜福利在线观看视频| 一个人看视频在线观看www免费| 久久国产乱子伦精品免费另类| 午夜老司机福利剧场| 蜜桃久久精品国产亚洲av| 久久久久国产精品人妻aⅴ院| 香蕉av资源在线| 久久99热6这里只有精品| 欧美+日韩+精品| av国产免费在线观看| 听说在线观看完整版免费高清| 久久久国产成人免费| 国产探花在线观看一区二区| 两个人的视频大全免费| 成人午夜高清在线视频| 一卡2卡三卡四卡精品乱码亚洲| 国产毛片a区久久久久| 亚洲18禁久久av| 一本一本综合久久| 波多野结衣巨乳人妻| 亚洲专区中文字幕在线| 日本a在线网址| 蜜桃久久精品国产亚洲av| 国产精品亚洲一级av第二区| 最好的美女福利视频网| 1024手机看黄色片| av在线老鸭窝| 午夜福利在线观看免费完整高清在 | 91av网一区二区| 美女黄网站色视频| 性欧美人与动物交配| 国语自产精品视频在线第100页| 色噜噜av男人的天堂激情| 国产成人av教育| 搡老熟女国产l中国老女人| 午夜福利欧美成人| 欧美乱妇无乱码| 中文字幕人妻熟人妻熟丝袜美| 日本黄大片高清| 国产一区二区在线av高清观看| 日本在线视频免费播放| 国产黄片美女视频| 亚洲美女视频黄频| 最近在线观看免费完整版| 特级一级黄色大片| 成人毛片a级毛片在线播放| 极品教师在线免费播放| 国产探花在线观看一区二区| 一区二区三区高清视频在线| 亚洲美女视频黄频| 亚洲成a人片在线一区二区| 成人国产综合亚洲| 在线观看一区二区三区| 99久久无色码亚洲精品果冻| 两性午夜刺激爽爽歪歪视频在线观看| 五月伊人婷婷丁香| 男人舔女人下体高潮全视频| 97超视频在线观看视频| 草草在线视频免费看| 俺也久久电影网| 亚洲人成网站高清观看| 日本免费一区二区三区高清不卡| 亚洲综合色惰| 色综合站精品国产| 日本一本二区三区精品| 91久久精品电影网| 极品教师在线免费播放| 国产色婷婷99| ponron亚洲| 嫩草影院新地址| 国产 一区 欧美 日韩| 少妇人妻一区二区三区视频| 精品免费久久久久久久清纯| 色尼玛亚洲综合影院| 麻豆久久精品国产亚洲av| 亚洲狠狠婷婷综合久久图片| 别揉我奶头~嗯~啊~动态视频| 天堂网av新在线| 色在线成人网| 噜噜噜噜噜久久久久久91| 啦啦啦韩国在线观看视频| 日韩人妻高清精品专区| 91在线精品国自产拍蜜月| 国产亚洲精品av在线| 午夜福利欧美成人| 嫁个100分男人电影在线观看| 国产高清三级在线| 亚洲精品一区av在线观看| a级毛片免费高清观看在线播放| 如何舔出高潮| 亚洲精品一卡2卡三卡4卡5卡| 亚洲av第一区精品v没综合| 日本三级黄在线观看| 色哟哟哟哟哟哟| 少妇裸体淫交视频免费看高清| 免费一级毛片在线播放高清视频| av中文乱码字幕在线| 国产精品久久视频播放| 成人高潮视频无遮挡免费网站| 精品一区二区免费观看| 性色avwww在线观看| 麻豆一二三区av精品| 国产黄a三级三级三级人| 欧美成人免费av一区二区三区| av在线蜜桃| 中国美女看黄片| 欧美国产日韩亚洲一区| 我的老师免费观看完整版| 欧美一区二区亚洲| 男人狂女人下面高潮的视频| 日韩欧美精品v在线| 一本一本综合久久| 精品久久久久久久人妻蜜臀av| 哪里可以看免费的av片| 又爽又黄无遮挡网站| 成人国产综合亚洲| 免费av毛片视频| 久久伊人香网站| 成人毛片a级毛片在线播放| 俄罗斯特黄特色一大片| www.熟女人妻精品国产| 精品国产三级普通话版| 亚洲最大成人手机在线| 国产精品人妻久久久久久| eeuss影院久久| 又爽又黄无遮挡网站| 永久网站在线| 69av精品久久久久久| 欧美精品啪啪一区二区三区| 精品午夜福利在线看| 欧美成人免费av一区二区三区| av福利片在线观看| 一边摸一边抽搐一进一小说| 亚洲成av人片在线播放无| 国产主播在线观看一区二区| 如何舔出高潮| 午夜福利高清视频| 成人午夜高清在线视频| 最近最新中文字幕大全电影3| 精品国产三级普通话版| 国产亚洲精品久久久com| 91九色精品人成在线观看| 嫩草影院精品99| 成人美女网站在线观看视频| 欧美bdsm另类| 午夜福利视频1000在线观看| 天天一区二区日本电影三级| 欧美黄色片欧美黄色片| 欧美成人免费av一区二区三区| 美女大奶头视频| 男人和女人高潮做爰伦理| 成人国产综合亚洲| 国产av不卡久久| 成人一区二区视频在线观看| 日本五十路高清| 最近最新免费中文字幕在线| 变态另类成人亚洲欧美熟女| 嫩草影院精品99| 免费在线观看日本一区| 成年女人永久免费观看视频| 日本在线视频免费播放| 国产老妇女一区| 男女视频在线观看网站免费| 美女被艹到高潮喷水动态| 国产精品av视频在线免费观看| 亚洲精品乱码久久久v下载方式| 神马国产精品三级电影在线观看| 欧美zozozo另类| 国产白丝娇喘喷水9色精品| 精品久久久久久久久av| 老司机福利观看| 波多野结衣高清无吗| 国产成人福利小说| 欧美国产日韩亚洲一区| 精品久久久久久,| 欧美成人免费av一区二区三区| 日本免费一区二区三区高清不卡| 搡老妇女老女人老熟妇| 亚洲三级黄色毛片| 男女床上黄色一级片免费看| 又爽又黄无遮挡网站| 欧美三级亚洲精品| 国产欧美日韩一区二区精品| 成年版毛片免费区| 嫩草影院精品99| 伊人久久精品亚洲午夜| 美女高潮喷水抽搐中文字幕| 亚洲色图av天堂| 俄罗斯特黄特色一大片| 国内精品久久久久精免费| 少妇人妻一区二区三区视频| 禁无遮挡网站| 欧美日韩国产亚洲二区| 波多野结衣高清作品| 欧美3d第一页| 亚洲国产高清在线一区二区三| 日日干狠狠操夜夜爽| 成人精品一区二区免费| 黄片小视频在线播放| 老司机午夜福利在线观看视频| 在线十欧美十亚洲十日本专区|