萬雅瓊,郭偉波,吳 軍,李 莉,徐海根①
(1.南京師范大學(xué)生命科學(xué)學(xué)院,江蘇 南京 210046;2.環(huán)境保護部南京環(huán)境科學(xué)研究所,江蘇 南京 210042)
物種占域模型的基本原理及其研究進展
萬雅瓊1,郭偉波2,吳 軍2,李 莉1,徐海根2①
(1.南京師范大學(xué)生命科學(xué)學(xué)院,江蘇 南京 210046;2.環(huán)境保護部南京環(huán)境科學(xué)研究所,江蘇 南京 210042)
占域模型是用于估算某個區(qū)域被目標(biāo)物種所占據(jù)的比例,從而進一步估算物種的豐度、預(yù)測物種的分布范圍和了解群落結(jié)構(gòu)的一種模型。主要介紹了占域模型的基本原理,包括數(shù)據(jù)類型、基本參數(shù)、模型選擇及適用范圍,總結(jié)了占域模型的研究和應(yīng)用進展。目前,對該模型的研究與應(yīng)用仍以國外學(xué)者居多,但近年來國內(nèi)一些調(diào)查、監(jiān)測工作中也有初步應(yīng)用。在此基礎(chǔ)上,分析了該模型實際應(yīng)用中可能出現(xiàn)的一些問題,如協(xié)變量的引入、探測率的異質(zhì)性、不完全的探測和觀測值的缺失等,并對這些問題作出了一定的解釋。最后,提出進一步完善占域模型并將其應(yīng)用于我國生物多樣性調(diào)查與監(jiān)測計劃中,從而為生物多樣性保護提供有效的技術(shù)支持。
占域模型;占域率;探測率;協(xié)變量
近幾十年來,全球生物多樣性下降趨勢顯著,各國紛紛開展了一系列生物多樣性調(diào)查與監(jiān)測項目,以期掌握生物多樣性的動態(tài)變化趨勢,對其開展有針對性的保護。占域模型(site occupancy model)是近年來發(fā)展起來的一種新的模型方法,該模型最早由MACKENZIE等[1-2]提出,用于根據(jù)物種調(diào)查中的出現(xiàn)數(shù)據(jù)估算物種空間占有率及其動態(tài)變化。空間占有率(occupancy rate)指某樣點(site)或某斑塊(patch)被目標(biāo)物種占據(jù)的概率[3],即該物種在此棲息地中分布的比例(proportion of area occupied,PAO),這在某種程度上可以作為物種種群數(shù)量的替代參數(shù)。對特定物種來說,空間占有率可以使研究者快速地了解種群密度情況,進一步評估影響物種分布的因素。占域模型可以在目標(biāo)物種占據(jù)某樣點但不是每次都被探測到的情況下,通過多次重復(fù)調(diào)查,科學(xué)地估算單次調(diào)查對目標(biāo)物種的探測概率(detection probability),進而估算出特定樣點或區(qū)域被目標(biāo)物種占有的概率[4]。該模型只需得到目標(biāo)物種在樣點是否出現(xiàn)的數(shù)據(jù),而不需要調(diào)查物種數(shù)量,與之前物種豐度或種群大小估算方法,如標(biāo)志重捕法等相比,該模型方法更加簡單實用[5]。因此,近年來占域模型在多個領(lǐng)域得到了研究和應(yīng)用[6-7],也解決了一些生態(tài)學(xué)問題,如棲息地與物種分布的關(guān)聯(lián)[8-10]、物種的分布狀態(tài)[11-12]、集合種群動態(tài)[13-18]等。同時,由于占域模型不需要投入大量的調(diào)查工作(sampling effort),因而在野生動物調(diào)查和長期監(jiān)測中得到廣泛應(yīng)用[19-20]。為讓讀者更系統(tǒng)地理解并應(yīng)用占域模型,筆者詳細介紹了占域模型的基本原理、所需數(shù)據(jù)類型、基本參數(shù)和適用范圍,并分析了應(yīng)用中可能出現(xiàn)的一些問題。
所有模型都有其應(yīng)滿足的條件或假設(shè),占域模型也不例外。MACKENZIE等首次提出的占域模型需要滿足以下假設(shè)[1]:
(1)在目標(biāo)物種整個調(diào)查期間樣點的占據(jù)狀態(tài)保持不變,也即之前被占據(jù)的樣點仍然被占據(jù),未被占據(jù)的樣點仍然未被占據(jù),不存在物種遷入或遷出的可能。
(2)在任何一個樣點目標(biāo)物種的調(diào)查均獨立于其他樣點,沒有樣點與樣點間的交叉或樣點與樣點間物種的相互交換。如果2個相鄰樣點離得太近,就有可能發(fā)生目標(biāo)物種在2個樣點間的來回移動,從而使得目標(biāo)物種的同一個體在多個樣點被重復(fù)調(diào)查,在調(diào)查方案的設(shè)計過程中就需要避免出現(xiàn)這種問題。
(3)探測率在每個樣點的每次調(diào)查中都恒定,也即探測率在時間或空間上不存在異質(zhì)性(heterogeneity),或者即使存在異質(zhì)性,但能夠用協(xié)變量(如棲息環(huán)境、探測特征)進行解釋。目標(biāo)物種在每個樣點內(nèi)的重復(fù)調(diào)查中占域率都是恒定的,或者即使存在不同的占域率,但能用棲息地協(xié)變量進行解釋。
(4)目標(biāo)物種在每個樣點的出現(xiàn)/未出現(xiàn)記錄都是正確的,即物種的識別都是正確的。
3.1 協(xié)變量
占域模型中涉及到2個最主要的參數(shù),即占域率(ψ)和探測率(P),但要更準(zhǔn)確地求出每個樣點的占域率和探測率,就需要引入?yún)f(xié)變量(covariates)[29-31]。協(xié)變量可分為2類[32]:一類是樣點協(xié)變量,也叫棲息地協(xié)變量(site-specific covariates),在同一時間段每個樣點的棲息地協(xié)變量是恒定的,但在調(diào)查過程中如果時間跨度比較大,如前期調(diào)查在夏季,后期調(diào)查在冬季,棲息環(huán)境就會發(fā)生變化,如棲息地類型、植被、海拔、樣方大小、是否被干擾等;另一類是探測協(xié)變量(sampling-occasion covariates),可因每個樣點的每一次調(diào)查而不同,如調(diào)查時的環(huán)境條件(氣溫、霧霾、云層)、一天中的不同時段、不同調(diào)查者等。樣點協(xié)變量和探測協(xié)變量都可能會影響探測率,而占域率只受樣點協(xié)變量的影響,不隨探測協(xié)變量而改變。
一些占域模型的研究考慮了協(xié)變量。MACKENZIE等[1]將環(huán)境氣溫、不同棲息地類型(池塘、湖泊、沼澤、濕地)作為協(xié)變量用于美國馬里蘭州2個無尾兩棲動物的占域模型中;BAILEY等[22]在研究美國大霧山國家公園的7種陸棲蠑螈時,將時間和4個棲息地特征(是否有干擾、植被類型、海拔、溪流)作為重要的協(xié)變量參與模型分析,確定影響蠑螈物種生存最重要的因素;LI等[33]在估算四川王朗和臥龍自然保護區(qū)雉類占域率和探測率時,引入8個棲息地協(xié)變量和3個探測協(xié)變量,并通過評估棲息地協(xié)變量對雉類生存的影響,提出對雉類實施有效保護的措施;SUTHERLAND等[34-35]將滅絕(extinction)和定居(colonization)這2個協(xié)變量引入占域模型,并將其廣泛地應(yīng)用于集合種群動態(tài)的分析。
3.2 模型選擇
占域模型被用于估算占域率和探測率,棲息地協(xié)變量和探測協(xié)變量會影響這些變量的估算[36],應(yīng)分析評估這些協(xié)變量對模型占域估算的影響程度[37]。這可通過每個模型的赤池信息量準(zhǔn)則值(Akaike information criterion,AIC,CAI)和模型權(quán)重(model weight)與零模型(null model)進行比較[38-39]。首先,假設(shè)樣點占域率恒定,即ψ(.),允許物種探測率隨調(diào)查時間和棲息地協(xié)變量的變化而變化,即P(t)和P(Cov),分別進行分析;然后,假設(shè)物種探測率恒定,即P(.),占域率隨棲息地協(xié)變量的變化而變化,即ψ(Cov),進行分析。這些分析功能都能用Presence軟件實現(xiàn)[40]。每個物種的占域模型根據(jù)其ΔCAI值和模型權(quán)重進行評估。模型權(quán)重在0~1之間,并且所有模型權(quán)重之和為1,模型權(quán)重越大,表示該模型是真實模型的可能性就越大。ΔCAI值越小的模型就越接近于最優(yōu)模型。有研究證明ΔCAI≤2的模型都被認(rèn)為是等效模型[41-42],可用于模型的參數(shù)估算。因此,根據(jù)ΔCAI值篩選出ΔCAI≤2的所有等效模型進行下一步的模型估算。
探測率是當(dāng)目標(biāo)物種在一個樣點出現(xiàn)時,該物種在該樣點的一次調(diào)查中被探測到的概率,若要得到探測率,可通過調(diào)查物種個體、辨聽叫聲、定位跟蹤、領(lǐng)地標(biāo)記等手段獲得出現(xiàn)/未出現(xiàn)數(shù)據(jù)來估算。但是對于大多數(shù)物種來說,由于在調(diào)查過程中會出現(xiàn)各種不可避免的因素,包括調(diào)查者經(jīng)驗、天氣狀況、調(diào)查時間等,使得每次調(diào)查的探測率都可能不一樣,即探測率的異質(zhì)性[43-45]。探測率的異質(zhì)性會直接影響占域率估算的準(zhǔn)確性,為了獲得可信的占域率,須對其異質(zhì)性進行合理的解釋[46]。在野外調(diào)查中很多物種都不能被準(zhǔn)確地探測到,因為大多數(shù)出現(xiàn)在樣點的物種在調(diào)查期間并不總是恰好能被探測到[47-51]。對于大多數(shù)類群而言,尤其是廣布的、隱蔽性的物種,探測率總是小于1且不恒定[52],即使是不運動的生物體(如植物)也是一樣[53-54],而且探測率在時間上可能會隨季節(jié)和環(huán)境條件的不同而有所差異,在空間上可能會隨特定樣點棲息地特征不同而有所差異[55-56]。如果調(diào)查到60%的目標(biāo)物種,一種情況可能是該物種出現(xiàn)在整個區(qū)域,探測率為0.6;第2種情況可能是該物種只出現(xiàn)在60%的區(qū)域,探測率為1;第3種情況可能是探測率為0.6和1之間的任何一個數(shù)值。探測率的異質(zhì)性往往會導(dǎo)致占域率估計值偏低(negatively biased)。為了減少占域率估算的誤差,可適當(dāng)增加目標(biāo)區(qū)域的樣點數(shù)、增加每個樣點的重復(fù)調(diào)查次數(shù),以提高探測率,使其更接近于1。
迄今,已有越來越多的國外學(xué)者在研究占域模型并將其應(yīng)用于多個生態(tài)學(xué)領(lǐng)域[57-59]。MACKENZIE等[60]也進一步詳細介紹了占域模型在各種情形下的應(yīng)用。BAILEY等[25]在4—6月中旬對美國大霧山國家公園的陸棲蠑螈進行調(diào)查,共獲得39個樣點的探測/未探測數(shù)據(jù),得到的真實占域率為0.26。但筆者考慮到其占域率可能受干擾因素的影響,另外,探測率也可能隨環(huán)境條件的差異,如降雨和溫度的不同而不同,故將是否有干擾(Idist)作為棲息地協(xié)變量、將是否有干擾和調(diào)查時間(t)作為探測協(xié)變量進行綜合分析后得到8個候選模型。根據(jù)ΔCAI值選出ψ(Idist)P(Idist+t)、ψ(Idist)P(t)、ψ(Idist)P(Idist)和ψ(Idist)P(.)4個最佳模型用于數(shù)據(jù)分析,結(jié)果表明在之前受過干擾的樣點和未受干擾的樣點占域估算值分別為0.19和0.7,探測率也隨不同調(diào)查時間和是否受過干擾而不同。ALBANESE等[61]在2014—2015年期間調(diào)查喬治亞州西南部的一種魚類(bluenose shiner),共調(diào)查了39個樣點,獲得實際占域率為13%,估算其占域率和探測率,并引入棲息地協(xié)變量將其與基本模型進行比較,結(jié)果表明引入?yún)f(xié)變量的模型ΔCAI值最小,能更好地用于描述探測率和占域率,更好地用于解釋不完全的探測。WEIR等[62]用北美10個州的7 a數(shù)據(jù)(2001—2007年)描述了兩棲動物第1個多年占域趨勢;用多季節(jié)占域模型分析樣點被物種占據(jù)的動態(tài)過程,其中包括滅絕和定居2個參數(shù),并引入調(diào)查時間、日期和氣溫3個協(xié)變量,根據(jù)ΔCAI選擇最佳模型估算占域趨勢,結(jié)果顯示有2個物種呈下降趨勢,春雨蛙(Pseudacriscrucifer)在6個州呈顯著下降趨勢,美國蟾蜍(Bufoamericanus)在4個州呈顯著下降趨勢,牛蛙(Ranacatesbeiana)在4個州呈顯著上升趨勢。IRVIN等[63]在2008、2009年的5—7月對342個樣點草蜢沙鹀(Grasshoppersparrow)每年實施3次重復(fù)調(diào)查,記錄探測史和調(diào)查時間、溫度、風(fēng)速、觀測者4個探測協(xié)變量,探測到的實際占域率為35%,并且由ΔCAI≤2得到影響探測率的最主要因素是一天中的調(diào)查時間和風(fēng)速。占域狀態(tài)不僅依賴于棲息環(huán)境,還與種群密度有關(guān)。通過分析影響草蜢沙鹀選擇和占據(jù)繁殖棲息地的因素,評估其空間尺度上棲息地的使用,從而加強對草蜢沙鹀所偏好棲息地的有效保護。ADAMS等[35]利用占域模型首次分析了美國監(jiān)測得到的兩棲動物多年數(shù)據(jù),應(yīng)用多季節(jié)占域模型分析了兩棲動物的年度占域率變化,發(fā)現(xiàn)所有兩棲動物占域率在2002—2011年期間年均下降3.7%,被列入紅色名錄的物種平均每年下降11.6%,所有這些結(jié)果都顯示兩棲動物種群呈衰減趨勢,同時,評估了兩棲動物嚴(yán)重衰減的原因。ANDREW-TILKER[64]用紅外相機方法在2012年7月到2013年1月對中南半島熱帶森林4種受威脅的哺乳動物進行調(diào)查,并用占域模型分析物種出現(xiàn)的數(shù)據(jù),得到麂、獼猴、野豬和鬣羚的真實占域率分別為0.58、0.55、0.38和0.30,探測率分別為0.12、0.17、0.14和0.17。為了更好地解釋不完美的探測率,研究者將森林類型和離村莊的距離作為樣點協(xié)變量應(yīng)用于模型,根據(jù)CAI值和模型權(quán)重確定了影響這些物種分布的因素,并根據(jù)最佳模型估算這些物種在不同森林類型及離村莊不同距離的占域,從而為這些受威脅物種提供更有針對性的保護措施。NAGY-REIS等[65]調(diào)查了大西洋森林遺跡里的伶猴(Callicebusnigrifrons)和白耳狨(Callithrixaurita),用占域模型估算其占域率和探測率。
但是,該模型目前在國內(nèi)的研究并不多見,一些學(xué)者將其與紅外相機技術(shù)相結(jié)合獲得一些研究結(jié)果。李勤等[3]將相機陷阱調(diào)查方法與占域模型分析方法相結(jié)合,研究野生動物種群的空間分布,解決了有關(guān)地理范圍、復(fù)合種群動態(tài)、資源選擇、生境選擇和種間關(guān)系等問題。肖治術(shù)等[66]將占域模型作為一種統(tǒng)計分析模型,處理野生動物多樣性的監(jiān)測數(shù)據(jù)。李晟等[4]將物種的占有率和探測率用作紅外相機調(diào)查或監(jiān)測項目中的重要參數(shù),為野生動物調(diào)查與保護管理提供了更為便捷有效的統(tǒng)計分析方法。然而,占域模型在我國還未得到充分的推廣和應(yīng)用。
綜合上述國外學(xué)者目前對占域模型的研究成果,以及我國部分學(xué)者對其初步的探討及應(yīng)用,筆者認(rèn)為該模型具有巨大的應(yīng)用潛力。(1)占域模型所要求的數(shù)據(jù)類型相對簡單,只需要記錄每個樣點在每次調(diào)查中目標(biāo)物種是否出現(xiàn),而并不需要清楚地記錄每個樣點目標(biāo)物種的種群數(shù)量,因此,在很大程度上減少了野外調(diào)查中的資源投入(人力、物力、資金等)。這一點明顯優(yōu)于之前的各種調(diào)查方法,如標(biāo)志重捕法。占域率可作為評估動物種群變化的一個度量標(biāo)準(zhǔn)[27],且只需花費更少的努力就能收集到合適的探測/未探測數(shù)據(jù)。因此,這也是占域模型在實際應(yīng)用中最大的優(yōu)勢。(2)占域模型可與其他調(diào)查方法結(jié)合起來使用,如用紅外相機技術(shù)取得出現(xiàn)/未出現(xiàn)數(shù)據(jù),并記錄樣點棲息地特征和天氣狀況,然后,將其導(dǎo)入占域模型進行分析,便可估計預(yù)測目標(biāo)物種在未來的分布變化、種群動態(tài)趨勢、最適生存生境以及干擾程度對物種生存的影響等,從而為物種保護提供有針對性的措施。盡管占域模型的優(yōu)勢尤為顯著,同時也得到了初步應(yīng)用并取得良好效果,但在實際應(yīng)用中仍然存在不確定性問題,如不完全的探測(imperfect detection)會影響占域率的估算。為獲得更準(zhǔn)確的估算結(jié)果,應(yīng)該全面考慮占域模型可能出現(xiàn)的限制因素,如棲息地環(huán)境、天氣狀況、調(diào)查人員等,將其作為協(xié)變量用于解釋不完全的探測問題。
最初由MACKENZIE等[1]提出的占域模型中,關(guān)于物種探測率進一步延伸的問題并沒有得到解決,在調(diào)查數(shù)據(jù)中一個物種實際出現(xiàn)了但并沒有被探測到而被記錄為“0”的問題(false negatives)[67]。如一個樣點經(jīng)過重復(fù)調(diào)查,獲得數(shù)據(jù)為“0,0,0”,就會存在2種互相排斥的可能性去解釋這個結(jié)果,一種是該物種在這個樣點真實的不存在,所以調(diào)查結(jié)果是準(zhǔn)確的;另一種是該物種實際上存在于該樣點,但是并沒有被探測到(false absence)。這個問題在野外物種調(diào)查中普遍存在,使研究者不能獲得占域的無偏估計。在不同的環(huán)境下,即使是極其完全的模型方案設(shè)計和標(biāo)準(zhǔn)的調(diào)查計劃,不完全的探測仍然是數(shù)據(jù)分析中真實存在的一個問題[68-70]。當(dāng)然,也有學(xué)者在MACKENZIE等提出的模型基礎(chǔ)上致力于研究開發(fā)更靈活的模型來解釋這種假陰性的錯誤[71-74]。如KéRY[46]解釋了占域模型中不完全的探測,從而將其應(yīng)用于瑞士一種蜻蜓的分布預(yù)測上,結(jié)果證明占域分布模型分析得到的物種分布比傳統(tǒng)的廣義線性模型(generalized linear models,GLMs)更接近于真實,同時,還介紹了如何減少在物種分布中導(dǎo)致偏差估計的不完全的探測問題。另外,在很多情況下由于各種不利的因素,一些樣點的調(diào)查可能無法實施,如調(diào)查人員在抵達樣點的途中遇到意外情況(汽車拋錨、突降暴雨、人員受傷等),受到外部條件的限制而被迫減少重復(fù)調(diào)查次數(shù),危險地段(懸崖、滑坡等)難以到達。在上述情況下,就會導(dǎo)致模型分析中觀測值的缺失(missing observations)[75]。占域模型也適用于處理部分調(diào)查數(shù)據(jù)缺失的情況,但是樣點的數(shù)據(jù)采集必須有多次重復(fù)。如果每個樣點僅僅開展過一次調(diào)查或無任何調(diào)查記錄,則不能用于模型估算。
關(guān)于占域模型的研究還在進一步發(fā)展中,模型的功能也在逐步改進和完善,預(yù)計其應(yīng)用也會越來越廣泛。今后,應(yīng)進一步探討如何將占域模型應(yīng)用于我國生物多樣性調(diào)查和監(jiān)測計劃中,為生物多樣性保護和管理提供科學(xué)支撐。
[1] MACKENZIE D I,NICHOLS J D,LACHMAN G B,etal.Estimating Site Occupancy Rates When Detection Probabilities Are Less Than One[J].Ecology,2002,83(8):2248-2255.
[2] MACKENZIE D I,NICHOLS J D,HINES J E,etal.Estimating Site Occupancy,Colonization,and Local Extinction When a Species Is Detected Imperfectly[J].Ecology,2008,84(8):2200-2207.
[3] 李勤,鄔建國,寇曉軍,等.相機陷阱在野生動物種群生態(tài)學(xué)中的應(yīng)用[J].應(yīng)用生態(tài)學(xué)報,2013,24(4):947-955.[LI Qin,WU Jian-guo,KOU Xiao-jun,etal.Applications of Camera Trap in Wildlife Population Ecology[J].Chinese Journal of Applied Ecology,2013,24(4):947-955.]
[4] 李晟,王大軍,肖治術(shù),等.紅外相機技術(shù)在我國野生動物研究與保護中的應(yīng)用與前景[J].生物多樣性,2014,22(6):685-695.[LI Sheng,WANG Da-jun,XIAO Zhi-shu,etal.Camera-Trapping in Wildlife Research and Conservation in China:Review and Outlook[J].Biodiversity Science,2014,22(6):685-695.]
[5] DE SOLLA S R,SHIROSE L J,FERNIE K J,etal.Effect of Sampling Effort and Species Detectability on Volunteer Based Anuran Monitoring Programs[J].Biological Conservation,2005,121(4):585-594.
[6] CROSSLAND M R,MACKENZIE D I,HOLZAPFEL S.Assessment of Site-Occupancy Modeling as a Technique to Monitor Hochstetter′s Frog(Leiopelmabocbstetteri) Populations[J].DOC Research & Development,2005,218:223.
[7] O′CONNELL A F,BAILEY L L.Inference for Occupancy and Occupancy Dynamics[M]∥Camera Traps in Animal Ecology.Japan:Springer,2011:191-204.
[8] STANTON R A,THOMPSON F R,KESLER D C.Site Occupancy of Brown-Headed Nuthatches Varies With Habitat Restoration and Range-Limit Context[J].The Journal of Wildlife Management,2015,79(6):917-926.
[9] GOTELLI N J,ENGSTROM R T.Predicting Species Occurrences:Issues of Accuracy and Scale[J].The Auk,2003,120(4):1199-1200.
[10]HANSKI I.Inferences From Ecological Incidence Functions[J].The American Naturalist,1992,139(3):657-662.
[11]FISHER R N,SHAFFER H B.The Decline of Amphibians in California′s Great Central Valley[J].Conservation Biology,1996,10(5):1387-1397.
[12]VAN BUSKIRK J.Local and Landscape Influence on Amphibian Occurrence and Abundance[J].Ecology,2005,86(7):1936-1947.
[13]HAMES R S,ROSENBERG K V,LOWE J D,etal.Site Reoccupation in Fragmented Landscapes:Testing Predictions of Metapopulation Theory[J].Journal of Animal Ecology,2001,70(2):182-190.
[14]BARBRAUD C,NICHOLS J D,HINES J E,etal.Estimating Rates of Local Extinction and Colonization in Colonial Species and an Extension to the Metapopulation and Community Levels[J].Oikos,2003,101(1):113-126.
[16]LANDE R.Extinction Thresholds in Demographic Models of Territorial Populations[J].The American Naturalist,1987,130(4):624-635.
[17]LANDE R.Demographic Models of the Northern Spotted Owl (Strixoccidentaliscaurina)[J].Oecologia,1988,75(4):601-607.
[18]HANSKI I.A Practical Model of Metapopulation Dynamics[J].Journal of Animal Ecology,1994,63(1):151-162.
[19]MANLEY P N,ZIELINSKI W J,SCHLESINGER M D,etal.Evaluation of a Multiple-Species Approach to Monitoring Species at the Ecoregional Scale[J].Ecological Applications,2004,14(1):296-310.
[20]BAILEY L L,HINES J E,NICHOLS J D,etal.Sampling Design Trade-Offs in Occupancy Studies With Imperfect Detection:Examples and Software[J].Ecological Applications,2007,17(1):281-290.
[21]STANLEY T R,ROYLE J A.Estimating Site Occupancy and Abundance Using Indirect Detection Indices[J].The Journal of Wildlife Management,2005,69(3):874-883.
[22]BAILEY L L,SIMONS T R,POLLOCK K H.Estimating Site Occupancy and Species Detection Probability Parameters for Terrestrial Salamanders[J].Ecological Applications,2004,14(3):692-702.
[23]GUILLERA-ARROITA G.Impact of Sampling With Replacement in Occupancy Studies With Spatial Replication[J].Methods in Ecology and Evolution,2011,2(4):401-406.
[24]MACKENZIE D I,ROYLE J A.Designing Occupancy Studies:General Advice and Allocating Survey Effort[J].Journal of Applied Ecology,2005,42(6):1105-1114.
[25]BAILEY L,ADAMS M J.Occupancy Models to Study Wildlife[R].[s. l.]:Geological Survey(US),2005.
[26]MACKENZIE D I,BAILEY L L.Assessing the Fit of Site-Occupancy Models[J].Journal of Agricultural,Biological,and Environmental Statistics,2004,9(3):300-318.
[27]GU W D,SWIHART R K.Absent or Undetected? Effects of Non-Detection of Species Occurrence on Wildlife-Habitat Models[J].Biological Conservation,2004,116(2):195-203.
[28]LI S,MCSHEA W J,WANG D J,etal.Gauging the Impact of Management Expertise on the Distribution of Large Mammals Across Protected Areas[J].Diversity and Distributions,2012,18(12):1166-1176.
[29]LELE S R,MORENO M,BAYNE E.Dealing With Detection Error in Site Occupancy Surveys:What Can We Do With a Single Survey?[J].Journal of Plant Ecology,2012,5(1):22-31.
[30]MARTIN J,MCINTYRE C L,HINES J E,etal.Dynamic Multistate Site Occupancy Models to Evaluate Hypotheses Relevant to Conservation of Golden Eagles in Denali National Park,Alaska[J].Biological Conservation,2009,142(11):2726-2731.
[31]GOOCH M M,HEUPEL A M,PRICE S J,etal.The Effects of Survey Protocol on Detection Probabilities and Site Occupancy Estimates of Summer Breeding Anurans[J].Applied Herpetology,2006,3(2):129-142.
[32]DORAZIO R M,RODRGUEZ D T.A Gibbs Sampler for Bayesian Analysis of Site-Occupancy Data[J].Methods in Ecology and Evolution,2012,3(6):1093-1098.
[33]LI S,MCSHEA W J,WANG D J,etal.The Use of Infrared-Triggered Cameras for Surveying Phasianids in Sichuan Province,China[J].Ibis,2010,152(2):299-309.
[34]SUTHERLAND C S,ELSTON D A,LAMBIN X.A Demographic,Spatially Explicit Patch Occupancy Model of Metapopulation Dynamics and Persistence[J].Ecology,2014,95(11):3149-3160.
[35]ADAMS M J,MILLER D A,MUTHS E,etal.Trends in Amphibian Occupancy in the United States[J].PLoS One,2013,8(5):e64347.
[36]FAUTEUX D,MAZEROLLE M J,IMBEAU L,etal.Site Occupancy and Spatial Co-Occurrence of Boreal Small Mammals Are Favored by Late-Decay Woody Debris[J].Canadian Journal of Forest Research,2013,43(5):419-427.
[37]O′CONNELL A F JR,TALANCY N W,BAILEY L L,etal.Estimating Site Occupancy and Detection Probability Parameters for Meso- and Large Mammals in a Coastal Ecosystem[J].The Journal of Wildlife Management,2009,70(6):1625-1633.
[38]SIGNORELLI L,BASTOS R P,MARCO P D JR,etal.Landscape Context Affects Site Occupancy of Pond-Breeding Anurans Across a Disturbance Gradient in the Brazilian Cerrado[J].Landscape Ecology,2016,31(9):1997-2012.
[39]AKAIKE H.Information Theory and an Extension of the Maximum Likelihood Principle[M]∥Breakthroughs in Statistics.New York,USA:Springer,1992:610-624.
[40]BURNHAM K P,ANDERSON D R.Model Selection and Inference[M].New York,USA:Springer,1998:319.
[41]BURNHAN K P,ANDERSON D R.Model Selection and Multimodel Inference:A Practical Information-Theoretic Approach[M].New York,USA:Springer Science & Business Media,2002:455-484.
[42]MCSHEA W J,STEWART C,PETERSON L,etal.The Importance of Secondary Forest Blocks for Terrestrial Mammals Within an Acacia/ Secondary Forest Matrix in Sarawak,Malaysia[J].Biological Conservation,2009,142(12):3108-3119.
[43]ROYLE J A.Site Occupancy Models With Heterogeneous Detection Probabilities[J].Biometrics,2006,62(1):97-102.
[44]ALTWEGG R,WHEELER M,ERNI B.Climate and the Range Dynamics of Species With Imperfect Detection[J].Biology Letters,2008,4(5):581-584.
[46]KéRY M.Chapter 20-Nonstandard GLMMs 1:Site-Occupancy Species Distribution Model[M]∥Introduction to WinBUGS for Ecologists.Salt Lake City,UT,USA:Academic Press,2010:237-252.
[47]ANDRESEN L,EVERATT K T,SOMERS M J.Use of Site Occupancy Models for Targeted Monitoring of the Cheetah[J].Journal of Zoology,2014,292(3):212-220.
[48]KéRY M,GARDNER B,MONNERAT C.Predicting Species Distributions From Checklist Data Using Site-Occupancy Models[J].Journal of Biogeography,2010,37(10):1851-1862.
[49]YOCCOZ N G,NICHOLS J D,BOULINIER T.Monitoring of Biological Diversity in Space and Time[J].Trends in Ecology & Evolution,2001,16(8):446-453.
[50]KéRY M.Inferring the Absence of a Species:A Case Study of Snakes[J].The Journal of Wildlife Management,2002,66(2):330-338.
[51]WILLIAMS B K,NICHOLS J D,CONROY M J.Analysis and Management of Animal Populations:Modeling Estimation,and Decision Making[J].Journal of Wildlife Management,2002,67:1172-1181.
[52]KéRY M,SCHMIDT B R.Imperfect Detection and Its Consequences for Monitoring in Conservation[J].Community Ecology,2008,9(2):207-216.
[53]KéRY M,SPILLMANN J H,TRUONG C,etal.How Biased Are Estimates of Extinction Probability in Revisitation Studies?[J].Journal of Ecology,2006,94(5):980-986.
[54]CHEN G K,KéRY M,ZHANG J L,etal.Factors Affecting Detection Probability in Plant Distribution Studies[J].Journal of Ecology,2009,97(6):1383-1389.
[55]NUPP T E,SWIHART R K.Effect of Forest Patch Area on Population Attributes of White-Footed Mice (Peromyscusleucopus) in Fragmented Landscapes[J].Canadian Journal of Zoology,1996,74(3):467-472.
[56]ODELL E A,KNIGHT R L.Songbird and Medium-Sized Mammal Communities Associated With Exurban Development in Pitkin County,Colorado[J].Conservation Biology,2001,15(4):1143-1150.
[57]GERMAINE S S,COSENTINO B L.Screening Model for Determining Likelihood of Site Occupancy by Oregon Spotted Frogs (Ranapretiosa)in Washington State[R].Washington DC,USA:Washington State Department of Transportation,2004.
[58]FUKAYA K,ROYLE J A,OKUDA T,etal.A Multistate Dynamic Site Occupancy Model for Spatially Aggregated Sessile Communities[J].Methods in Ecology and Evolution,2016.DOI:10.1111/2041-210X.12690.
[59]ELMORE S A,HUYVAERT K P,BAILEY L L,etal.Multi-Scale Occupancy Approach to EstimateToxoplasmagondiiPrevalence and Detection Probability in Tissues:An Application and Guide for Field Sampling[J].International Journal for Parasitology,2016,46(9):563-570.
[60]MACKENZIE D I,NICHOLS J D,ROYLE J A,etal.Occupancy Estimation and Modeling:Inferring Patterns and Dynamics of Species Occurrence[M].Burlington,MA,USA:Academic Press,2005.
[61]ALBANESE B,PETERSON J T,FREEMAN B J,etal.Accounting for Incomplete Detection When Estimating Site Occupancy of Bluenose Shiner (Pteronotropiswelaka) in Southwest Georgia[J].Southeastern Naturalist,2007,6(4):657-668.
[62]WEIR L A,FISKE I J,ROYLE J A.Trends in Anuran Occupancy From Northeastern States of the North American Amphibian Monitoring Program[J].Herpetological Conservation and Biology,2009,4(3):389-402.
[63]IRVIN E,DUREN K R,BULER J J,etal.A Multi-Scale Occupancy Model for the Grasshopper Sparrow in the Mid-Atlantic[J].The Journal of Wildlife Management,2013,77(8):1564-1571.
[64]ANDREW-TILKER B S.Estimating Site Occupancy for Four Threatened Mammals in Southeastern Laos[D].Austin,USA:The University of Texas at Austin,2014.
[65]NAGY-REIS M B,NICHOLS J D,HINES J E,etal.Estimating Occupancy and Detection Probability of Callicebus Nigrifrons and Callithrix Aurita From Call Surveys in a Large Atlantic Forest Remnant[C]∥Meeting of the American Society of Primatologists.[s. l.]:[s. n.],2015:72-73.
[66]肖治術(shù),李欣海,王學(xué)志,等.探討我國森林野生動物紅外相機監(jiān)測規(guī)范[J].生物多樣性,2014,22(6):704-711.[XIAO Zhi-shu,LI Xin-hai,WANG Xue-zhi,etal.Developing Camera-Trapping Protocols for Wildlife Monitoring in Chinese Forests[J].Biodiversity Science,2014,22(6):704-711.]
[67]ROYLE J A,LINK W A.Generalized Site Occupancy Models Allowing for False Positive and False Negative Errors[J].Ecology,2006,87(4):835-841.
[68]BROWN W S,KéRY M,HINES J E.Survival of Timber Rattlesnakes (Crotalushorridus) Estimated by Capture-Recapture Models in Relation to Age,Sex,Color Morph,Time,and Birthplace[J].Copeia,2007(3):656-671.
[69]HOCHACHKA W M,FIEDLER W.Trends in Trap Ability and Stop-Over Duration Can Confound Interpretations of Population Trajectories From Long-Term Migration Ringing Studies[J].Journal of Ornithology,2008,149(3):375-391.
[70]ROTA C T,WIKLE C K,KAYS R W,etal.A Two-Species Occupancy Model Accommodating Simultaneous Spatial and Interspecific Dependence[J].Ecology,2016,97(1):48-53.
[71]BAYLEY P B,PETERSON J T.An Approach to Estimate Probability of Presence and Richness of Fish Species[J].Transactions of the American Fisheries Society,2001,130(4):620-633.
[72]ROYLE J A,NICHOLS J D.Estimating Abundance From Repeated Presence-Absence Data or Point Counts[J].Ecology,2003,84(3):777-790.
[73]TYRE A J,TENHUMBERG B,FIELD S A,etal.Improving Precision and Reducing Bias in Biological Surveys:Estimating False-Negative Error Rates[J].Ecological Applications,2003,13(6):1790-1801.
[74]FISKE I J,ROYLE J A,GROSS K.Inference for Finite-Sample Trajectories in Dynamic Multi-State Site-Occupancy Models Using Hidden Markov Model Smoothing[J].Environmental and Ecological Statistics,2014,21(2):313-328.
[75]WEIR L A,ROYLE J A,NANJAPPA P,etal.Modeling Anuran Detection and Site Occupancy on North American Amphibian Monitoring Program (NAAMP) Routes in Maryland[J].Journal of Herpetology,2009,39(4):627-639.
(責(zé)任編輯: 李祥敏)
Site Occupancy Model: Principles and Research Progress.
WANYa-qiong1,GUOWei-bo2,WUJun2,LILi1,XUHai-gen2
(1.School of Life Sciences, Nanjing Normal University, Nanjing 210046, China; 2.Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing 210042, China)
The site occupancy model, developed by Mackenzie in 2002, has been used to estimate proportion of an area occupied by target species for further efforts to estimate abundance of the species, predict range of its distribution and learn its community structure. A review is oriented to introduce basic principles of the occupancy model, including data type, basic parameters, model selection and application scope, and also summarize progresses of the researches of the model and its application. However, so far, the studies on the model and its application are mainly credited to foreign scholars, though in recent years, some researchers in China have also set out to try the model in the field of surveys and monitoring. On such a basis, some problems that may pop up in the actual application of the model have been analyzed, such as introduction of covariates, heterogeneity of detectivity, imperfectness of observations, lack of observations, etc. and the causes of these problems have been explained. In the end, proposals for further perfecting the model and applying it to biodiversity surveying and monitoring programs in China have been brought forth, and hence to provide some effective technical support for biodiversity protection.
site occupancy model; occupancy rate; detectivity; covariate
2016-07-29
環(huán)境保護部生物多樣性保護專項(2111101)
Q14
A
1673-4831(2017)08-0673-07
10.11934/j.issn.1673-4831.2017.08.001
萬雅瓊(1992—),女,湖北宜昌人,碩士生,主要研究方向為生物多樣性保護。E-mail:qiong1273692100@163.com
①通信作者E-mail: xhg@nies.org