李懿淼, 李茂田*, 艾 威, 劉曉強, 趙寶成
(1. 華東師范大學河口海岸學國家重點實驗室,上海 200062;2. 上海市地質(zhì)調(diào)查研究院,上海 200072)
長江流域水庫“泥沙過濾器”效應對溶解硅的滯留行為
李懿淼1, 李茂田1*, 艾 威1, 劉曉強1, 趙寶成2
(1. 華東師范大學河口海岸學國家重點實驗室,上海 200062;2. 上海市地質(zhì)調(diào)查研究院,上海 200072)
近幾十年來,長江入海溶解硅(DSi)通量顯著下降,對河口和近海藻類及赤潮災害產(chǎn)生深遠影響。傳統(tǒng)認為水庫“生物過濾器”效應是DSi下降的主因,但研究表明“生物過濾器”對DSi的滯留量遠小于實際觀測的減少量。本文將長江流域大型水庫按照滯留時間分成四類,并選取柘溪水庫、柘林水庫、花涼亭水庫、鴨河口水庫作為四類典型代表,利用現(xiàn)場采取的表層沉積樣,系統(tǒng)研究水庫“泥沙過濾器”對DSi的滯留效應。結(jié)果表明:四類水庫單位泥沙對DSi的滯留率為0.25‰(平均解吸減少率0.11‰+平均吸附率0.14‰);四類水庫因泥沙沉降對DSi的總滯留量范圍為97~625t/yr,平均為259t/yr;全流域162座大型水庫因泥沙沉降對DSi的滯留量合計為16.88×104t/yr,占流域年入海通量減少量的9.12%。
泥沙動力學;“泥沙過濾器”效應;溶解硅;解吸;吸附;長江流域
硅元素在地殼中約占27.6%,元素豐度僅次于氧元素[1],大部分以硅鋁酸鹽(CaAl2Si2O8)的形式固定在巖石中,每年約有19~46Tmol(萬億摩爾)風化為溶解硅(DSi)[2]。通常,穩(wěn)定的風化過程會使得河流中DSi的濃度和通量保持穩(wěn)定,很少出現(xiàn)增加或者減少的趨勢,但近幾十年來DSi卻呈現(xiàn)明顯下降的趨勢,以長江大通站的DSi濃度為例,從1960s的7.47mg/L下降到2010s的2.0mg/L,下降了60%[3]。自1950s以來,長江流域進入筑壩活動的高峰期,截止2006年,長江流域建設各類水庫42710座,其中庫容在1億m3的水庫有162座[4],累計庫容達1554億m3,占年均徑流量9604億m3的16.8%[3]。
目前人們普遍認為水庫及其富營養(yǎng)化是世界范圍內(nèi)河流硅通量減少的主要因素[5],并將水庫滯留DSi的機理稱為“生物過濾器”效應。“生物過濾器”效應認為:河流水庫化后使得河流的流速下降、滯留時間延長、能見度提高等一系列水體環(huán)境變化均有利于硅藻的生長,因此水庫內(nèi)的硅藻會迅速生長發(fā)育并隨之沉降從而消耗大量的DSi[6]。但是最近研究表明:水庫因生物作用滯留的DSi量遠遠低于下游DSi的入海濃度及通量。根據(jù)經(jīng)典的Vollenweider模型[7~9](磷限制模型,一種主要的生物過濾器滯留DSi的計算模型)對長江流域162座水庫的DSi的滯留量的計算表明:水庫對DSi的滯留通量僅僅占全年通量的17%~18%[10],遠遠小于各地觀測值。
實際上水庫顆粒物的沉降速率是天然湖泊的4.7倍[11],水庫對DSi的滯留過程始終是在懸浮顆粒物沉降過程中實現(xiàn)的。水庫過濾DSi的過程是DSi、懸浮顆粒物、生物三者之間的生物地球化學過程。本文認為:除“生物過濾器”效應外,懸浮顆粒物吸附DSi的“泥沙過濾器”效應也對流域DSi減少具有重要貢獻。為深入認識流域水庫過濾器過程和機理,本文采集長江中下游四座不同滯留時間水庫的表層沉積物,通過室內(nèi)分析泥沙對DSi的解吸和吸附行為,探討水庫泥沙沉降過程中的DSi滯留行為,為正確評估和預測其環(huán)境影響提供新的手段和數(shù)據(jù)。
長江是中國第一大河流,流域面積約180萬km2,年均徑流量達9600億m3,并攜帶1.78~2.0億噸溶解態(tài)物質(zhì)輸入東海,對長江口及東海近海生態(tài)系統(tǒng)產(chǎn)生重要的影響[12,13]。截止2006年,長江流域庫容在1億m3的水庫有162座(圖1)。
滯留時間的長短決定了水庫中浮游藻類種群數(shù)量能否維持,滯留時間太短,特別是當滯留時間達不到細胞分裂所需的時間時(0.12~7.5d)[14],浮游藻類生物量的積累和生產(chǎn)力將會流失,即浮游藻類缺乏足夠的時間進行生長繁殖,導致其種群數(shù)量難以維持。對Asahi河水庫的研究表明浮游藻類進行充分的生長發(fā)育至少需要2周時間[15]。因此,本文按滯留時間將長江流域162座大型水庫分成四類,然后在每一類別中選取一座水庫作為代表水庫,A類為滯留時間小于18天(0.001~0.05年),并選取柘溪水庫為作為代表;B類為滯留時間大于18天小于半年(0.05~0.5年),并選取柘林水庫作為代表;C類為滯留時間大于半年小于2年(0.5~2年),并選取花涼亭水庫作為代表;D類為滯留時間大于2年(>2年),并選取鴨河口水庫作為代表。
柘溪水庫位于洞庭湖流域資水中游,多年平均徑流量760m3/s,控制流域面積22640km2,占全流域面積的80%,總庫容35.7億m3[16],滯留時間為0.05年;柘林水庫位于鄱陽湖流域修水中游,水庫截修河流域面積9340km2,多年平均徑流量為428m3/s,總庫容79.2億m3[17],滯留時間為0.26年;花涼亭水庫位于長江流域皖河支流長河,水庫控制流域面積1880km2,多年平均入庫流量43.2m3/s,總庫容23.98 億m3[18],滯留時間為1.28年;鴨河口水庫位于長江流域漢江支流唐白河水系白河上游,水庫控制流域面積3030km2,庫區(qū)正常水面面積約120km2,多年平均徑流量2.61億m3,水庫總庫容13.16億m3[19],滯留時間為2.85年。
圖1 長江流域水庫和四座代表水庫位置分布Fig.1 Location map of reservoirs and 4 representative reservoirs in the Yangtze River Basin
2.1 野外觀測和樣品采集
我們于2015年4-5月分別對四座水庫進行了野外觀測并采集表層沉積樣,采樣點分布如圖2所示。
柘溪水庫,沿程60km設置4個采樣點,從上到下依次為ZXRA、ZXRB、ZXRC和ZXRD。柘林水庫沿程56km設置4個采樣點,從上到下依次為ZLRA、ZLRB、ZLRC和ZLRD?;鐾に畮煅爻?4km設置4個采樣點,從上向下依次為HLTRA、HLTRB、HLTRC。鴨河口水庫,沿程14km設置3個采樣點,從上到下依次為YHKRA、YHKRB、YHKRC。
2.2 泥沙滯留DSi的實驗分析
水庫泥沙對DSi滯留過程本質(zhì)上懸浮顆粒和DSi分子的相互作用,其作用為顆粒物沉降過程中對DSi的吸附作用和解吸減少作用。泥沙吸附DSi作用是指單位沉積物與單位水庫水體(DSi濃度為水庫平均背景濃度)充分混合,經(jīng)平衡反應后(24h),水體中DSi濃度減少量(mg/L);泥沙解吸DSi減少作用指單位沉積物與單位去離子水充分混合,經(jīng)平衡反應后(24h),水體中DSi的增加量(mg/L),這部分增加量因為泥沙沉降于水庫內(nèi),導致不能向水體釋放DSi,因此稱為泥沙解吸DSi減少量。DSi濃度測定利用標準的硅鉬藍法[20]。
圖2 水庫表層沉積物采樣點位分布Fig.2 Sampling site distribution of reservoir surface sediment
根據(jù)室內(nèi)對4座水庫14個表層懸浮顆粒對DSi的吸附率與解吸率的分析,估算水庫由于泥沙沉降對DSi的年滯留量,方法如下。
水庫“泥沙過濾器”解吸減少作用導致的DSi的滯留量,公式如下:
式中,∑Si解吸為“泥沙過濾器”解吸減少作用對DSi的滯留量,MDSi解吸為1g表層沉積樣在去離子水中所解吸出的DSi量,即泥沙對DSi的解吸減少率。ρ為水庫泥沙干樣密度,rs為水庫平均沉降速率(210Pb沉積速率,根據(jù)水庫柱樣測定),S為水庫面積,用柱樣沉降速率代表,60%為水庫有效的沉降面積。
水庫“泥沙過濾器”吸附作用對DSi的滯留量,公式如下:
式中,∑Si吸附為“泥沙過濾器”中吸附作用對DSi的滯留量,MDSi吸附為1g表層沉積樣吸附的DSi量,即泥沙對DSi的吸附率,ρ為水庫泥沙干樣密度,rs為水庫平均沉降速率,S為水庫面積,用代表,60%為水庫有效的沉降面積。
最終水庫“泥沙過濾器”效應對DSi的滯留量為解吸減少作用和吸附作用之和。
2.3 全流域162座水庫“泥沙過濾器”效應對溶解硅的滯留
同樣,根據(jù)四類水庫的泥沙平均解吸減少率和平均吸附率,并結(jié)合長江流域水庫的泥沙淤積量,估算長江流域162座大型水庫對DSi的滯留量。
3.1 四類水庫泥沙解吸減少作用導致的DSi的滯留量
水庫因泥沙沉降產(chǎn)生了顯著的DSi解吸量減少現(xiàn)象,而且滯留量呈現(xiàn)出獨特的時空特征。(1)同一水庫從上游向下游總體減少。柘溪水庫表層沉積物在去離子水中每克解吸DSi的量由上游0.247mg/L減少到下游的0.235mg/L,減少量為0.012mg/L;柘林水庫由上游的0.233mg/L減少到下游的0.223mg/L,減少量為0.011mg/L;花涼亭水庫由上游的0.226mg/L減少到下游的0.208mg/L,減少量為0.08mg/L;鴨河口水庫由上游的0.220mg/L減少到下游的0.214mg/L,減少量為0.06mg/L(圖3)。(2)不同水庫隨水庫滯留時間增加而總體減少。柘溪、柘林、花涼亭和鴨河口四個水庫滯留時間分別為0.05年,0.26年,1.28年,2.85年;表層沉積物在去離子水中平均每克解吸量由柘溪的0.243mg/L減少到鴨河口的0.214mg/L;平均解吸減少率由柘溪的0.122‰減少到鴨河口的0.107‰(圖3,表1),四座水庫表層沉積樣的平均解吸減少率為0.112‰。
結(jié)合水庫的沉降速率和水面面積,可以計算出每座水庫的泥沙淤積量,再考慮每座水庫每克表層沉積樣在去離子水中解吸出的DSi量,可以計算出每座水庫“泥沙過濾器”解吸減少作用導致的DSi滯留量。結(jié)果如下:柘溪水庫的∑Si解吸為89t/yr;柘林水庫的∑Si解吸為264t/yr;花涼亭水庫的∑Si解吸為44t/yr;鴨河口水庫的∑Si解吸為57t/yr(表1)。
圖3 四座水庫上中下游表層沉積樣對DSi的解吸吸附作用Fig.3 Desorption and adsorption of DSi on surface sediments of upper, middle and lower reaches of four reservoirs
3.2 四類水庫泥沙吸附作用導致的DSi的滯留量
泥沙在其沉降過程中還產(chǎn)生顯著的DSi吸附滯留量,而且吸附滯留量也表現(xiàn)出:(1)同一水庫從上游到下游總體減少。柘溪水庫表層沉積物在DSi濃度為4mg/L的溶液中每克吸附DSi的量由上游的0.292mg/L減少到下游的0.261mg/ L,減少了0.31mg/L;柘林水庫由上游的0.313mg/L下降到下游的0.301mg/L,減少了0.012mg/L;花涼亭水庫由上游的0.266mg/L下降到下游的0.251mg/L,減少了0.015mg/L;鴨河口水庫有上游的0.251mg/L下降到下游的0.253mg/L,減少了0.02mg/L。(2)不同水庫隨水庫滯留時間增加而總體減少。柘溪、柘林、花涼亭和鴨河口四個水庫平均吸附量由柘溪的0.278mg/L,減少到鴨河口的0.251mg/L;平均吸附率由柘溪的0.139‰減少到鴨河口的0.125‰(圖3,表1)。四座水庫表層沉積樣的平均吸附率為0.14‰
結(jié)合水庫的沉降速率和水面面積,可以計算出每座水庫的泥沙淤積量,再考慮每座水庫每克表層沉積樣吸附的DSi量可以計算出每座水庫“泥沙過濾器”吸附作用對DSi的滯留量,計算得出,柘溪水庫的∑Si吸附為101t/yr;柘林水庫的∑Si吸附為361t/yr;花涼亭水庫的∑Si吸附為53t/yr;鴨河口水庫的∑Si吸附為66t/yr(表1)。
3.3 四類水庫“泥沙過濾器”效應對DSi的滯留量
根據(jù)公式(3),四座水庫中“泥沙過濾器”的吸附-解吸總滯留量如下,柘溪水庫的∑Si泥沙為190t/yr;柘林水庫的∑Si泥沙為625t/yr;花涼亭水庫的∑Si泥沙為97t/yr;鴨河口水庫的∑Si泥沙為123t/yr(表1)。
表1 四座水庫“泥沙過濾器”效應對DSi的滯留量Table 1 Retention of DSi by "sediment filter" effect in four reservoirs
對于水庫“泥沙過濾器”的解吸-吸附所表現(xiàn)的時空特征,即同一水庫從上游向下游和不同水庫隨滯留時間增加,泥沙對DSi的解吸-吸附作用均呈現(xiàn)下降趨勢,其分析如下:河流水庫化后,從上游到下游,河流流速不斷降低,粗顆粒泥沙不斷沉降,導致下游懸浮顆粒不斷變??;同時,不同水庫,隨滯留時間增加,粗顆粒泥沙也不斷沉降,也導致水體懸浮顆粒不斷變小。上述兩種原因均導致水體懸浮顆粒變小,沉降速度變慢,從而捕獲和附著有機質(zhì)和膠體物質(zhì)增多,導致泥沙對DSi的吸引力增加,使得泥沙解吸DSi能力降低,同時由于更多DSi分子被吸引在泥沙顆粒周圍,導致泥沙進一步從水體中吸附DSi的能力也降低。
3.3 全流域“泥沙過濾器”解吸減少作用和吸附作用導致的DSi滯留量
水庫的建設是一個循序漸進的過程,據(jù)估計,54座大于5億m3的水庫淤積的泥沙約占所有水庫的87%[21],假設長江流域的162座大型水庫同時建起并蓄水,其對泥沙的淤積量可達6.75×108t/yr。
通過四座水庫表層泥沙的解吸率估算整個長江流域泥沙的解吸率約為0.11‰,即1×104t泥沙可以解吸出1.1tDSi,亦即水庫建設后,由于這部分泥沙的沉降,其解吸減少作用導致解吸出的DSi量減少,從而水庫的DSi濃度下降;通過四座水庫表層泥沙的吸附率估算整個長江流域泥沙的解吸率約為0.14‰,即1×104t泥沙可以吸附水體中1.4tDSi,亦即水庫建設后,由于這部分在沉降過程中對DSi的吸附,導致水庫的DSi濃度下降。于是估算出整個長江流域由于“泥沙過濾器”效應導致的DSi滯留量約為16.88×104t/yr,占年均入海DSi通量減少量(1990s相比1960s)1.85×106t/yr[21]的9.12%。
流域水庫化導致的泥沙沉降產(chǎn)生了顯著DSi的“泥沙過濾器”效應。四類代表水庫中“泥沙過濾器”效應對DSi的總滯留量為97~625t/yr,平均滯留量為259t/yr。流域由于“泥沙過濾器”效應導致的DSi減少量約為16.88×104t/yr,占年均入海DSi通量減少量的9.12%。
水庫DSi的“泥沙過濾器”效應有顯著的時空變化特征。同一水庫從上游到下游,以及不同水庫隨滯留時間的增加,DSi的“泥沙過濾器”效應均呈現(xiàn)減小趨勢。
References)
[1] Wollast R, Mackenzie F T. The global cycle of silica. In: Aston S R (ed) Silicon geochemistry and biochemistry[M]. San Diego: Academic Press, 1983:39-76.
[2] Eric S, Smis A, Damme S V, et al. The global biogeochemical silicon cycle[J]. Silicon, 2009,1:207-213.
[3] Li M T, Wang H, Li Y M, et al. Sedimentary BSi and TOC quantifies the degradation of the Changjiang Estuary, China, from river basin alteration and warming SST[J]. Estuarine, Coastal and Shelf Science, 2016:1-10.
[4] 水利部. 2008年全國水利發(fā)展統(tǒng)計公報[R]. 北京: 中國水利水電出版社, 2009. Ministry of Water Resources of the People's Republic of China. National statistical bulletin on water development in 2008[R]. Beijing: China Water Conservancy and Hydropower Publishing House,2009.
[5] Ragueneau O, Conley D J, Leynaert A, et al. Responses of coastal ecosystems to anthropogenic perturbations of silicon cycling[M]. The Silicon Cycle: Human Perturbations and Impacts on Aquatic Systems. 2006,198-213.
[6] 冉祥濱,于志剛,姚慶禎,等. 水庫對河流營養(yǎng)鹽滯留效應研究進展[J]. 湖泊科學, 2009, 21(5): 614-622. Ran X B, Yu Z GYao Q Z, et al. Advances in nutrient retention of dams on river[J]. Journalof Lake Science, 2009,21(5):614-622.
[7] Vollenweider R A, Kerekes J. Loading concept as basis for controlling eutrophication philosophy and preliminary results of the OECD Programme on Eutrophication[J]. Progress in Water Technology, 1980, 12:5-38.
[8] Zhang J, Zhang Z F, Liu S M, et al. Human impacts on the large world rivers: Would the Changjiang (Yangtze River) be an illustration?[J]. Global Biogeochemical Cycles, 1999,13(4):1099-1105.
[9] Harrison J A, Seitzinger S P., Bouwman A F, et al. Dissolved inorganic phosphorus export to the coastal zone: Results from a spatially explicit, global model[J]. Global Biogeochemical Cycles, 2005,19(4):367-384.
[10] Beusen A H, Bouwman A F, Dürr H H, et al. Global patterns of dissolved silica export to the coastal zone: Results from a spatially explicit global model[J]. Global Biogeochemical Cycles, 2009, 23(4):GB0A02.
[11] Dean W E, Gorham E. Magnitude and significance of carbon burial in lakes, reservoirs, and peatlands[J]. Geology, 1998,26(6):535-538.
[12] Chen Z Y, Li J F, Shen H T, et al. Yangtze River of China: historical analysis of discharge variability and sediment flux[J]. Geomorphology, 2001,41:77-91.
[13] Duan S W, Xu F, Wang L J. Long-term changes in nutrient concentrations of the Changjiang River and principal tributaries[J]. Biogeochemistry, 2007,85:215-234.
[14] le Cren E D, Lowe-McConnell R H. The functioning of freshwater ecosystems[M]. Cambridge University Press, 1980,505-570.
[15] Kawara O, Yura E, Fujii S, et al. A study on the role of hydraulic retention time in eutrophication of the Asahi River Dam reservoir[J]. Water Science and Technology, 1998,37(2):245-252.
[16] 益陽市志編纂委員會. 益陽市志[M]. 北京:中國文史出版社, 1990:1-260. Yiyang City Annals Compilation Committee. Yiyang City Annals[M]. Beijing: China Literature and History Press, 1990: 1-260.
[17] 熊未喜. 武寧縣志[M]. 南昌:江西人民出版社, 2009:111-255. Xiong W X. Wuning County annals[M]. Nanchang: Jiangxi People Press, 2009:111-255.
[18] 陳文傳. 太湖縣志[M]. 合肥:黃山書社, 2007:49-384. Chen W C. Taihu County annals[M]. Hefei: Huangshan Publishing House, 2007:49-384.
[19] 孫愛芳. 南召縣志[M]. 北京:方志出版社, 2007:79-243. Sun A F. Nanzhao County annals[M]. Beijing:Local Records Press, 2007:79-243.
[20] 國家質(zhì)量技術監(jiān)督局. 海洋監(jiān)測規(guī)范. 第4部分:海水分析(GB 17378.4-2007)[S]. 北京:中國標準出版社, 2007:57-59. State Bureau of Quality and Technical Supervision. Specification for marine monitoring. Part fourth: sea water analysis(GB 17378.4-2007)[S]. Beijing: China Standard Press, 2007:57-59.
[21] 李茂田,孫千里,王紅,等. 長江流域水庫"過濾器效應"對入海溶解硅通量的影響[J]. 湖泊科學,2014,26(4):505-514. Li M T, Sun Q L, Wang H, et al. The filter effect of big reservoirs on dissolved silicate flux decrease in the Yangtze River drainage basin[J]. Journal of Lake Science, 2014,26(4):505-514.
[22] Dynesius M, Nilsson C. Fragmentation and flow regulation of river systems in the northern third of the world.[J]. Science, 1994, 266(5186):753-762.
[23] 何劍波. 千島湖水溫 溶解氧及葉綠素a垂向特征研究[D]. 浙江工業(yè)大學碩士學位論文, 2014. He J B. Vertical characteristics of water temperature, dissolved oxygen and Chlorophyll-a in QiandaohuLake[D]. Master’s thesis, Zhejiang University of Technology, 2014.
[24] 李懿淼,李茂田,艾威,等. 江西柘林水庫春季浮游藻類 葉綠素a與環(huán)境因子的分布 關系及意義[J]. 湖泊科學,2017,29(3):625-636. Li Y M, Li M T, Ai W, et al. Distribution, relationship and significance of phytoplankton, chlorophyll-a and environment variables in spring season of the Zhelin Reservoir, Jiangxi Province[J]. Journal of Lake Science, 2017,29(3):625-636.
[25] Horne R A. Marine Chemistry: the structure of water and the chemistry of the hydrosphere[J]. International Review of Hydrobiology, 2010,56(1):143.
Sediment filter effect on dissolved silica retention in reservoirs of the Yangtze River Basin
LI Yi-Miao1, LI Mao-Tian1, AI Wei1, LIU Xiao-Qiang1, ZHAO Bao-Cheng2
(1. State Key Laboratory of Estuarine and Costal Research, East China Normal University, Shanghai 200062, China; 2. Shanghai Institute of Geological Survey, Shanghai 200072, China)
In recent decades, the dissolved silicate (DSi) flux from the Yangtze River into the sea has declined significantly, and this decline has had a profound influence on algae and red tide in the estuary and offshore area. Traditionally, the main reason for the decline is the bio-filter effect of reservoir; however, the reduction in DSi caused by bio-filter effect is much less than the actual observed value. In this paper, large reservoirs are divided into four classes according to residence time, and the Zhexi Reservoir, Zhelin Reservoir, Hualiangting Reservoir, and Yahekou Reservoir are each chosen to be studied from the four classes, respectively. To study the sediment filter effect on DSi, surface sediment samples were analyzed. The results show: 1) the average detention rate of DSi in the four reservoirs is 0.25‰ (the average desorption decrement rate is 0.11‰, and the average adsorption is 0.14‰). 2) The retention volume of DSi ranges from 97 t/yr to 625 t/yr, and the average is 259 t/yr for the four reservoirs. 3) The total retention volume of DSi for 162 large reservoirs is 16.88×104t/yr, which accounts for 9.12% of all decrement.
sediment dynamics; sediment filter effect; dissolved silicate (DSi); desorption; adsorption; Yangtze River Basin
TV145+.3
:A
:2095-1329(2017)02-0049-05
10.3969/j.issn.2095-1329.2017.02.013
2017-03-18
修回日期: 2017-05-26
李懿淼(1992-),男,碩士生,主要從事流域水庫環(huán)境影響研究.
電子郵箱: liyimiao@foxmail.com
聯(lián)系電話: 021-62231985
國家自然科學基金項目(41271520);
國家重點研發(fā)計劃項目(2016YFA0600904)
*通訊作者: 李茂田(博士/副教授): mtli@sklec.ecnu.edu.cn