羅 程,賈曉燕,卓麗華,曹衛(wèi)芳,蔣宇超,蔣思思,堯德中
?
腦影像專(zhuān)題
小腦非運(yùn)動(dòng)功能異常的影像研究進(jìn)展
羅 程1*,賈曉燕1,卓麗華2,曹衛(wèi)芳1,蔣宇超1,蔣思思1,堯德中1
(1.電子科技大學(xué),四川 成都 610054;2.綿陽(yáng)市第三人民醫(yī)院,四川 綿陽(yáng) 621000*通信作者:羅 程,E-mail: chengluo@uestc.edu.cn)
現(xiàn)代神經(jīng)成像技術(shù)已經(jīng)能在活體上獲得近似于真實(shí)的小腦與大腦結(jié)構(gòu)功能連接特征。近年來(lái)的研究已發(fā)現(xiàn)小腦在認(rèn)知、注意、情感和語(yǔ)言等非運(yùn)動(dòng)功能方面起到了重要作用。在神經(jīng)精神疾病中,小腦異常也參與了神經(jīng)認(rèn)知損害。本文針對(duì)包括老化、癲癇和精神分裂癥在內(nèi)的典型小腦非運(yùn)動(dòng)功能異常,從結(jié)構(gòu)、功能和腦連接角度綜述了小腦的影像研究進(jìn)展。對(duì)于探索小腦的非運(yùn)動(dòng)功能及其在老化和神經(jīng)精神疾病中的病理生理機(jī)制具有重要的科學(xué)意義。
小腦;老化;癲癇;精神分裂癥;神經(jīng)影像
小腦位于顱骨后窩,通過(guò)三對(duì)小腦腳連接于腦干,再與脊髓和大腦進(jìn)行纖維聯(lián)系。早期的動(dòng)物研究證明了小腦通過(guò)兩個(gè)多突觸回路與對(duì)側(cè)的大腦皮層構(gòu)成了不同功能的閉環(huán)連接。小腦的輸入纖維束大部分是通過(guò)中小腦腳(MCP)進(jìn)入小腦,以形成皮層-腦橋-小腦(CPC)通路,從而獲得大腦皮層信息;小腦輸出纖維束主要來(lái)自四個(gè)深部小腦核團(tuán):齒狀核、栓狀核、球狀核和頂核,在腦干交叉后通過(guò)對(duì)側(cè)丘腦投射到大腦皮層(齒狀核-丘腦-皮層通路)[1-2]。傳統(tǒng)的觀點(diǎn)認(rèn)為,小腦參與功能整合大腦感覺(jué)區(qū)和運(yùn)動(dòng)區(qū)以協(xié)調(diào)精細(xì)動(dòng)作。近年來(lái),隨著神經(jīng)成像技術(shù)的發(fā)展,小腦的非運(yùn)動(dòng)功能得到了重視,已發(fā)現(xiàn)小腦在認(rèn)知、注意、情感和語(yǔ)言等方面發(fā)揮了重要作用。特別在神經(jīng)精神疾病中,小腦相關(guān)病變會(huì)導(dǎo)致神經(jīng)認(rèn)知異常等非運(yùn)動(dòng)功能損害。因此,在老化及諸如癲癇、精神分裂癥等神經(jīng)精神疾病中,小腦功能影像的研究進(jìn)展引起了廣泛關(guān)注。
現(xiàn)代神經(jīng)成像研究揭示小腦與大腦皮層間存在廣泛的功能連接,而且針對(duì)不同的小腦亞區(qū)存在不同的閉合回路,形成了一個(gè)復(fù)雜的小腦-大腦拓?fù)鋱D[3-4]。這些閉合的回路構(gòu)成了小腦和大腦相互連接的基本結(jié)構(gòu)特征。目前,小腦分區(qū)主要采用1999年Schmahmann等[5]提出的十區(qū)法,將小腦的兩個(gè)半球和蚓體劃分成10個(gè)亞區(qū)(I-X區(qū))。小腦的結(jié)構(gòu)和生理研究揭示了小腦的前葉與初級(jí)感覺(jué)運(yùn)動(dòng)有關(guān),后葉的內(nèi)側(cè)部分與次級(jí)感覺(jué)運(yùn)動(dòng)有關(guān),而與認(rèn)知行為有關(guān)的大腦聯(lián)合皮層則優(yōu)先連接到小腦后葉的外側(cè)部分[6-7]。Stoodley等[8]的一個(gè)元分析結(jié)果表明,高級(jí)認(rèn)知任務(wù)主要激活小腦后葉,如語(yǔ)言工作記憶任務(wù)激活了小腦VI區(qū)和腳I區(qū),執(zhí)行功能有關(guān)任務(wù)激活了小腦VI區(qū)、腳I區(qū)和VIIB區(qū),而情緒處理任務(wù)則激活了小腦VI區(qū)、腳I區(qū)和小腦VIIB區(qū)。其它基于任務(wù)的神經(jīng)成像結(jié)果也驗(yàn)證了感知覺(jué)運(yùn)動(dòng)相關(guān)的任務(wù)激活小腦前葉而認(rèn)知任務(wù)激活小腦后葉的模式[9-10]。有利用靜息態(tài)功能連接的分析也發(fā)現(xiàn),小腦的V區(qū)、VI區(qū)以及VIII區(qū)與大腦的初級(jí)感覺(jué)運(yùn)動(dòng)皮層有很強(qiáng)的功能連接,而小腦VII區(qū)、腳I區(qū)和腳II區(qū)與額葉以及后頂葉有連接[11]。此外,Bernard等[12]利用功能連接方法研究小腦半球的各個(gè)亞區(qū)與大腦皮層間的連接,同樣證實(shí)了小腦前葉與運(yùn)動(dòng)皮層的強(qiáng)功能連接,小腦后部主要與前額葉、頂葉有強(qiáng)功能連接。這些任務(wù)態(tài)和靜息態(tài)的神經(jīng)成像均驗(yàn)證了小腦與大腦之間的功能耦合參與了人類(lèi)的認(rèn)知過(guò)程。此外,也有研究認(rèn)為大腦-小腦回路更多是開(kāi)放式的,如小腦從多個(gè)大腦皮層接受輸入,包括對(duì)側(cè)和同側(cè)的腦區(qū)[13]。這種多維耦合模式增加了小腦參與認(rèn)知功能的復(fù)雜性。神經(jīng)成像以及心理行為學(xué)評(píng)估研究一致表明,老化過(guò)程會(huì)損害大腦結(jié)構(gòu)和功能,導(dǎo)致行為的損害[14-15]。一般來(lái)說(shuō),整個(gè)小腦體積受老化的影響,相對(duì)于青年人,老年人的小腦體積更小[16],縱向設(shè)計(jì)的研究也發(fā)現(xiàn)小腦體積隨年齡增加而減小[17]。近年來(lái),許多磁共振成像(magnetic resonance imaging,MRI)研究更關(guān)注小腦局部腦區(qū)受年齡的影響。Abe等[16]的研究發(fā)現(xiàn)小腦后部特別是小腦腳I區(qū)和II區(qū)受年齡的影響特別大。Bernard等[18]的研究發(fā)現(xiàn)小腦前葉和小腦腳I區(qū)受年齡影響最大。Alexander等[19]利用灰質(zhì)協(xié)方差網(wǎng)絡(luò)研究發(fā)現(xiàn),小腦(特別是小腦腳I區(qū)和II區(qū))體積和額葉、顳葉及丘腦體積的改變均與年齡有關(guān)。彌散張量成像(diffusion tensor imaging,DTI)能夠在活體上探索腦白質(zhì)纖維束的結(jié)構(gòu)特征。已有的DTI研究發(fā)現(xiàn)小腦白質(zhì)纖維束的完整性受年齡的影響[20],提供了老化改變小腦白質(zhì)的結(jié)構(gòu)性證據(jù)。
在功能成像方面,大量研究發(fā)現(xiàn)了小腦與大腦的功能耦合受年齡的影響。有任務(wù)態(tài)功能磁共振(functional magnetic resonance imaging,fMRI)研究發(fā)現(xiàn),在完成同等難度的運(yùn)動(dòng)執(zhí)行任務(wù)時(shí),老年人的小腦前部(I-V區(qū))激活比青年人更顯著[21-22];在符號(hào)運(yùn)動(dòng)學(xué)習(xí)任務(wù)中,老年人的小腦VI區(qū)激活更明顯[23];在執(zhí)行單純感知覺(jué)任務(wù)時(shí),老年人的小腦腳I、II區(qū)以及VI區(qū)則顯示出更低的激活[24]。一項(xiàng)對(duì)正常老化的靜息態(tài)研究發(fā)現(xiàn),老化可能會(huì)破壞大腦與小腦間的功能連接;與正常年輕人相比,老年人的連接普遍降低,這種降低既發(fā)生在與運(yùn)動(dòng)有關(guān)的網(wǎng)絡(luò)也發(fā)生在與認(rèn)知有關(guān)的網(wǎng)絡(luò)中[25]。而且,在靜息態(tài)fMRI研究中,老年人包括小腦在內(nèi)的運(yùn)動(dòng)區(qū)的局部一致性活動(dòng)也降低[26]。Bernard等[25]以右側(cè)小腦葉和小腦蚓體作為感興趣區(qū)來(lái)計(jì)算小腦與全腦的靜息態(tài)功能網(wǎng)絡(luò)連接,發(fā)現(xiàn)老年人小腦-基底節(jié)以及小腦-內(nèi)側(cè)顳葉回路的功能連接降低,并且這些降低的功能連接與行為學(xué)相關(guān)。此外,認(rèn)知訓(xùn)練被認(rèn)為是一種能有效緩解老化對(duì)大腦影響的手段。最近的靜息態(tài)fMRI研究發(fā)現(xiàn),多維度的認(rèn)知訓(xùn)練不但能改善大腦的腦功能連接[27],而且對(duì)小腦網(wǎng)絡(luò),特別是其連接的對(duì)稱(chēng)性有積極的作用[28]。
精神分裂癥是嚴(yán)重影響人類(lèi)健康的精神疾病,主要表現(xiàn)為感知、思維、情感和行為等多方面的障礙以及精神活動(dòng)與環(huán)境的不協(xié)調(diào),也包含注意、記憶和執(zhí)行功能障礙等在內(nèi)的認(rèn)知功能缺陷。腦成像研究顯示廣泛的腦區(qū)受累,精神分裂癥也因此被認(rèn)為是一種腦網(wǎng)絡(luò)疾病[29]。目前,較多研究認(rèn)為精神分裂癥患者存在小腦異常,如在神經(jīng)病理學(xué)上發(fā)現(xiàn)了浦肯野細(xì)胞(Purkinje cells)的大小和密度降低[30]。同時(shí),也有學(xué)者報(bào)道了精神分裂癥患者小腦在一般精神疾病及情緒、認(rèn)知異常中起重要作用[31-33]。通過(guò)結(jié)構(gòu)MRI,有研究報(bào)道了精神分裂癥患者小腦蚓體的萎縮[34]。Picard等[35]通過(guò)整合臨床、認(rèn)知、行為和功能影像研究,提出精神分裂癥患者的皮層-小腦-丘腦-皮層環(huán)路功能異常,通過(guò)損害心理過(guò)程的平衡性導(dǎo)致精神分裂癥出現(xiàn)癥狀。
早期的腦結(jié)構(gòu)影像研究指出慢性精神分裂癥患者的小腦蚓體及其亞區(qū)體積比正常人小[36]。2012年的一個(gè)腦結(jié)構(gòu)MRI形態(tài)學(xué)分析發(fā)現(xiàn),精神分裂癥患者的左側(cè)小腦腳 I/II區(qū)灰質(zhì)體積更小,并且與患者的思維障礙相關(guān)[37]。最近一篇研究報(bào)道,精神分裂癥患者小腦蚓體的體積減小受性別影響:男性精神分裂癥患者的小腦后蚓體體積更小[38]。另一種結(jié)構(gòu)成像方法DTI,也在精神分裂癥中發(fā)現(xiàn)了小腦的白質(zhì)纖維束集成性降低[39],在小腦腳部分也有較明顯的改變[40]。
迄今為止,已有大量研究使用靜息態(tài)fMRI的功能連接分析精神分裂癥患者的小腦網(wǎng)絡(luò),發(fā)現(xiàn)不同小腦區(qū)域的連接異常。有研究在精神分裂癥患者中發(fā)現(xiàn)小腦與海馬、丘腦、中扣帶回、額下回等區(qū)域的功能連接顯著降低,并且在患者的同胞中也觀察到類(lèi)似改變[41]。精神分裂癥患者小腦與內(nèi)側(cè)丘腦核團(tuán)的功能連接也顯著降低[42]。這些研究均支持精神分裂癥患者中皮層-小腦-丘腦-皮層環(huán)路的功能異常[43]。Chen等[44]在這些研究的基礎(chǔ)上進(jìn)一步發(fā)現(xiàn)海馬結(jié)構(gòu)也參與了小腦-皮層環(huán)路間的異常功能連接。同時(shí),這些小腦的異常連接也和部分認(rèn)知功能相關(guān)。如Repovs等[45]報(bào)告了精神分裂癥患者小腦與額頂網(wǎng)絡(luò)之間的功能連接顯著降低,且與患者的工作記憶功能降低有關(guān)。因此,在將來(lái)的工作中,需要結(jié)合認(rèn)知任務(wù)的功能成像來(lái)探索小腦在精神分裂癥患者皮層-小腦-丘腦-皮層環(huán)路中的重要作用。
小腦在癲癇活動(dòng)發(fā)生及進(jìn)展中的作用一直存有爭(zhēng)議,但既往研究已從多個(gè)角度顯示了癲癇中小腦的異常,如體積和腦連接的改變等。在神經(jīng)成像研究方面,一些腦結(jié)構(gòu)分析已在不同類(lèi)型的癲癇中發(fā)現(xiàn)了小腦的體積改變。如在伴中央顳區(qū)棘波的兒童良性癲癇患者中發(fā)現(xiàn)了小腦的局部灰質(zhì)體積增加[46];而在慢性顳葉癲癇中,小腦灰質(zhì)和白質(zhì)體積均減小[47]。已有基于靜息態(tài)fMRI的一些研究展示小腦的局部網(wǎng)絡(luò)特征發(fā)生了改變[48]。在額葉癲癇中,小腦的fMRI活動(dòng)時(shí)空一致性(FOCA)顯著降低,提示與額葉癲癇的認(rèn)知功能損害有關(guān)[49]。目前,同步腦電和fMRI已被廣泛應(yīng)用于癲癇活動(dòng)機(jī)制的研究。在全面癲癇中,已有的同步腦電和fMRI研究發(fā)現(xiàn),全面性癲癇放電導(dǎo)致丘腦的激活以及小腦和廣泛皮層的負(fù)激活[50-51]。本課題組對(duì)擁有同步腦電-fMRI記錄的全面性癲癇患者進(jìn)行功能連接分析,發(fā)現(xiàn)在癲癇放電期內(nèi)小腦與基底節(jié)區(qū)的功能集成性降低,而且隨著fMRI掃描期放電次數(shù)的增加,這種改變更明顯,提示小腦協(xié)同基底節(jié)區(qū)對(duì)全面癲癇放電有調(diào)節(jié)作用[52]。最近有研究探索了青少年肌陣攣癲癇患者網(wǎng)絡(luò)之間的關(guān)系,發(fā)現(xiàn)小腦網(wǎng)絡(luò)和癲癇放電之間存在非線性關(guān)系,且與皮層運(yùn)動(dòng)網(wǎng)絡(luò)間的有效連接降低[53]。對(duì)于小腦的功能連接,目前在癲癇研究中尚無(wú)系統(tǒng)的分析,隨著神經(jīng)成像的發(fā)展和小腦功能越來(lái)越被重視,在將來(lái)的研究中需關(guān)注癲癇患者小腦結(jié)構(gòu)和功能連接特征,以探索其對(duì)癲癇活動(dòng)以及在癲癇患者認(rèn)知功能異常中的作用。
對(duì)于在癲癇中發(fā)現(xiàn)的小腦改變機(jī)制,目前主要認(rèn)為是小腦涉及到了癲癇放電或參與了癲癇相關(guān)網(wǎng)絡(luò)。早期的動(dòng)物實(shí)驗(yàn)研究發(fā)現(xiàn)小腦能間接影響大腦皮層的神經(jīng)元活動(dòng),已有的研究也顯示小腦在癲癇活動(dòng)的發(fā)生和調(diào)節(jié)中起重要作用。因此,從20世紀(jì)50年代以來(lái),已有一些通過(guò)小腦刺激術(shù)治療癲癇的嘗試[54]。但由于沒(méi)有精確定位刺激靶點(diǎn),引起的運(yùn)動(dòng)異常副作用也非常明顯,導(dǎo)致這種潛在的治療技術(shù)沒(méi)有廣泛應(yīng)用于臨床。近年來(lái),Kros等[55]通過(guò)刺激小腦深部核團(tuán),在遺傳大鼠失神癲癇模型中實(shí)現(xiàn)了對(duì)全面癲癇放電的控制,推測(cè)小腦深部核團(tuán)對(duì)皮層-丘腦網(wǎng)絡(luò)的神經(jīng)振蕩具有調(diào)節(jié)作用,這也為小腦精準(zhǔn)電刺激治療難治性癲癇提供了動(dòng)物實(shí)驗(yàn)基礎(chǔ)[56]。
總的來(lái)說(shuō),小腦參與了語(yǔ)言、注意、記憶等多種認(rèn)知過(guò)程的加工,小腦的結(jié)構(gòu)、功能、連接特征均對(duì)認(rèn)知功能有影響。在常見(jiàn)的神經(jīng)精神疾病中,小腦的結(jié)構(gòu)功能改變,特別是腦網(wǎng)絡(luò)連接特征的改變,對(duì)于探索疾病自身的病理生理機(jī)制以及小腦的非運(yùn)動(dòng)功能極其重要。在將來(lái)的研究中,應(yīng)融合高分辨的結(jié)構(gòu)和功能成像,研究小腦與大腦間的精細(xì)連接特征,探索是否可通過(guò)針對(duì)小腦的綜合治療來(lái)改善神經(jīng)精神癥狀。
[1] Kelly RM, Strick PL. Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate[J]. J Neurosci, 2003, 23(23): 8432-8444.
[2] Buckner RL. The cerebellum and cognitive function: 25 years of insight from anatomy and neuroimaging[J]. Neuron, 2013, 80(3): 807-815.
[3] Salmi J, Pallesen KJ, Neuvonen T, et al. Cognitive and motor loops of the human cerebro-cerebellar system[J]. J Cogn Neurosci, 2010, 22(11): 2663-2676.
[4] Krienen FM, Buckner RL. Segregated fronto-cerebellar circuits revealed by intrinsic functional connectivity[J]. Cereb Cortex, 2009, 19(10): 2485-2497.
[5] Schmahmann JD, Doyon J, McDonald D, et al. Three-dimensional MRI atlas of the human cerebellum in proportional stereotaxic space[J]. Neuroimage, 1999, 10(3 Pt 1):233-260.
[6] Buckner RL, Krienen FM, Castellanos A, et al. The organization of the human cerebellum estimated by intrinsic functional connectivity[J]. J Neurophysiol, 2011, 106(5): 2322-2345.
[7] O'Reilly JX, Beckmann CF, Tomassini V, et al. Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity[J]. Cereb Cortex, 2010, 20(4): 953-965.
[8] Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies[J]. Neuroimage, 2009, 44(2):489-501.
[9] Stoodley CJ, Valera EM, Schmahmann JD. Functional topography of the cerebellum for motor and cognitive tasks: an fMRI study[J]. Neuroimage, 2012, 59(2):1560-1570.
[10] Balsters JH, Laird AR, Fox PT, et al. Bridging the gap between functional and anatomical features of cortico-cerebellar circuits using meta-analytic connectivity modeling[J]. Hum Brain Mapp, 2014, 35(7):3152-3169.
[11] Habas C, Kamdar N, Nguyen D, et al.Distinct cerebellar contributions to intrinsic connectivity networks[J]. J Neurosci, 2009, 29(26): 8586-8594.
[12] Bernard JA, Seidler RD, Hassevoort KM, et al. Resting state cortico-cerebellar functional connectivity networks: a comparison of anatomical and self-organizing map approaches[J]. Front Neuroanat, 2012, 6: 31.
[13] Suzuki L, Coulon P, Sabel-Goedknegt EH, et al.Organization of cerebral projections to identified cerebellar zones in the posterior cerebellum of the rat[J]. J Neurosci, 2012, 32(32):10854-10869.
[14] Resnick SM, Pham DL, Kraut MA, et al.Longitudinal magnetic resonance imaging studies of older adults: a shrinking brain[J]. J Neurosci, 2003, 23(8): 3295-3301.
[15] Grady C. The cognitive neuroscience of ageing[J]. Nat Rev Neurosci, 2012, 13(7): 491-505.
[16] Abe O, Yamasue H, Aoki S, et al. Aging in the CNS: comparison of gray/white matter volume and diffusion tensor data[J]. Neurobiol Aging, 2008, 29(1): 102-116.
[17] Raz N, Lindenberger U, Rodrigue KM, et al. Regional brain changes in aging healthy adults: general trends, individual differences and modifiers[J]. Cereb Cortex, 2005, 15(11): 1676-1689.
[18] Bernard JA, Seidler RD. Relationships between regional cerebellar volume and sensorimotor and cognitive function in young and older adults[J]. Cerebellum, 2013, 12(5): 721-737.
[19] Alexander GE, Chen K, Merkley TL, et al. Regional network of magnetic resonance imaging gray matter volume in healthy aging[J]. Neuroreport, 2006, 17(10): 951-956.
[20] Sullivan EV, Pfefferbaum A. Diffusion tensor imaging and aging[J]. Neurosci Biobehav Rev, 2006, 30(6): 749-761.
[21] Wu T, Hallett M. The influence of normal human ageing on automatic movements[J]. J Physiol, 2005, 562(Pt 2): 605-615.
[22] Ward NS, Frackowiak RS. Age-related changes in the neural correlates of motor performance[J]. Brain, 2003, 126(Pt 4): 873-888.
[23] Bo J, Peltier SJ, Noll DC, et al. Age differences in symbolic repre-sentations of motor sequence learning[J]. Neurosci Lett, 2011, 504(1): 68-72.
[24] Ferdon S, Murphy C. The cerebellum and olfaction in the aging brain: a functional magnetic resonance imaging study[J]. Neuroimage, 2003, 20(1): 12-21.
[25] Bernard JA, Peltier SJ, Wiggins JL, et al. Disrupted cortico-cerebellar connectivity in older adults[J]. Neuroimage, 2013, 83: 103-119.
[26] Wu T, Zang Y, Wang L, et al. Normal aging decreases regional homogeneity of the motor areas in the resting state[J]. Neurosci Lett, 2007, 423(3): 189-193.
[27] Cao W, Cao X, Hou C, et al. Effects of cognitive training on resting-state functional connectivity of default mode, salience, and central executive networks[J]. Front Aging Neurosci, 2016, 8: 70.
[28] Luo C, Zhang X, Cao X, et al. The lateralization of intrinsic networks in the aging brain implicates the effects of cognitive training[J]. Front Aging Neurosci, 2016, 8: 32.
[29] van den Heuvel MP, Fornito A. Brain networks in schizophrenia[J]. Neuropsychol Rev, 2014, 24(1): 32-48.
[30] Katsetos CD, Hyde TM, Herman MM. Neuropathology of the cerebellum in schizophrenia--an update: 1996 and future directions[J]. Biol Psychiatry, 1997, 42(3): 213-224.
[31] Konarski JZ, McIntyre RS, Grupp LA, et al. Is the cerebellum relevant in the circuitry of neuropsychiatric disorders?[J]. J Psychiatry Neurosci, 2005, 30(3):178-186.
[32] Schutter DJ, van Honk J. The cerebellum on the rise in human emotion[J]. Cerebellum, 2005, 4(4):290-294.
[33] Rapoport M, van Reekum R, Mayberg H. The role of the cerebellum in cognition and behavior: a selective review[J]. J Neuropsychiatry Clin Neurosci, 2000, 12(2): 193-198.
[34] Bottmer C, Bachmann S, Pantel J, et al. Reduced cerebellar volume and neurological soft signs in first-episode schizophrenia[J]. Psychiatry Res, 2005, 140(3): 239-250.
[35] Picard H, Amado I, Mouchet-Mages S, et al.The role of the cerebellum in schizophrenia: an update of clinical, cognitive, and functional evidences[J]. Schizophr Bull, 2008, 34(1):155-172.
[36] Okugawa G, Nobuhara K, Takase K, et al.Cerebellar posterior superior vermis and cognitive cluster scores in drug-naive patients with first-episode schizophrenia[J]. Neuropsychobiology, 2007, 56(4): 216-219.
[37] Kühn S, Romanowski A, Schubert F, et al. Reduction of cerebellar grey matter in Crus I and II in schizophrenia[J]. Brain Struct Funct, 2012, 217(2): 523-529.
[38] Womer FY, Tang Y, Harms MP, et al. Sexual dimorphism of the cerebellar vermis in schizophrenia[J]. Schizophr Res, 2016, 176(2-3): 164-170.
[39] Kanaan RA, Borgwardt S, McGuire PK, et al. Microstructural organization of cerebellar tracts in schizophrenia[J]. Biol Psychiatry, 2009, 66(11): 1067-1069.
[40] Hüttlova J, Kikinis Z, Kerkovsky M, et al.Abnormalities in myelination of the superior cerebellar peduncle in patients with schizophrenia and deficits in movement sequencing[J]. Cerebellum, 2014, 13(4): 415-424.
[41] Collin G, Hulshoff Pol HE, Haijma SV, et al. Impaired cerebellar functional connectivity in schizophrenia patients and their healthy siblings[J]. Front Psychiatry, 2011, 2: 73.
[42] Anticevic A, Yang G, Savic A, et al. Mediodorsal and visual thalamic connectivity differ in schizophrenia and bipolar disorder with and without psychosis history[J]. Schizophr Bull, 2014, 40(6): 1227-1243.
[43] Sheffield JM, Barch DM. Cognition and resting-state functional connectivity in schizophrenia[J]. Neurosci Biobehav Rev, 2016, 61: 108-120.
[44] Chen X, Jiang Y, Chen L, et al. Altered Hippocampo-Cerebello-Corticalcircuit in schizophrenia by a spatiotemporal consistency and causal connectivity analysis[J]. Front Neurosci, 2017, 11: 25.
[45] Repovs G, Csernansky JG, Barch DM. Brain network connectivity in individuals with schizophrenia and their siblings[J]. Biol Psychiatry, 2011, 69(10): 967-973.
[46] Luo C, Zhang Y, Cao W, et al. Altered structural and functional feature of striato-cortical circuit in benign epilepsy with centrotemporal spikes[J]. Int J Neural Syst, 2015, 25(6): 1550027.
[47] Dabbs K, Becker T, Jones J, et al. Brain structure and aging in chronic temporal lobe epilepsy[J]. Epilepsia, 2012, 53(6): 1033-1043.
[48] Jiang S, Luo C, Liu Z, et al. Altered local spontaneous brain activity in juvenile myoclonic epilepsy: apreliminary resting-state fMRI study[J]. Neural Plast, 2016: 3547203.
[49] Dong L, Li H, He Z, et al. Altered local spontaneous activity in frontal lobe epilepsy: a resting-state functional magnetic resonance imaging study[J]. Brain Behav, 2016, 6(11): e00555.
[50] Li Q, Luo C, Yang T, et al. EEG-fMRI study on the interictal and ictal generalized spike-wave discharges in patients with childhood absence epilepsy[J]. Epilepsy Res, 2009, 87(2-3): 160-168.
[51] Gotman J, Grova C, Bagshaw A, et al. Generalized epileptic discharges show thalamocortical activation and suspension of the default state of the brain[J]. Proc Natl Acad Sci U S A, 2005, 102(42): 15236-15240.
[52] Luo C, Li Q, Xia Y, et al. Resting state basal ganglia network in idiopathic generalized epilepsy[J]. Hum Brain Mapp, 2012, 33(6): 1279-1294.
[53] Dong L, Luo C, Zhu Y, et al. Complex discharge-affecting networks in juvenile myoclonic epilepsy: a simultaneous EEG-fMRI study[J]. Hum Brain Mapp, 2016, 37(10): 3515-3529.
[54] Strain GM, Van Meter WG, Brockman WH. Elevation of seizure thresholds: a comparison of cerebellar stimulation, phenobarbital, and diphenylhydantoin[J]. Epilepsia, 1978, 19(5): 493-504.
[55] Kros L, Eelkman Rooda OH, Spanke JK, et al. Cerebellar output controls generalized spike-and-wave discharge occurrence[J]. Ann Neurol, 2015, 77(6): 1027-1049.
[56] Kros L, Rooda OH, De Zeeuw CI, et al. controlling cerebellar output to treat refractory epilepsy[J]. Trends Neurosci, 2015, 38(12): 787-799.
(本文編輯:唐雪莉)
腦影像專(zhuān)題策劃人——羅程博士簡(jiǎn)介
羅程,工學(xué)博士,加拿大麥吉爾大學(xué)蒙特利爾神經(jīng)研究所(MNI)博士后,電子科技大學(xué)副教授,高場(chǎng)磁共振腦成像四川省重點(diǎn)實(shí)驗(yàn)室(電子科技大學(xué))副主任,國(guó)際腦圖譜組織(OHBM)會(huì)員,四川省
認(rèn)知科學(xué)學(xué)會(huì)理事。擔(dān)任國(guó)內(nèi)外多家學(xué)術(shù)期刊的編委、審稿專(zhuān)家以及國(guó)家自然科學(xué)基金一審專(zhuān)家。目前主要科研方向?yàn)槎嗄B(tài)磁共振成像方法學(xué)研究及其在臨床神經(jīng)精神疾病的應(yīng)用。已在國(guó)外重要學(xué)術(shù)期刊發(fā)表SCI收錄論文五十余篇,參編國(guó)外英文專(zhuān)著1部。這些著作已被引用1200余次(Google Scholar)。目前主持包括2項(xiàng)國(guó)家自然科學(xué)基金面上項(xiàng)目在內(nèi)的省部級(jí)以上項(xiàng)目5項(xiàng)。
Review of neuroimaging researches on alteration in non-motor domain of the human cerebellum
LuoCheng1*,JiaXiaoyan1,ZhuoLihua2,CaoWeifang1,JiangYuchao1,JiangSisi1,YaoDezhong1
(1.UniversityofElectronicScienceandTechnologyofChina,Chengdu610054,China;2.TheThirdPeople'sHospitalofMianyang,Mianyang621000,China*Correspondingauthor:LuoCheng,E-mail:chengluo@uestc.edu.cn)
The structural and functional connectivity between cerebellum and cerebral cortex could be acquired realistically with neuroimaging techniques. Recent studies showed that the cerebellum played an important role in the non-motor function, including the cognition, attention, emotion and language. In neuropsychological diseases, the cognitive defects associated with abnormality in cerebellum. This review focused on the abnormal non-motor function in aging, schizophrenia and epilepsy, and demonstrated the structural, functional and connected neuroimaging findings in these diseases. The review would be helpful to investigate cerebellar non-motor function and its pathophysiological mechanism in neuropsychological diseases.
Cerebellum; Aging; Epilepsy; Schizophrenia; Neuroimaging
國(guó)家自然科學(xué)基金(81271547,81471638);國(guó)家重大科學(xué)儀器設(shè)備開(kāi)發(fā)專(zhuān)項(xiàng)項(xiàng)目(2013YQ490859)
R749
A
10.11886/j.issn.1007-3256.2017.01.005
2016-12-20)