呂佳穎 李發(fā)弟,2 李 飛*
(1.草地農(nóng)業(yè)生態(tài)系統(tǒng)國家重點實驗室,蘭州大學(xué)草地農(nóng)業(yè)科技學(xué)院,蘭州730020;2.甘肅省肉羊繁育生物技術(shù)工程實驗室,民勤733300)
幼齡反芻動物纖維營養(yǎng)需要與影響因素
呂佳穎1李發(fā)弟1,2李 飛1*
(1.草地農(nóng)業(yè)生態(tài)系統(tǒng)國家重點實驗室,蘭州大學(xué)草地農(nóng)業(yè)科技學(xué)院,蘭州730020;2.甘肅省肉羊繁育生物技術(shù)工程實驗室,民勤733300)
幼齡反芻動物飼糧的纖維性碳水化合物(FC)來源與組成對調(diào)控其生長發(fā)育和瘤胃功能建立有重要作用,其來源各異,粒度不同,對正處于生長期的幼齡反芻動物的采食和消化、瘤胃液pH及瘤胃發(fā)育等生理參數(shù)的影響存在差異。本文綜述了近年來關(guān)于幼齡反芻動物飼糧中性洗滌纖維(NDF)來源和粒度的研究,分別從生產(chǎn)性能、瘤胃發(fā)酵和瘤胃發(fā)育3個方面總結(jié)了二者對幼齡反芻動物的影響,并對相關(guān)機制進行了探討。
幼齡反芻動物;中性洗滌纖維;纖維來源;粒度;瘤胃發(fā)育
對于幼齡反芻動物,斷奶前開食料的營養(yǎng)水平是調(diào)控瘤胃微生物種群定植和瘤胃上皮功能完善的重要因素。其中開食料中非纖維性碳水化合物(NFC)的發(fā)酵產(chǎn)物揮發(fā)性脂肪酸(VFA)經(jīng)過瘤胃上皮吸收可為機體提供能量,同時丁酸能夠促進瘤胃上皮細胞更新,完善瘤胃上皮吸收功能[1]。此外,開食料中纖維性碳水化合物( FC) 的主要組分為中性洗滌纖維(NDF),其包含纖維素、半纖維素和木質(zhì)素等植物細胞壁成分[2],是衡量飼糧纖維水平的指標。一般認為,反芻動物在斷奶前對纖維的需要有限,主要由于瘤胃微生物尚不完善,不能有效降解纖維;同時由于纖維能量水平較低,限制了精飼料采食量,難以滿足動物的能量需要。近年研究發(fā)現(xiàn),飼糧中提供NDF能夠提高幼齡反芻動物斷奶后的采食量并刺激瘤胃發(fā)育,但其效果受飼糧NDF來源、水平和粒度等因素影響[3-5],在斷奶前如何對幼齡反芻動物供應(yīng)NDF尚存在爭議。因此,本文匯總了近年來國內(nèi)外對幼齡反芻動物開食料NDF的研究,就NDF來源和粒度對生產(chǎn)性能、瘤胃發(fā)酵和瘤胃發(fā)育的影響做一綜述,旨在為反芻動物斷奶前纖維營養(yǎng)的研究提供理論依據(jù)。
1.1 粗飼料來源NDF(FNDF)
反芻動物飼糧的NDF多來源于干草或秸稈等粗飼料,但目前對于斷奶前補飼粗飼料對幼齡反芻動物生產(chǎn)性能影響的研究結(jié)果存在爭議。許多研究表明FNDF能夠提高幼畜的生產(chǎn)性能。Terré等[6]發(fā)現(xiàn)犢牛斷奶前補飼燕麥干草自由采食相比不補飼,斷奶后干物質(zhì)采食量(DMI)增加了23%,平均日增重(ADG)增加了30%,64日齡體重增加了5.5%。同時Daneshvar等[7]研究發(fā)現(xiàn),在犢牛開食料中添加15%的苜蓿干草相比不添加,犢牛3~74日齡開食料采食量增加了33%,DMI增加了21%,ADG增加了16%,74日齡體重增加了8%。斷奶前補飼粗飼料能夠提高DMI和ADG可能是因為采食粗飼料幼畜瘤胃液pH較高,有利于纖維分解菌生長,提高了纖維消化率。然而,也有報道指出斷奶前補飼粗飼料會降低幼畜的生產(chǎn)性能。Hill等[8]的研究表明,犢牛開食料中添加2.5%或5%干草相比不添加,1~56日齡開食料采食量分別降低了7%和16%,ADG分別降低了6%和17%,飼料效率(FE)顯著降低。Hill等[9]在犢牛開食料中添加6%或9%小麥秸,發(fā)現(xiàn)相比不添加,3~56日齡總干物質(zhì)采食量(TDMI)和ADG顯著降低,同時發(fā)現(xiàn)添加10%或15%苜蓿干草,以及6%或9%干禾草相比不添加,犢牛ADG均顯著下降。幼齡反芻動物斷奶前補飼粗飼料TDMI和ADG之所以降低可能是因為其瘤胃尚未發(fā)育完全,對粗飼料的降解能力有限,未消化的飼糧纖維在瘤胃內(nèi)積累使食糜重量增多,體積增大,對胃壁上分布著的連續(xù)接觸性受體造成刺激,從而反射性地抑制采食行為,阻礙生長發(fā)育[10]。另有研究表明,犢牛補飼苜蓿干草時干物質(zhì)(DM)和有機物(OM)的消化率顯著降低[7],這是因為飼糧中NDF水平過高反而會增加幼畜的食糜流通速率,縮短食糜在胃腸道的滯留時間,導(dǎo)致OM消化率降低[11]。
斷奶前補飼粗飼料影響幼齡反芻動物采食量的原因有很多,機制尚不清楚,但與開食料的成分和物理形式有很大關(guān)系。幼畜采食易快速發(fā)酵的小粒度開食料會使產(chǎn)酸量增加,瘤胃液pH降低,導(dǎo)致瘤胃酸中毒,這時攝入粗飼料有利于瘤胃液pH升高,提高瘤胃緩沖能力。而粒度較大或含有整粒谷物的開食料在瘤胃中降解速率慢,發(fā)生瘤胃酸中毒的風(fēng)險低,故幼畜對粗飼料的需求較低,這種情況下粗飼料的攝入可能會占據(jù)瘤胃容積,降低采食量。上面提及的Terré等[6]的試驗犢牛采食顆?;_食料,而Daneshvar等[7]的試驗中開食料為磨細的粉狀混合料,這2種形式的開食料在瘤胃中快速發(fā)酵產(chǎn)酸使?fàn)倥2墒炒诛暳系囊庠冈鰪?,加之因攝入粗飼料而逐漸優(yōu)化的瘤胃環(huán)境促使開食料采食量增加,因此犢牛的DMI增加。Hill等[9]的試驗則采用含有發(fā)酵速率慢的玉米和燕麥籽實的開食料,故斷奶前補飼粗飼料導(dǎo)致纖維在瘤胃積累,使DMI降低。上述關(guān)于幼齡反芻動物斷奶前補飼粗飼料的研究可能因為粗飼料的來源、品質(zhì)、粒度,精飼料和乳品飼糧的供給策略以及NDF采食量的差異而出現(xiàn)不同的結(jié)果。不同來源的粗飼料NDF含量不同,其NDF的化學(xué)組成存在差異,因此幼畜采食不同來源的粗飼料采食量和消化率不同。如豆科的苜蓿干草相比禾本科的燕麥干草果膠含量較高而半纖維素含量較低,適口性較好,因而幼畜采食量更大[12]。有研究指出,相比燕麥干草,補飼苜蓿干草的犢牛NDF采食量更高(分別為TDMI的4%和14%),造成開食料采食量和DMI更低,導(dǎo)致ADG下降[13]。另外,與不補飼者相比,補飼粗飼料的犢牛NDF采食量更高,導(dǎo)致食糜在胃腸道積累而增加腸道充盈度,從而使胃腸道重量增加。由于胃腸道重量增加反映在體重的增加上,許多研究就表觀地將幼畜采食粗飼料帶來的偽增重視為了體增重。有一些研究證明,犢牛補飼干草與不補飼者相比雖然體重得到顯著增加,但其胃腸道重量也有顯著增加,而且胴體重顯著降低[8,13-15]。因此在不同的研究中,必須要考慮粗飼料帶來的腸道充盈效應(yīng)造成的結(jié)果的差異。針對這一狀況有研究指出犢牛干草采食量低于DMI的5%時既能忽略腸道充盈效應(yīng),又能夠提高ADG,促進其生長發(fā)育[13]。綜上所述,大部分研究指出斷奶前補飼粗飼料能夠提高幼畜的生產(chǎn)性能,但是粗飼料能否作為幼畜開食料的NDF來源仍有待于進一步研究。
1.2 非飼草纖維來源NDF(NFFS)
犢牛和羔羊開食料NDF多來源于谷實和麥麩等精飼料,但NFFS也會作為NDF來源應(yīng)用在開食料中,常見的NFFS為大豆皮、棉籽殼和甜菜渣等副產(chǎn)品。NFFS中纖維素和果膠含量高,木質(zhì)素含量低,瘤胃發(fā)酵速度快、易消化[16]。在成年反芻動物飼糧中利用NFFS替代部分谷物能夠提高奶牛的產(chǎn)奶量和乳脂率,并緩解瘤胃酸中毒[17],在幼齡反芻動物飼糧中可用它們代替部分粗飼料以提高羔羊的DMI和ADG[18]。NFFS既能緩解開食料快速發(fā)酵對幼畜產(chǎn)生的不利影響,又不易引起FNDF造成的腸道充盈,在開食料中應(yīng)用時能夠顯著提高荷斯坦?fàn)倥?~63日齡的DMI、ADG和63日齡體重[19]。但是另有研究發(fā)現(xiàn),開食料中添加5%或10%的棉籽殼比不添加者顯著降低了犢牛斷奶后的開食料采食量和ADG[8],因為采食棉籽殼的犢牛攝入的能量水平更低,不利于其生長發(fā)育。
FNDF和NFFS均因較高的NDF含量成為幼畜開食料中的纖維來源,但是二者NDF的組成差異較大,相比FNDF,NFFS中易降解成分含量高,在瘤胃中的流通速率更高,在適宜的添加水平下對幼畜生產(chǎn)性能的促進作用更大。例如相比苜蓿干草,斷奶前補飼甜菜渣的犢牛80日齡體重和ADG顯著增加[20-21];補飼甜菜渣比補飼等量麥秸能夠顯著提高犢牛的DMI和ADG[20]。但是目前用NFFS作為NDF來源調(diào)控幼齡反芻動物生長發(fā)育的研究較少,幼齡反芻動物開食料中NFFS及其添加水平仍需更多的科學(xué)研究提供理論支撐。表1列舉了近年來有關(guān)FNDF和NFFS作為開食料NDF來源影響幼齡反芻動物斷奶前和斷奶后生產(chǎn)性能的研究結(jié)果。
表1 開食料NDF來源對幼齡反芻動物斷奶前和斷奶后生產(chǎn)性能的影響Table 1 Effects of starter NDF source on performance of young ruminant during pre- and post- weaning
↑:升高 increase;↓:降低 decrease;←→:無顯著變化 no significant change。
NFFS木質(zhì)化程度低,比粗飼料更易降解,其維持瘤胃液pH的有效性只有FNDF的35%[33],F(xiàn)NDF對瘤胃發(fā)酵的影響程度更大。粗飼料代替精飼料作為開食料NDF的主要來源,會對幼畜咀嚼、瘤胃液pH和VFA產(chǎn)生完全不同的作用,并能夠通過影響微生物種類調(diào)控瘤胃發(fā)酵[34]。
瘤胃液pH是飼糧發(fā)酵能力、唾液分泌量、VFA產(chǎn)量和吸收速率以及食糜排空速率綜合作用的結(jié)果,幼齡反芻動物攝入粗飼料會使瘤胃液pH升高。研究表明補飼燕麥干草、黑麥草、大麥秸、干禾草和苜蓿干草會使?fàn)倥A鑫敢簆H顯著升高[13,27-28,32]。因為粗飼料會刺激犢牛咀嚼和反芻,從而刺激唾液腺分泌大量含有碳酸氫鹽的弱堿性唾液隨食糜進入瘤胃,導(dǎo)致瘤胃液pH升高。而且研究發(fā)現(xiàn)補飼干草的犢牛瘤胃上皮單羧酸轉(zhuǎn)運蛋白(MCT-1)的分泌量升高了4倍[13],MCT-1在轉(zhuǎn)運單羧酸時會與氫離子(H+)發(fā)生偶聯(lián)共轉(zhuǎn)運,其分泌量升高表明更多的H+從瘤胃中被移除[35],瘤胃液pH升高。然而,犢牛采食粗飼料會導(dǎo)致瘤胃VFA產(chǎn)量下降。這是因為FC在瘤胃中發(fā)酵速度比NFC慢,VFA產(chǎn)量少。此外,在攝入大量粗飼料的情況下,犢牛OM消化率降低,飼糧在瘤胃中發(fā)酵時間短,導(dǎo)致VFA產(chǎn)量減少[7,13,36]。研究表明,犢牛補飼干草瘤胃液pH升高并伴隨VFA產(chǎn)量的降低[15],這可能是因為纖維飼糧有移除瘤胃壁死亡細胞,防止瘤胃角化不全的作用,增強了瘤胃上皮的吸收功能。
飼糧組成能夠改變瘤胃液pH,影響各種VFA的產(chǎn)生比例,是決定瘤胃發(fā)酵類型最重要的因素。幼齡反芻動物攝入FNDF時其瘤胃發(fā)酵類型為乙酸發(fā)酵。研究表明,補飼干草比不補飼能夠顯著提高犢牛瘤胃乙酸產(chǎn)量[6-7,13-14],提高乙酸/丙酸[6,11,15]。這是因為反芻動物采食粗飼料型飼糧,較高的瘤胃液pH適于纖維分解菌生長,乙酸比例升高;采食精飼料型飼糧導(dǎo)致瘤胃液pH降低,較低的pH適于淀粉分解菌生長,瘤胃中丙酸和丁酸的比例升高[37]。補飼干草可以提高瘤胃液pH并將其維持在較穩(wěn)定的水平上,較高的瘤胃液pH不僅有利于纖維素消化,而且能夠降低酸中毒的風(fēng)險。但是研究指出,采食開食料的犢牛瘤胃液pH<5的狀態(tài)能夠持續(xù)10 h/d而沒有表現(xiàn)出酸中毒的癥狀[38],這說明幼畜對較低pH的瘤胃環(huán)境的耐受力更高,所以對幼齡反芻動物的瘤胃酸中毒還需要進一步研究。
瘤胃發(fā)育主要表現(xiàn)在重量增加、體積增大和瘤胃組織形態(tài)學(xué)的變化;瘤胃組織形態(tài)學(xué)發(fā)育表現(xiàn)在瘤胃上皮細胞生長分化,瘤胃乳頭長度、寬度和密度變化以及瘤胃壁和肌肉層發(fā)育等方面。研究表明,幼齡反芻動物采食固體飼糧后,瘤胃乳頭才開始發(fā)育,瘤胃重量、肌層和黏膜層厚度才有顯著增加[39]。固體飼糧中精飼料的發(fā)酵產(chǎn)物對瘤胃上皮細胞的化學(xué)作用和粗飼料對瘤胃容積和肌肉層的物理作用都是刺激瘤胃發(fā)育至關(guān)重要的因素。
精飼料中NFC含量高,其發(fā)酵產(chǎn)物丁酸能夠刺激胰島素分泌從而增強瘤胃上皮細胞有絲分裂,并通過抑制細胞凋亡來促進瘤胃上皮細胞增殖[1]。斷奶前飼喂精飼料能夠顯著提高犢牛瘤胃乳頭的長度和寬度[28,30]。但高精飼料條件下丁酸產(chǎn)生過量會使?fàn)倥A鑫干掀ぜ毎T鲋常瑢?dǎo)致瘤胃乳頭分枝或發(fā)育畸形[40]。此外,高精飼料飼糧不僅會導(dǎo)致瘤胃上皮角質(zhì)層細胞層數(shù)過多和瘤胃角化不全,還會造成瘤胃乳頭被黏性食團、毛發(fā)和細胞碎片覆蓋,并相互黏連結(jié)塊,這些現(xiàn)象均會阻礙營養(yǎng)物質(zhì)吸收,甚至損傷瘤胃上皮[41]。
一般認為,F(xiàn)NDF不足以提供瘤胃乳頭發(fā)育所需的丁酸,對瘤胃上皮發(fā)育的刺激作用很小,已有研究指出,補飼苜蓿干草的犢牛相比不補飼者瘤胃乳頭長度和寬度顯著降低[14]。然而,開食料中的FNDF能夠在瘤胃內(nèi)占據(jù)較大空間而促使胃室擴充,并加強瘤胃節(jié)律性運動和胃壁收縮,使瘤胃肌肉層得到鍛煉。研究表明,補飼苜蓿干草的犢牛和羔羊相比不補飼者瘤胃肌肉層厚度[22-23,32]、瘤胃壁厚度[14]和瘤胃重量[14,33]顯著增加。而且,F(xiàn)NDF的研磨值高[42],可通過物理摩擦去除瘤胃上皮過厚的角質(zhì)層和死亡的上皮細胞,對于維持瘤胃上皮形態(tài)正常起著重要作用。研究表明,犢牛采食高精飼料飼糧和高粗飼料飼糧瘤胃角質(zhì)層細胞層的數(shù)目分別為15個和4個[43]。補飼干草的犢牛和羔羊瘤胃上皮組織厚度和角質(zhì)層厚度顯著減小[15,22-23],且未觀察到瘤胃乳頭發(fā)育異常和乳頭結(jié)塊[13]。因此,營養(yǎng)全面的開食料不僅應(yīng)該包含適宜水平的NFC以提供足夠的丁酸刺激幼齡反芻動物瘤胃上皮發(fā)育,增強上皮吸收功能,而且需要包含一定水平的粗飼料來促進幼畜瘤胃肌層發(fā)育,并維持瘤胃壁的完整性。
4.1 采食行為
粗飼料對反芻動物的營養(yǎng)作用不僅與其化學(xué)組成有關(guān),而且受其粒度的影響較大,幼齡反芻動物攝入不同粒度的粗飼料會影響其采食行為。研究指出采食長度為3 mm苜蓿干草的犢牛比采食1 mm者咀嚼和反芻的時間更長[44],而且舔舐、卷舌和采食木屑等非營養(yǎng)性口腔活動的發(fā)生率較低[5,44]。同時,Montoro等[5]發(fā)現(xiàn)補飼10% 3~4 cm干禾草的犢牛挑食NDF成分,而補飼10% 2 mm干禾草的犢牛挑食粗蛋白質(zhì)(CP)成分,同時發(fā)現(xiàn)后者對DM、CP和NDF的消化率更低;所以更傾向于采食精飼料以滿足營養(yǎng)需要[5,45]。Miller-Cushon等[45]對犢牛飼喂與Montoro等[5]試驗相同的2種粒度的干草,8周后所有犢牛均飼喂3~4 cm的干禾草持續(xù)3周,發(fā)現(xiàn)初始時采食2 mm干禾草的犢牛仍挑食精飼料成分。反芻動物斷奶前有根據(jù)咀嚼和反芻、瘤胃功能以及自身營養(yǎng)需要選擇性地采食飼糧成分的能力,而且幼畜的挑食行為變化較大,存在個體差異,并易受采食經(jīng)驗的影響形成既定模式[45]。
4.2 瘤胃發(fā)育和生產(chǎn)性能
采食長粒度的粗飼料能夠增加幼畜的瘤胃緩沖能力,并刺激瘤胃發(fā)育。Nemati等[44]發(fā)現(xiàn)相比1 mm,采食3 mm的干草的犢牛35和70日齡瘤胃液pH和乙酸/丙酸更高。也有研究指出,相比2.92 mm,采食5.04 mm苜蓿干草的犢牛瘤胃角質(zhì)層厚度更小[15];采食3~4 cm苜蓿干草的犢牛比采食2 mm者瘤胃肌層更厚[23]。同時,粒度不同的粗飼料能夠影響幼齡反芻動物的采食量和飼糧的消化率,進而影響生產(chǎn)性能。在Montoro等[5]的研究中,采食長干草的犢牛斷奶后TDMI和DM消化率顯著高于采食短粒度干草的犢牛,且FE有升高的趨勢。因為長粒度干草能夠提供更多的物理刺激促進瘤胃肌層發(fā)育和瘤胃運動,良好的瘤胃發(fā)育促使了生產(chǎn)性能的提高。另外,Norouzian等[23]發(fā)現(xiàn)雖然犢牛補飼15% 3~4 cm的苜蓿干草比補飼15% 2 mm的苜蓿干草DMI更低,因為長粒度干草流通速率更小,增加了腸道充盈從而降低了采食量,但是2組犢牛的ADG沒有顯著差異,因此粗飼料粒度太小可能會導(dǎo)致生產(chǎn)性能降低。Jahani-Moghadam等[46]在犢牛開食料中添加10%切碎(4.0 mm)和顆粒苜蓿干草(5.8 mm),以及Suarez-Mena等[47]補飼5%長度分別為3.04、7.10和12.70 mm的稻草,均發(fā)現(xiàn)干草粒度對犢牛生產(chǎn)性能未產(chǎn)生顯著影響。此外,開食料中FDNF的粒度和添加水平會對幼畜的生產(chǎn)性能產(chǎn)生交互作用。Nemati等[44]在犢牛開食料中添加12.5%或25.0%長度為1或3 mm的苜蓿干草,采用2×2雙因子試驗設(shè)計,發(fā)現(xiàn)苜蓿干草的添加水平為25%時,采食3 mm干草的犢牛斷奶后的ADG顯著高于采食1 mm干草的犢牛,但苜蓿干草添加水平為12.5%時沒有發(fā)現(xiàn)粒度對犢牛的生產(chǎn)性能產(chǎn)生影響。Mirzaei等[15]發(fā)現(xiàn)開食料中添加8%的苜蓿干草,采食長度為5.04 mm干草的犢牛斷奶后的開食料采食量比采食2.92 mm者高491 g/d,但在16%的干草添加水平下卻觀察不到。由此可見,開食料中提供FNDF時應(yīng)考慮粗飼料粒度的影響來確定添加水平,如果粗飼料切割較長則可以適當(dāng)降低其添加水平[48]。目前針對幼齡反芻動物斷奶前粗飼料粒度的研究較少,探索粗飼料粒度對幼畜瘤胃發(fā)育的影響,尋找提高幼畜生長發(fā)育最適宜的粗飼料粒度仍是幼齡反芻動物培育中需要解決的問題。
幼齡反芻動物開食料NDF不同的來源和粒度能夠?qū)ιa(chǎn)性能、瘤胃發(fā)酵和瘤胃發(fā)育產(chǎn)生不同影響。根據(jù)現(xiàn)有研究總結(jié)出以下2點:1)FNDF是否能夠提高幼畜斷奶前和斷奶后的生產(chǎn)性能仍然存在爭議,但是粗飼料能夠增加瘤胃液pH,提高瘤胃緩沖能力;2)粗飼料的物理特性能夠促進瘤胃肌層發(fā)育和瘤胃蠕動,維持瘤胃健康和瘤胃壁的完整性。故作者認為開食料中添加適宜來源的粗飼料有利于幼齡反芻動物的生長發(fā)育。NFFS作為幼齡反芻動物開食料NDF來源對其生長發(fā)育的作用仍需進一步研究。在一定范圍內(nèi),幼畜采食切割較長的粗飼料有利于促進瘤胃發(fā)育,提高生產(chǎn)性能;而且粗飼料不同粒度的作用受其在開食料中添加水平的影響。未來研究應(yīng)致力于探索最適于幼齡反芻動物斷奶前飼糧NDF的來源和粒度,并綜合考慮二者對動物的營養(yǎng)調(diào)控作用配制優(yōu)質(zhì)的開食料,以期促進幼畜早期的生長發(fā)育,為成年后良好的生產(chǎn)性能奠定基礎(chǔ)。
[1] SHEN Z M,SEYFERT H M,L?HRKE B,et al.An energy-rich diet causes rumen papillae proliferation associated with more IGF type 1 receptors and increased plasma IGF-1 concentrations in young goats[J].The Journal of Nutrition,2004,34(1):11-17.
[2] 王建平,王加啟,卜登攀,等.2007~2008年國際反芻動物營養(yǎng)研究進展Ⅲ.碳水化合物營養(yǎng)[J].中國畜牧獸醫(yī),2009,36(2):5-13.
[3] 王劍.干草添加時期對哺乳期犢牛生長性能和瘤胃發(fā)育的影響[D].碩士學(xué)位論文.泰安:山東農(nóng)業(yè)大學(xué),2015:10.
[4] 王世琴,李沖,李發(fā)弟,等.開食料中性洗滌纖維水平對哺乳羔羊生長性能和消化道發(fā)育的影響[J].動物營養(yǎng)學(xué)報,2014,26(8):2169-2175.
[5] MONTORO C,MILLER-CUSHON E K,DEVRIES T J,et al.Effect of physical form of forage on performance,feeding behavior,and digestibility of Holstein calves[J].Journal of Dairy Science,2013,96(2):1117-1124.
[6] TERRé M,PEDRALS E,DALMAU A,et al.What do preweaned and weaned calves need in the diet:a high fiber content or a forage source?[J].Journal of Dairy Science,2013,96(8):5217-5225.
[7] DANESHVAR D,KHORVASH M,GHASEMI E,et al.The effect of restricted milk feeding through conventional or step-down methods with or without forage provision in starter feed on performance of Holstein bull calves[J].Journal of Animal Science,2015,93(8):3979-3989.
[8] HILL T M,BATEMAN Ⅱ H G,ALDRICH J M,et al.Effects of the amount of chopped hay or cottonseed hulls in a textured calf starter on young calf performance[J].Journal of Dairy Science,2008,91(7):2684-2693.
[9] HILL T M,BATEMAN Ⅱ H G,ALDRICH J M,et al.Roughage amount,source,and processing for diets fed to weaned dairy calves[J].The Professional Animal Scientist,2010,26(2):181-187.
[10] ALLEN M S.Relationship between forage quality and dairy cattle production[J].Animal Feed Science and Technology,1996,59(1/2/3):51-60.
[11] 祁茹,林英庭.日糧物理有效中性洗滌纖維對奶牛營養(yǎng)調(diào)控的研究進展[J].糧食與飼糧工業(yè),2010(5):52-55.
[12] MOSELEY G,JONES J R.Some factors associated with the difference in nutritive value of artificially dried red clover and perennial ryegrass for sheep[J].British Journal of Nutrition,1979,42(1):139-147.
[13] CASTELLS L,BACH A,ARIS A,et al.Effects of forage provision to young calves on rumen fermentation and development of the gastrointestinal tract[J].Journal of Dairy Science,2013,96(8):5226-5236.
[14] 王立斌.在飼喂開食料的基礎(chǔ)上補飼苜蓿對犢牛胃腸道發(fā)育的影響[D].博士學(xué)位論文.北京:中國農(nóng)業(yè)大學(xué),2013:22-43.
[15] MIRZAEI M,KHORVASH M,GHORBANI G R,et al.Effects of supplementation level and particle size of alfalfa hay on growth characteristics and rumen development in dairy calves[J].Journal of Animal Nutrition and Animal Physiology,2015,99(3):553-564.
[16] FIRKINS J L.Effects of feeding nonforage fiber sources on site of fiber digestion[J].Journal of Dairy Science,1997,80(7):1426-1437.
[17] 張英來.淺談非飼草來源的結(jié)構(gòu)性碳水化合物[J].中國奶牛,2007(S1):51-56.
[18] 薛紅楓,孟慶翔,熊易強,等.大豆皮替代羔羊飼糧中玉米或纖維成分對瘤胃消化率和生長性能的影響[J].中國畜牧雜志,2005,41(1):15-18.
[19] HILL S R,HOPKIN B A,DAVIDSON S,et al.The addition of cottonseed hulls to the starter and supplementation of live yeast or mannanoligosaccharide in the milk for young calves[J].Journal of Dairy Science,2009,92(2):790-798.
[20] MOVAHEDI B,FOROOZANDEH A D,SHAKERI P.Effects of different forage sources as a free-choice provision on the performance,nutrient digestibility,selected blood metabolites and structural growth of Holstein dairy calves[J].Journal of Animal Physiology and Animal Nutrition,2017,101(2):293-301.
[21] MAKTABI H,GHASEMI E,KHORVASH M.Effects of substituting grain with forage or nonforage fiber source on growth performance,rumen fermentation,and chewing activity of dairy calves[J].Animal Feed Science and Technology,2016,221:70-78.
[22] NOROUZIAN M A,VALIZADEH R,VAHMANI P.Rumen development and growth of Balouchi lambs offered alfalfa hay pre- and post-weaning[J].Tropical Animal Health and Production,2011,43(6):1169-1174.
[23] NOROUZIAN M A,VALIZADEH R.Effect of forage inclusion and particle size in diets of neonatal lambs on performance and rumen development[J].Journal of Animal Physiology and Anima Nutrition,2014,98(6):1095-1101.
[24] YANG B,HE B,WANG S S,et al.Early supplementation of starter pellets with alfalfa improves the performance of pre- and postweaningHulambs[J].Journal of Animal Science,2015,93(10):4984-4994.
[25] COVERDALE J A,TYLER H D,QUIGLEY Ⅲ J D,et al.Effect of various levels of forage and form of diet on rumen development and growth in calves[J].Journal of Dairy Science,2004,87(8):2554-2562.
[26] HILL T M,BATEMAN Ⅱ H G,ALDRICH J M,et al.Effects of feeding different carbohydrate sources and amounts to young calves[J].Journal of Dairy Science,2008,91(8):3128-3137.
[27] KHAN M A,WEARY D M,VON KEYSERSLINGK M A G.Hay intake improves performance and rumen development of calves fed higher quantities of milk[J].Journal of Dairy Science,2011,94(7):3547-3553.
[28] CASTELLS L,BACH A,ARAUJO G,et al.Effect of different forage sources on performance and feeding behavior of Holstein calves[J].Journal of Dairy Science,2012,95(1):286-293.
[29] BEIRANVAND H,GHORBANI G R,KHORVASH M,et al.Interactions of alfalfa hay and sodium propionate on dairy calf performance and rumen development[J].Journal of Dairy Science,2014,97(4):2270-2280.
[30] EBNALI A,KHORVASH M,GHORBANI G R,et al.Effects of forage offering method on performance,rumen fermentation,nutrient digestibility and nutritional behaviour in Holstein dairy calves[J].Journal of Animal Physiology and Animal Nutrition,2016,100(5):820-827.
[31] HOSSEINI S M,GHORBANI G R,REZAMAND P,et al.Determining optimum age of Holstein dairy calves when adding chopped alfalfa hay to meal starter diets based on measures of growth and performance[J].Animal,2016,10(4):607-615.
[32] MOEINI H,MAHDAVI A H,RIASI A,et al.Effects of physical form of starter and forage provision to young calves on blood metabolites,liver composition and intestinal morphology[J].Journal of Animal Physiology and Animal Nutrition,2016,doi:10.1111/jpn.12485.
[33] MOONEY C S,ALLEN M S.Physical effectiveness of the neutral detergent fiber of whole linted cottonseed relative to that of alfalfa silage at two lengths of cut[J].Journal of Dairy Science,1997,80(9):2052-2061.
[34] 薛紅楓,孟慶翔.奶牛中性洗滌纖維營養(yǎng)研究進展[J].動物營養(yǎng)學(xué)報,2007,19(S1):454-458.
[35] PENNER G B,STEELE M A,ASCHENBACH J R,et al.Ruminant nutrition symposium:molecular adaptation of ruminal epithelia to highly fermentable diets[J].Journal of Animal Science,2011,89(4):1108-1119.
[36] WANAPAT M,ANANTASOOK N,ROWLINSON P,et al.Effect of carbohydrate sources and levels of cotton seed meal in concentrate on feed intake,nutrient digestibility,rumen fermentation and microbial protein synthesis in young dairy bulls[J].Asian-Australasian Journal of Animal Sciences,2013,26(4):529-536.
[37] 韓正康,陳杰.反芻動物瘤胃的消化和代謝[M].北京:科學(xué)出版社,1988:145.
[38] SUAREZ-MENA F X,HEINRICHS A J,JONES C M.Digestive development in neonatal dairy calves with either whole or ground oats in the calf starter[J].Journal of Dairy Science,2015,98(5):3417-3431.
[39] 云強,刁其玉,屠焰.犢牛開食料研究進展[J].飼料工業(yè),2009,30(15):32-34.
[40] MENTSCHEL J,LEISER R,MüLLING C,et al.Butyric acid stimulates rumen mucosa development in the calf mainly by a reduction of apoptosis[J].Archives of Animal Nutrition,2001,55(2):85-102.
[42] GREENWOOD R H,MORRILL J L,TITGEMEYER E C,et al.A new method of measuring diet abrasion and its effect on the development of the forestomach[J].Journal of Dairy Science,1997,80(10):2534-2541.
[43] 張海濤,王加啟,卜登攀,等.影響犢牛瘤胃發(fā)育的因素研究[J].乳業(yè)科學(xué)與技術(shù),2008,31(2):86-89.
[44] NEMATI M,AMANLOU H,KHORVASH M,et al.Rumen fermentation,blood metabolites,and growth performance of calves during transition from liquid to solid feed:effects of dietary level and particle size of alfalfa hay[J].Journal of Dairy Science,2015,98(10):7131-7141.
[45] MILLER-CUSHON E K,MONTORO C,BACH A,et al.Effect of early exposure to mixed rations differing in forage particle size on feed sorting of dairy calves[J].Journal of Dairy Science,2013,96(5):3257-3264.
[46] JAHANI-MOGHADAM M,MAHJOUBI E,HOSSEIN YAZDI M,et al.Effects of alfalfa hay and its physical form (chopped versus pelleted) on performance of Holstein calves[J].Journal of Dairy Science,2015,98(6):4055-4061.
[47] SUAREZ-MENA F X,HEINRICHS A J,JONES C M,et al.Straw particle size in calf starters:effects on digestive system development and rumen fermentation[J].Journal of Dairy Science,2016,99(1):341-353.
[48] 張立濤,刁其玉,李艷玲,等.中性洗滌纖維生理營養(yǎng)與需要量的研究進展[J].中國草食動物科學(xué),2013,33(1):57-61.
*Corresponding author, associate professor, E-mail: lfei@lzu.edu.cn
(責(zé)任編輯 王智航)
Starter Fiber Nutrient Requirement for Young Ruminants and Influence Factors
LYU Jiaying1LI Fadi1,2LI Fei1*
(1.KeyStateLaboratoryofAgro-Ecosystems,CollegeofPastoralAgricultureScienceandTechnology,LanzhouUniversity,Lanzhou730020,China; 2.BiotechnologyEngineeringLaboratoryofGansuMeatSheepBreeding,Minqin733300,China)
Fibrous carbohydrate (FC) source and composition in diet plays an important role in regulating growth and development and establishment of rumen functions of young ruminants. However, both kinds of sources and particle sizes of FC in diets have different nutritional effects on feed intake and digestion, rumen fluid pH and rumen development of young ruminants. In this article, the effects of the neutral detergent fiber (NDF) source and particle size on performance, rumen fermentation and rumen development were summarized, and related mechanism was discussed according to recent studies.[ChineseJournalofAnimalNutrition, 2017, 29(7):2261-2268]
young ruminants; neutral detergent fiber; fiber source; particle size; rumen development
10.3969/j.issn.1006-267x.2017.07.007
2017-01-01
甘肅省科技重大專項項目(1602NKDH020-03);公益性(農(nóng)業(yè))科研專項經(jīng)費(201503134)
呂佳穎(1993—),女,甘肅慶陽人,碩士研究生,研究方向為反芻動物營養(yǎng)。E-mail: lvjy14@lzu.edu.cn
*通信作者:李 飛,副教授,碩士生導(dǎo)師,E-mail: lfei@lzu.edu.cn
S823;S826
A
1006-267X(2017)07-2261-08