張春雨, 付 宇, 李曉東, 李永瑞, 張惠茅
(吉林大學第一醫(yī)院 放射線科, 長春 130021)
肝癌的影像學診斷進展
張春雨, 付 宇, 李曉東, 李永瑞, 張惠茅
(吉林大學第一醫(yī)院 放射線科, 長春 130021)
原發(fā)性肝癌診斷的金標準為肝活組織檢查,但作為有創(chuàng)檢查其臨床應用具有一定的局限性。目前影像學已經成為診斷肝癌的首選方法。總結了近年影像學診斷及評估原發(fā)性肝癌的新方法和新技術,如超聲造影、CT灌注成像﹑彌散加權成像相關技術-體素不相干運動(DWI-IVIM)、IDEAL IQ序列、動態(tài)增強MRI及肝細胞特異性造影劑成像等,認為影像診斷不僅可以評估病灶的分化程度、血供與灌注情況、病灶的侵襲性,而且還可以預測預后,對背景肝功能進行評估,從而為臨床診治提供更多參考。
肝腫瘤; 診斷顯像
原發(fā)性肝癌是嚴重危害人類健康的疾病,每年超過70萬人被診斷為肝癌[1]。肝癌診斷的金標準為肝活組織檢查,但是其作為有創(chuàng)檢查已經逐漸被影像學檢查代替,后者目前已經成為發(fā)現(xiàn)和診斷原發(fā)性肝癌的首選方法。本文就肝癌的影像學診斷進展做一綜述。
1.1 傳統(tǒng)影像學診斷 肝癌傳統(tǒng)影像學檢查方法有超聲、CT及MRI,傳統(tǒng)影像學方法可以提供肝內有無病灶、病灶位置、病灶大小及病灶的性質等信息,還可以明確診斷、輔助分期、指導治療及評價療效。肝癌在超聲上呈低回聲光團,彩色多普勒可見星點狀、短線狀的血流信號。超聲檢查的優(yōu)點為無輻射﹑可重復﹑實時性和便捷性,但超聲視野小、干擾大、單次造影只能觀察一個或數(shù)個病灶,且對操作者的水平和經驗依賴性較大。CT檢查覆蓋范圍廣、速度快,檢查技術的標準統(tǒng)一,但CT存在輻射和對比劑副作用。MRI無輻射,且軟組織分辨率高,可顯示多個序列、參數(shù),多方式顯示病灶,但掃描速度慢、患者屏氣配合要求高,也存在對比劑副作用。目前各個學會關于肝癌的診斷指南也不盡相同。美國肝病學會(AASLD)和歐洲肝病學會(EASL)推薦主要依據影像表現(xiàn),根據病灶大小進行診斷;亞太肝病學會(APASL)推薦不考慮病灶大小和AFP,僅根據血供特點進行診斷;日本肝病學會(JSH)則推薦結合AFP和影像學表現(xiàn),然后根據病灶的血供特點進行診斷[2]。EASL指南表明,超聲造影在病灶檢測準確性方面無法與CT 和MRI相比,動態(tài)增強MRI 和多期增強 CT是發(fā)現(xiàn)<2 cm 腫瘤的最有效技術,預計有25%~30% 的病例被低估[3]。
1.2 傳統(tǒng)影像學面臨的挑戰(zhàn) (1)病變強化不典型,有文獻[4]報道病理證實的243例肝細胞癌(HCC)在多排螺旋CT檢查中,僅137例(56.4%)有典型的強化表現(xiàn);106例(43.6%)具有不典型的增強表現(xiàn),包括在動脈期等或低強化和在平衡期沒有造影劑洗脫。動脈期呈等或低強化53例(21.8%),平衡期造影劑未洗脫53例(21.8%),可見不典型的HCC并不少見,給明確診斷帶來挑戰(zhàn)。(2)對交界性病變(早期HCC和高度異形增生結節(jié))的診斷,此類病變大多在動脈期不強化,靜脈期及延遲期呈低信號,在影像上不易區(qū)分。(3)對于存在動靜脈瘺的患者,動脈期明顯強化,靜脈期及平衡期呈等信號,與局灶結節(jié)增生及腺瘤的強化較相似,不易鑒別。如何解決所面臨的挑戰(zhàn),就需要影像學的不斷發(fā)展。
2.1 超聲診斷的進展 超聲造影可以觀察病灶微血流灌注狀態(tài),為治療提供指導和進行療效評價。
2.2 CT診斷的進展 CT灌注成像,指靜脈團注對比劑后對選定層面進行同層動態(tài)掃描,獲得該層面內每一像素的時間-密度曲線(time density curve,TDC),根據該曲線利用不同的數(shù)學模型計算出各項灌注參數(shù),并通過色階賦值形成灌注影像,從而了解器官及病變的血流灌注特點及血管特性,是一種評價器官、組織血流灌注狀態(tài)的無創(chuàng)性功能成像方法。典型的HCC CT灌注成像特點:血流量、血容量增高,肝動脈灌注量增高,門靜脈灌注量減少,肝動脈灌注指數(shù)增高。
CT灌注成像可用來評價經肝動脈化療栓塞術(TACE)的療效。碘油栓塞治療后,CT增強檢查未發(fā)現(xiàn)明顯異常強化殘留腫瘤的區(qū)域時,可通過灌注來明確是否有腫瘤存活。灌注后如發(fā)現(xiàn)病灶邊緣有小片狀高血流量、血容量區(qū),該區(qū)域如肝動脈灌注量增高,門靜脈灌注量減少,肝動脈灌注指數(shù)增高,則證明存在腫瘤存活。常規(guī)增強CT檢查往往術后幾個月才能夠顯示出局部異常強化的腫瘤殘留區(qū)。
2.3 MR診斷的進展
近年來,由于MR硬件的提升,功能與代謝方向的定量新技術層出不窮,如彌散加權成像(diffusion weighted imaging,DWI)相關技術-體素不相干運動(intravoxel incoherent motion imaging,IVIM)、IDEAL IQ序列、MR波譜、MR彈力成像、MR灌注成像及肝細胞特異性造影劑成像等等。這些新技術可以從代謝如糖元、脂肪、鐵等方面提供信息,還可以從結構及細胞功能方面提供肝細胞的密度、結構紊亂及Kupffer細胞的吞噬功能等方面的信息。
2.3.1 DWI相關技術-IVIM DWI是利用水分子擴散運動的原理,各種原因造成細胞間隙變窄,水分子運動就會受限加重。腫瘤細胞異常增生,導致細胞外間隙的空間減小,位于細胞和細胞間的組織液彌散比正常細胞更加受限。 常規(guī)DWI可用于判斷腫瘤的組織分化程度,Nakanishi等[5]研究表明,在手術證實的肝細胞癌中,分化程度也是不同的,分化程度越高的區(qū)域,表觀彌散系數(shù)(apparent diffusion coeffcient,ADC)值越高,分化程度越低的區(qū)域ADC值越低,壞死區(qū)ADC值較腫瘤區(qū)域明顯增高。有研究[6-7]表明b值為1000時,不同分化程度的肝細胞癌,其ADC值方面低分化明顯低于高分化。常規(guī)DWI還可用于判斷微血管的侵犯,Xu等[8]研究表明,b值為500時,存在微血管侵犯的病灶其ADC值較沒有微血管侵犯的病灶更低。
隨著對DWI研究的深入,發(fā)現(xiàn)如果采用多b值成像,組織信號隨彌散加權b值的升高信號下降,擴散信號可以用以下模型描述:Sb/S0=(1-f)·exp(-bD)+f·exp(-bD*),f=灌注分數(shù)(%,灌注對擴散信號的貢獻);D=實際擴散系數(shù) (mm2/s),D*= 灌注系數(shù) (mm2/s),為灌注對信號衰減的貢獻。擴散信號特點以IVIM雙指數(shù)模型描述,即一部分由水分子擴散信號,另一部分由毛細血管中微循環(huán)灌注信號組成。低b值通常認為<100,包括擴散和灌注效應,但主要以灌注效應為主;高b值反映真實的彌散效應。Woo等[9]研究表明,ADC值和D值與肝癌Edmondson臨床分級有相關性, 但ADC、f、D及D*值均與腫瘤動脈期強化形式(富血供強化、乏血供或不強化)無明顯相關性。D值在高級別和低級別肝細胞癌鑒別方面明顯優(yōu)于ADC,并且f值與動脈強化百分比有明顯相關性。
2.3.2 IDEAL IQ序列 一次成像采集多個不同回波時間,根據不同回波信號的變化可擬合得到6組圖像,即水像圖、脂像圖、同相位圖、反相位圖及脂肪分量圖和R2*圖,其中脂肪分量圖和R2*圖可用來進行精準雙定量測量。脂肪分量圖可半定量評價肝臟脂肪變性程度,評估脂肪肝藥物療效,增加肝臟含脂病變的鑒別診斷信息。R2*值是組織T2*值的倒數(shù),肝內存在鐵沉積、凝固性壞死及纖維化時,R2*值增加,含水量增多時,R2*值減低。在肝內任意勾畫感興趣區(qū),可測量區(qū)域內體素的脂肪及鐵的沉積情況。
2.3.3 動態(tài)增強MRI T1mapping能夠將亮度和造影劑濃度聯(lián)系起來,并結合多期動態(tài)數(shù)據,顯示腫瘤在增強各個時間點的狀態(tài)﹑正常血管的血流情況,是一個可靠的血流動力學模型。定量參數(shù)有Ktrans (min-1) [血液滲漏到血管外細胞外液間隙(EES)速率],Kep (min-1) (血液從EES滲回血管的速率)﹑Ve(對比劑EES容積,Ve = Ktrans / Kep),Vp (對比劑血漿容積)。半定量參數(shù)有iAUC、MAX Slope、TTP, iAUC為曲線下面積,單位為(s·mmol)/L;MAX Slope表示最大斜率mmol/(L·s );TTP表示達峰時間,單位為s,如圖1所示。半定量參數(shù) iAUC,即對比劑濃度下峰面積,定義為在一定時間內分布并保留在組織內的對比劑的量,被認為是Ktrans和Ve 混合參數(shù),與腫瘤內流入的血量、腫瘤灌注及腫瘤組織間隙有關,可以綜合反映Ktrans、Kep和Ve的變化。
圖1 動態(tài)增強的各個時期信號濃度的變化 AUC90表示到90 s時曲線下面積;AUC180表示到180 s時曲線下面積
2.3.4 肝細胞特異性對比劑 肝細胞特異性對比劑主要有兩種,普美顯(Gd-EOB-DTPA)和莫迪司(Dd-BOPTA)。兩者一方面通過縮短組織T1弛豫時間,可得到與傳統(tǒng)MR對比劑相似的多期動態(tài)增強效果,從而觀察肝臟病變的常規(guī)多期動態(tài)增強方式及表現(xiàn)。另一方面,含有正常肝細胞的肝實質增強,又可以得到肝臟特異期的雙重信息。所以肝細胞特異性對比劑能夠提供肝臟動態(tài)期和特異期的雙重信息。普美顯50%經肝臟排泄,50%經腎臟排泄。而莫迪司2%~4%經肝臟排泄,其余均為腎臟排泄,因此特異性不如普美顯。但應用普美顯3 min左右正常的肝細胞即開始攝取,動態(tài)期混雜特異期的雙重信息;而莫迪司攝取起始時間較晚,因此莫迪司能夠提供一個純粹的動態(tài)期。肝細胞在注射普美顯約20 min時可產生很好的增強效果,而莫迪司最佳增強效果在2 h左右。
肝細胞特異性對比劑能夠幫助影像科醫(yī)生發(fā)現(xiàn)早期肝癌以及一些小的病變,肝臟病灶檢出率高于傳統(tǒng)MR對比劑。有功能的肝細胞攝取肝特異性對比劑,肝臟背景變“白”,無功能肝病灶不攝取,病灶變“黑”,肝實質與病灶的對比反差增大,病灶更易于顯示[10-11]。目前,普美顯在臨床上應用比較多。
中華醫(yī)學會放射學分會臨床應用專家對普美顯的應用已經達成共識,對于超聲、CT或Gd-DTPA增強MRI的不典型肝細胞癌,尤其是早期HCC,可進一步行普美顯增強MR檢查,則有助于提高診斷準確性或信心[12-15];對于AFP進行性升高,尤其伴有超高危因素(如乙型肝炎、丙型肝炎相關肝硬化等),而其他影像學檢查(超聲、CT或Gd-DTPA增強MRI)陰性的患者,推薦行普美顯增強MR檢查[16]。增強CT診斷肝細胞癌擬手術的患者,如果在術前發(fā)現(xiàn)額外的小病灶(最大徑≤2.0 cm)可能改變既定治療方案,有助于提高腫瘤的根治率,減少術后復發(fā)和轉移;Gd-DTPA增強MR診斷HCC時,在其他肝葉/段部位發(fā)現(xiàn)不能明確的結節(jié)如異常灌注與早期小HCC的鑒別,肝移植術前供體和受體的術前評估,尤其在受體選擇、供體膽道的評估中初步顯示了其優(yōu)越性[17-20]。
普美顯可以發(fā)現(xiàn)肝臟更多病變,可能改變治療方案。有研究[21]表明約10%的HCC僅在普美顯特異期被發(fā)現(xiàn),約90%的早期HCC會出現(xiàn)OATP8的低表達和相應的肝特異期的低信號,因此MR肝臟特異期影像對少血供的早期HCC檢出率非常高[22]。Ariizumi等[23]發(fā)現(xiàn)肝細胞特異期病灶邊界不光滑與腫瘤門靜脈侵犯、肝內轉移密切相關,而且與HCC術后1 年內復發(fā)明顯相關。有研究[24]表明肝細胞膜功能的改變早于結節(jié)內新生血管/血供的改變。2005年有學者[25]首次提出放射基因組學的概念,其主要研究腫瘤組織及瘤周正常組織對放射治療的敏感性,及其同遺傳基因的關系,并未針對影像學表型的異質性與基因表達的差異性進行相關研究。Yamashita等[26]研究表明OATP1B3的表達和AFP水平呈負相關,OATP1B3高表達表明細胞成熟度好,低表達表明細胞來自干細胞/祖細胞,分化差;使得肝硬化患者正常肝組織T1值增加肝膽期肝實質信號減低。因此,普美顯有望輔助肝功能診斷和鑒別診斷,以及在肝段水平對肝功能進行評估。
總之,影像學進展為肝癌研究帶來新的機遇,診斷已經從有無病灶,病灶位置、大小、性質發(fā)展為評估病灶的分化程度、血供與灌注情況、病灶的侵襲性,并且可用于對預后和背景肝功能進行評估,使診斷更精確,為臨床治療提供更多信息。
[1] EL-SERAG HB, RUDOLPH KL. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis[J]. Gastroenterology, 2007, 132(7): 2557-2576.[2] BOTA S, PISCAGLIA F, MARINELLI S, et al. Comparison of international guidelines for noninvasive diagnosis of hepatocellular carcinoma[J]. Liver Cancer, 2012, 1(3-4): 190-200.
[3] European Association for the Study of the Liver, European Organisation for Research and Treatment of Cancer. EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma[J]. J Hepatol, 2012, 56(4): 908-943.[4] LEE JH, LEE JM, KIM SJ, et al.Enhancement patterns of hepatocellular carcinomas on multiphasicmultidetector row CT: comparison with pathological differentiation[J]. Br J Radiol, 2012, 85(1017): e573-e583.
[5] NAKANISHI M, CHUMA M, HIGE S, et al. Relationship between diffusion-weighted magnetic resonance imaging and histological tumor grading of hepatocellular carcinoma[J]. Ann Surg Oncol, 2012, 19(4): 1302-1309.
[6] HEO SH, JEONG YY, SHIN SS, et al. Apparent diffusion coefficient value of diffusion-weighted imaging for hepatocellular carcinoma: correlation with the histologic differentiation and the expression of vascular endothelial growth factor[J]. Korean J Radiol, 2010 , 11(3): 295-303.
[7] NASU K, KUROKI Y, TSUKAMOTO T, et al. Diffusion-weighted imaging of surgically resected hepatocellular carcinoma: imaging characteristics and relationship among signal intensity, apparent diffusion coefficient, and histopathologic grade[J]. AJR Am J Roentgenol, 2009, 193(2): 438-444.[8] XU P, ZENG M, LIU K, et al. Microvascular invasion in small hepatocellular carcinoma: is it predictable with preoperative diffusion-weighted imaging?[J]. J Gastroenterol Hepatol, 2014, 29(2): 330-336.
[9] WOO S, LEE JM, YOON JH, et al. Intravoxel incoherent motion diffusion-weighted MR imaging of hepatocellular carcinoma: correlation with enhancement degree and histologic grade[J]. Radiology, 2014, 270(3): 758-767.
[10] SCHUHMANN-GIAMPIERI G, SCHMITT-WILLICH H, PRESS WR, et al. Preclinical evaluation of Gd-EOB-DTPA as a contrast agent in MR imaging of the hepatobiliary system[J]. Radiology, 1992, 183(1): 59-64.[11] van MONTFOORT JE, STIEGER B, MEIJER DK, et al. Hepatic uptake of the magnetic resonance imaging contrast agent gadoxetate by the organic anion transporting polypeptide Oatp1[J]. J Pharmacol Exp Ther, 1999, 290(1): 153-157.[12] LEE YJ, LEE JM, LEE JS, et al. Hepatocellular carcinoma: diagnostic performance of multidetector CT and MR imaging-asystematic review and meta-analysis[J]. Radiology, 2015, 275(1): 97-109.
[13] KIERANS AS, KANG SK, ROSENKRANTZ AB. The diagnostic performance of dynamic contrast-enhanced MR imaging for detection of small hepatocellular carcinoma measuring up to 2cm: a meta-analysis[J]. Radiology, 2016, 278(1): 82-94.
[14] ZENG MS, YE HY, GUO L, et al. Gd-EOB-DTPA-enhanced magnetic resonance imaging for focal liver lesions in Chinese patients: a multicenter, open-label, phase III study[J]. Hepatobiliary Pancreat Dis Int, 2013, 12(6): 607-616.
[15] KUDO M, MATSUI O, SAKAMOTO M, et al. Role of gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid-enhanced magnetic resonance imaging in the management of hepatocellular carcinoma: consensus at the Symposium of the 48th Annual Meeting of the Liver Cancer Study Group of Japan[J]. Oncology, 2013, 84(Suppl 1): 21-27.
[16] Ministry of Health of the People′s Republic of China.Diagnosis, management, and treatment of hepatocellular carcinoma (V2011)[J]. J Clin Hepatol, 2011, 27(11): 1141-1158.(in Chinese) 中華人民共和國衛(wèi)生部. 原發(fā)性肝癌診療規(guī)范(2011年版)[J]. 臨床肝膽病雜志, 2011, 27(11): 1141-1158.
[17] YOO SH, CHOI JY, JANG JW, et al. Gd-EOB-DTPA-enhanced MRI is better than MDCT in decision making of curative treatment for hepatocellular carcinoma[J]. Ann Surg Oncol, 2013, 20(9): 2893-2900.
[18] WANG JH, CHEN TY, OU HY, et al. Clinical impact of gadoxetic acid-enhanced magnetic resonance imaging on hepatoma management: a prospective study[J]. Dig Dis Sci, 2016, 61(4): 1197-1205.
[19] LEE DH, LEE JM, BAEK JH, et al. Diagnostic performance of gadoxetic acid-enhanced liver MR imaging in the detection of HCCs and allocation of transplant recipients on the basis of the Milan criteria and UNOS guidelines: correlation with histopathologic findings[J]. Radiology, 2015, 274(1): 149-160.
[20] XIE S, LIU C, YU Z, et al. One-stop-shop preoperative evaluation for living liver donors with gadoxetic acid disodium-enhanced magnetic resonance imaging: efficiency and additional benefit[J]. Clin Transplant, 2015, 29(12): 1164-1172.
[21] AHN SS, KIM MJ, LIM JS, et al. Added value of gadoxetic acid-enhanced hepatobiliary phase MR imaging in the diagnosis of hepatocellular carcinoma[J].Radiology, 2010, 255(2): 459-466.
[22] KITAO A, MATSUI O, YONEDA N, et al. The uptake transporter OATP8 expression decreases during multistep hepatocarcinogenesis: correlation with gadoxetic acid enhanced MR imaging[J]. Eur Radiol, 2011, 21(10): 2056-2066.
[23] ARIIZUMI S, KITAGAWA K, KOTERA Y, et al. A non-smooth tumor margin in the hepatobiliary phase of gadoxetic acid disodium (Gd-EOB-DTPA)-enhanced magnetic resonance imaging predicts microscopic portal vein invasion, intrahepatic metastasis, and early recurrence after hepatectomy in patients with hepatocellular carcinoma[J]. J Hepatobiliary Pancreat Sci, 2011, 18(4): 575-585.
[24] CHOI JY, LEE JM, SIRLIN C. CT and MR imaging diagnosis and staging of hepatocellular carcinoma: part I. Development, growth, and spread: key pathologic and imaging aspects[J]. Radiology, 2014, 272(3): 635-654.
[25] WEST CM, McKAY MJ, H?LSCHER T, et al. Molecular markers predicting radiotherapy response: report and recommendations from an International Atomic Energy Agency technical meeting[J]. Int J Radiat Oncol Biol Phys, 2005, 62(5): 1264-1273.
[26] YAMASHITA T, KITAO A, MATSUI O, et al. Gd-EOB-DTPA-enhanced magnetic resonance imaging and alpha-fetoprotein predict prognosis of early-stage hepatocellular carcinoma[J]. Hepatology, 2014, 60(5): 1674-1685.
引證本文:ZHANG CY, FU Y, LI XD, et al. Advances in imaging diagnosis of liver cancer[J]. J Clin Hepatol, 2017, 33(7): 1266-1269. (in Chinese) 張春雨, 付宇, 李曉東, 等. 肝癌的影像學診斷進展[J]. 臨床肝膽病雜志, 2017, 33(7): 1266-1269.
(本文編輯:劉曉紅)
Advances in imaging diagnosis of liver cancer
ZHANGChunyu,FUYu,LIXiaodong,etal.
(DepartmentofRadiology,TheFirstHospitalofJilinUniversity,Changchun130021,China)
Liver biopsy is the gold standard for the diagnosis of primary liver cancer, but it is an invasive examination. At present, imaging has become the preferred method for the diagnosis of liver cancer. This article summarizes new imaging methods and techniques for the diagnosis and evaluation of primary liver cancer, including contrast-enhanced ultrasound, CT perfusion imaging, diffusion-weighted imaging-intravoxel incoherent motion, IDEAL IQ sequence, dynamic contrast-enhanced MRI, and hepatocyte-specific contrast-enhanced imaging, and points out that diagnostic imaging can not only evaluate the degree of tumor differentiation, blood supply and perfusion, and invasiveness of lesions, but also predict the prognosis and evaluate liver function. Therefore, it can provide a reference for clinical diagnosis and treatment.
liver neoplasms; diagnostic imaging
10.3969/j.issn.1001-5256.2017.07.012
2017-05-13;
2017-06-07。
張春雨(1979-),女,主治醫(yī)師,博士,主要從事腹部影像診斷的研究。
張惠茅,電子信箱:huimaozhanglinda@163.com。
R735.7
A
1001-5256(2017)07-1266-04