• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Surface Modified TiO2Nanoparticles—an Effective Anti-wear and Anti-friction Additive for Lubricating Grease

    2017-08-07 21:32:09LiYiLiuXinyangLiuDajunSunHongwei
    中國煉油與石油化工 2017年2期

    Li Yi; Liu Xinyang; Liu Dajun; Sun Hongwei

    (1. China Petroleum & Chemical Corporation, Beijing 100728; 2. SINOPEC Research Institute of Petroleum Processing, Beijing 100083)

    Surface Modified TiO2Nanoparticles—an Effective Anti-wear and Anti-friction Additive for Lubricating Grease

    Li Yi1; Liu Xinyang2; Liu Dajun2; Sun Hongwei2

    (1. China Petroleum & Chemical Corporation, Beijing 100728; 2. SINOPEC Research Institute of Petroleum Processing, Beijing 100083)

    The surface modifed TiO2nanoparticles were prepared by using 12-hydroxystearic acid chemically modifed on the TiO2surface. The average size of the TiO2particles is about 30 nm. The optimum ratio of tetrabutyl titanate to 12-hydroxystearic acid was 1/0.5. The bonding form between 12-hydroxystearic acid and TiO2nucleus was investigated by FTIR, DSC, TGA and XRD techniques. The lubricating grease containing the surface modifed TiO2nanoparticles possesses excellent anti-wear and anti-friction properties. Compared with the grease without TiO2, the PBvalue can be increased by 52% as the best performance of the grease containing surface modifed TiO2nanoparticles, while the friction coeffcient can be reduced by 33% with the addition of a small amount of TiO2nanoparticles, and meanwhile the wear scar diameter decreases by 25%.

    TiO2nanoparticles; lubricating grease; anti-wear; anti-friction

    1 Introduction

    Nanomaterials have been garnering significant attention over the past few years due to their special properties. The large ratio of surface atomic number to the total atomic number brings about the volume effect, the quantum effect, and the surface and interfacial effect. In recent years, nanomaterials have been widely applied in the research of catalysis, luminescent materials, magnetic materials, semiconductor materials, biology, medicine, and many other felds.

    The application of nanomaterials in the lubricating oil has been studied. Many researchers have studied the tribological properties of different kinds of nanomaterials as additives of lubricating oil[1-2], including nano-layered inorganic materials[3-6], nano soft metal[7-8], nano rare earth compounds[9-10], nano oxide, nano hydroxide[11], and others. It is considered that the addition of nanomaterials signifcantly improve the antiwear and anti-friction properties of lubricating oils. At present, there are three different theories on the antiwear mechanism of nanomaterials (microrolling theory, surface deposited film theory and infiltration lattice strengthening surface theory). Although the theories need to be further improved, researchers are optimistic to the application of anti-wear and anti-friction nanomaterials, which is considered as a candidate to take the place of the traditional EP/AW agent, so as to solve the environmental problems brought about by S, P, and Cl[4]. It has been proved that nanomaterials have good tribological properties in lubricating oil, but it is rarely reported in lubricating grease. In view of the correlation between lubricating oil and grease, nanomaterials may be also an effective anti-wear and anti-friction additives for lubricating grease.

    In this paper, the surface modified TiO2nanoparticles were prepared by using 12-hydroxystearic acid and tetrabutyl titanate. The microstructure of the nanoparticles was investigated. Furthermore, the surface modified TiO2nanoparticles were applied in the preparation of lubricating grease, and the anti-wear and anti-friction properties were studied.

    2 Experimental

    2.1 Materials

    Reagents were purchased from Alfa Aesar, Aldrich or Acros and used without further purification unlessotherwise noted. Ethanol was dried with K2CO3and distilled from Na/benzophenone under a nitrogen atmosphere.

    2.2 Instrumentation

    The IR spectra were obtained from a Thermo Nicolet Avatar 360 FT-IR spectrometer. The transmission electron microscopy (TEM) images were obtained using a JEM-2000FXII microscope. Thermogravimetric analysis were performed on a TA5000-TGA2950 analyzer. Differential scanning calorimetry measurements were performed on a TA5000-DSC2910 instrument. X-ray diffraction spectra were obtained from an X’ Pert powder X-ray diffractometer.

    2.3 Preparation of surface modified TiO2nanoparticles

    3.4 g (10 mmol) of tetrabutyl titanate were dissolved in 100 mL of ethanol under stirring at 60oC, and then an appropriate amount of 12-hydroxystearic acid was added. After 30 minutes, 0.5 g of distilled water was slowly added to the mixture. A yellow sol was formed after several hours, then the solvent was evaporated by a rotary evaporator and the remaining substance was dried under vacuum to yield the surface modifed TiO2nanoparticles.

    2.4 Preparation of lubricating grease

    The 500SN base oil, lithium 12-hydroxystearate and surface modified TiO2nanoparticles were employed as the base oil, the thickener and the anti-wear additive, respectively, to prepare the lubricating grease.

    3 Results and Discussion

    3.1 Characteristics of the surface modified TiO2nanoparticles

    The morphology of the surface modified TiO2nanoparticles was investigated by the transmission electron microscope (TEM). The TEM image in Figure 1 indicates that the average diameter of the nanoparticles is around 30 nm featuring good monodispersity which is free of aggregation. The microstructure of the surface modified TiO2nanoparticles can be inferred as 12-hydroxystearic acid coated on the surface of TiO2nanoparticles, which is shown in Figure 2.

    Figure 1 TEM image of the organic acid modified titanium dioxide

    Figure 2 The model of surface modified TiO2nanoparticles

    The surface modification of TiO2nanoparticles was validated by the studies using the Fourier transform infrared spectrometry (FTIR). Figure 3(a) is the FTIR spectra of 12-hydroxystearic acid, the bands at 2 915 cm-1and 2 848 cm-1are assigned to the stretching vibration of –CH2– and –CH3, respectively, while the band at 719 cm-1is assigned to the in-plane bending vibration of –CH2–. The band at 1698 cm-1is assigned to the carbonyl stretching vibration. Figure 3(b), (c), (d) are the spectra of TiO2nanoparticles modified by 12-hydroxystearic acid, the mole ratio of tetrabutyl titanate to 12-hydroxystearic acid is 1/1.5, 1/1, 1/0.5, respectively. Compared to Figure 3(a), the bands assigned to non-polar groups of 12-hydroxystearic acid still exist, nevertheless, the band of carbonyl stretching vibration gradually declines and two bands at 1 545 cm-1and 1 448 cm-1emerge, which can be attributed to the asymmetric and symmetric stretching vibrationbands of the carboxylate groups, respectively, indicative of the formation of carboxylate groups on the surface of TiO2nanoparticles. It can be further inferred that the modifcation of 12-hydroxystearic acid on the surface of TiO2could contribute to the formation of nanosized particles. When the ratio of tetrabutyl titanate to 12-hydroxystearic acid reaches 1/0.5, the band at 1 698 cm-1nearly disappears, which is indicative of the completely consumption of 12-hydroxystearic acid.

    Figure 3 FTIR spectra of (a) 12-hydroxystearic acid and surface modified TiO2nanoparticles with tetrabutyl titanate/12-hydroxystearic acid mole ratio of (b) 1/1.5, (c) 1/1, and (d) 1/0.5

    The differential scanning calorimetry (DSC) curves of 12-hydroxystearic acid and surface modified TiO2nanopaticles are shown in Figure 4. Figure 4(a) represents the DSC curve of 12-hydroxystearic acid, wherein an absorption band at 80oC stems from the molten 12-hydroxystearic acid. As the temperature increases to over 210oC, oxidative combustion of 12-hydroxystearic acid emerges and a large amount of carbon dioxide and water is released. Figure 4(b) represents the DSC curve of the 12-hydroxystearic acid modified TiO2nanoparticles, which indicates that the band of oxidative combustion has not emerged until 258oC, which is about by 50oC higher than that of 12-hydroxystearic acid. This may occur because the linkage of 12-hydroxystearic acid and TiO2enhances the stability of the acid, resulting in an increased oxidative combustion temperature.

    Figure 4 DSC curves of (a) 12-hydroxystearic acid, and (b) surface modified TiO2nanoparticles

    The curve for thermogravimetric analysis (TGA) of the surface modified TiO2nanoparticles is shown in Figure 5. The weight loss between 70-100oC is attributed to the decreasing amount of liquid water. The modifcation layer of TiO2nanoparticles decomposes as the temperature increases, and the weight reduces to 21% when the temperature reaches 365oC, which is in agreement with the result of DSC measurements. The TGA curve further indicates that there is no any weight loss after 450oC, we can infer that the appearance of strong exothermic peak is associated with the transition of the crystalline phase in TiO2nanoparticles.

    Figure 5 TGA curve of surface modified TiO2nanoparticles

    In order to validate that the transition of crystalline phase in TiO2nanoparticles is the main reason for the appearance of strong exothermic peak in DSC curve, the X-ray diffraction analysis was employed to investigate the crystalline phase of nanoparticles calcined at different heating temperature (Figure 6). There was no peak in the XRD spectrum of nanoparticles calcined at 60oC, which was indicative of non-crystalline structure of the TiO2nanoparticles. There was a wide peak in the XRD spectrum of TiO2calcined at 400oC, indicating to the formation of anatase-TiO2. For the case of TiO2nanoparticles calcined at 550oC, the peak became sharper, which revealed the formation of a large amount of crystals. When thecalcination temperature reached 700oC, the peak became stronger and sharper, denoting the transformation of TiO2crystals from the anatase type to the rutile type. The results of XRD measurements provided strong evidence for the crystalline phase transition of TiO2nanoparticles at temperatures exceeding 450oC.

    Figure 6 XRD spectra of TiO2nanoparticles treated at different heating temperatures

    3.2 Tribological performance of the lubricating grease containing surface modified TiO2nanoparticles

    The 500SN base oil, lithium 12-hydroxystearate and surface modified TiO2nanoparticles were employed as the base oil, the thickener and the anti-wear additive, respectively, to prepare the lubricating grease. ThePBvalues of the greases with different mass fractions of TiO2were measured. Figure 7 reveals that the addition of TiO2nanoparticles to the grease resulted in a dramatically enhancedPBvalue with a maximum value at 1.5%, which was by 52% higher than the grease without additive. Further addition of TiO2nanoparticles led to a decrease of thePBvalue. The excess nano-sized additive might form the aggregates and made the friction process unstable.

    Figure 7PBas a function of additive concentration of surface modified TiO2nanoparticles

    The friction coefficient of the greases with different amount of the surface modified TiO2nanoparticles is shown in Figure 8. The test results revealed that the addition of a small amount of TiO2nanoparticles led to a dramatical decrease of the friction coeffcient, with the minimum value identifed at 0.3% of TiO2nanoparticles added, which was by 67% lower than the grease without TiO2additive. The further additions of TiO2nanoparticles caused an increase of the friction coeffcient. The reason for this phenomenon is that the nanoparticles additive has two opposite effects on the anti-friction performance of the lubricant system. On the one hand, the nanoparticles can effectively reduce the friction coefficient by providing the effective bearing effect on the surface of the tribomates, and on the other hand, the nanoparticles in the lubricating oil flm may damage the integrity of the lubricating oil flm, causing local disturbance of the oil flm and the increase in the friction coeffcient. When the bearing effect is dominant, the friction coeffcient decreases, and otherwise the friction coefficient increases.

    Figure 8 Friction coefficient as a function of concentration of surface modified TiO2nanoparticles added

    Figure 9 shows the change in the wear scar diameter of the grease containing different concentrations of surfacemodified TiO2nanoparticles. It can be seen that the grease containing the surface-modifed TiO2nanoparticles could dramatically reduce the wear scar diameter of the steel ball. The wear scar diameter reached a minimum value when the TiO2nanoparticles amount was 0.3% and the diameter was by 25% lower than that of the grease without TiO2nanoparticles, while a further addition of the TiO2nanoparticles would not change the abrasion resistance property of the grease.

    Figure 9 Wear scar diameter as a function of concentration of surface modified TiO2nanoparticles

    The grease containing 1% of TiO2nanoparticles was selected to investigate the wear scar diameter formed under different applied load. Figure 10 reveals that the wear scar diameter gradually increased with an increasing load. In comparison with the grease without additive, the grease containing TiO2nanoparticles exhibited lower wear scar diameter formed under the full load range, which was indicative of a better abrasion resistance property of the grease.

    Figure 10 Wear scar diameter as a function of applied load with lubrication of grease alone and grease containing 1% of TiO2nanoparticles

    3.3 Studies on anti-wear and anti-friction mechanism of surface modified TiO2nanoparticles

    The scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS) were used to analyze the surface of the steel ball after tribology test. It can be seen from Figure 11 that the surface of the steel ball remained smooth after the tribology test.

    The quantitative analysis result of EDX experiment is shown in Figure 12 and the relative content of the elements calculated by the software is shown in Table 1. The EDX element distribution analysis revealed that after the tribology test, the steel ball surface contained not only Fe, Cr, and Mn elements, but also a small amount of Ti element, which could be the contribution of additive. The surface of TiO2nanoparticles contained a large amount of hydroxyl radicals and unsaturated residues, which had high surface energy. When the frictional force was exerted on the tribomates, the fash temperature caused by the friction could make the surface modified TiO2nanoparticles adsorbed on the metal surface through the hydroxylated surface to form a layer of deposited film. In the process of friction, the torn off TiO2deposition film could be quickly displaced by the subsequent adsorption to bring into full play its good lubrication effect. Ti element was also detected on the surface of the steel ball in the XPS full scan spectrum, which could further validate the above hypothesis.

    Figure 11 SEM photograph and the distribution of elements by EDX analysis of the worn surface after tribological test

    Figure 12 Analysis of the concentration of elements on the worn surface by EDX

    Table 1 Concentration of elements on the worn surface after tribological test as determined by EDX.

    Figure 13 XPS analysis of element concentration on the worn surface

    4 Conclusions

    The surface modified TiO2nanoparticles were prepared by using 12-hydroxystearic acid chemically modifed on the TiO2surface. The average size of the particles was about 30 nm. There was a strong interaction between the terminal carboxyl group of surface modification agent 12-hydroxystearic acid and the TiO2nanometersized nuclei. The optimum ratio of tetrabutyl titanate to 12-hydroxystearic acid was 1/0.5, and the oxidative decomposition temperature of the surface modification layer was increased due to the presence of nano-particles. The bonding form between 12-hydroxystearic acid and TiO2nuclei was also validated by FTIR, DSC, TGA and XRD experiments.

    The lubricating grease containing the surface modified TiO2nanoparticles has excellent anti-friction and antiwear properties. Addition of nanoparticles to the grease resulted in a dramatically enhanced PBvalue, and when a 1.5 m% of the surface modified TiO2nanoparticles were added to the grease, PBvalue was by 52% higher than the grease without TiO2. However, the further additions of TiO2nanoparticles caused the decrease of the PBvalue. Addition of a small amount of TiO2nanoparticles also resulted in a dramatical decrease of the friction coeffcient, which reduced by 33% as compared to the grease without TiO2additive. Further additions of TiO2nanoparticles caused an increase of the friction coefficient. The wear scar diameter reached a minimum when 0.3% of the TiO2nanoparticles were added to the grease, while the wear scar diameter was by 25% lower than that of the grease without TiO2nanoparticles. The wear scar diameter remained stable with further addition of the TiO2nanoparticles to the grease.

    [1] Li Q, Zeng G B, Xi S Q. Nanoparticles[J]. Chemistry Bulletin, 1995, (6): 29-34 (in Chinese)

    [2] Bakunin V N, Suslov A Y, Kuzmina G N, et al. Synthesis and application of inorganic nanoparticles as lubricant components: A review[J]. Journal of Nanoparticle Research, 2004, 6(2): 273-284

    [3] Ochring M, Bormann R. Nanocrystalline alloys prepared by mechanical alloying and ball milling[J]. Mater Sci Eng: A, 1991, 134: 1330-1333

    [4] Wada S, Chikamori H, Noma T, et al. Hydrothermal synthesis of barium titanate crystallites using new stable titanium chelated complex in aqueous solution[J]. J Mater Sci Lett, 2000, 19: 245-247

    [5] Zhong W Z, Hua S K. Nano materials and hydrothermal preparation[J]. Shanghai Chemical Industry, 1998, 23(11): 25-27 (in Chinese)

    [6] Li J X, Wu J Q, Yan C. Hydrothermal preparation of nanoparticles[J]. China Ceramics, 2002, 38(5): 36-39 (in Chinese)

    [7] Deguchi S, Matsuda H, Hastani M. Formation mechanism of TiO2fine particles prepared by the spray pyrolysis method[J]. Drying Technology, 1994, 12(3): 577-591

    [8] Ju C S, Lee M G, Honn S S. Effect of precipitation condition on the shapes and size distributions of zinc oxide particles prepared by homogeneous precipitation[J]. Cuadernos Hispanoamericanos, 1997, 35(5): 65-74

    [9] Beiadjieva T, Cappelletti G, Ardizzone S, et al. Nanocrystalline titanium oxide by sol-gel method. The role of the solvent removed step[J]. Physical Chemistry Chemical Physics, 2003, 5(8): 1689-1694

    [10] Kim S, Prashant N, Kumta. Hydrazide sol-gel synthesis of nanostructured titanium nitride: Precursor chemistry and phase evolution[J]. Journal of Materials Chemistry, 2003, 13(8): 2028-2035

    [11] Wang Y Y, Fan Y Z, Sun Y H, et al. The effect of preparation parameterson the best surface area of ZrO2powder[J]. Studies in Surface Science & Catalysis, 1997, 110: 829-834

    date: 2017-05-03; Accepted date: 2017-05-20.

    Dr. Liu Xinyang, Telephone: +86-10-82368858; E-mail: liuxinyang.ripp@sinopec.com.

    久久久久性生活片| 妹子高潮喷水视频| 国内精品久久久久久久电影| 亚洲av电影不卡..在线观看| 大型av网站在线播放| 久久精品aⅴ一区二区三区四区| 亚洲国产精品合色在线| 国产单亲对白刺激| 欧美黑人巨大hd| 亚洲av第一区精品v没综合| 欧美日韩中文字幕国产精品一区二区三区| 男女午夜视频在线观看| 麻豆久久精品国产亚洲av| 亚洲专区国产一区二区| 全区人妻精品视频| 日韩国内少妇激情av| 国产99久久九九免费精品| 两个人看的免费小视频| 免费看日本二区| 亚洲欧美日韩高清专用| av在线天堂中文字幕| 亚洲国产看品久久| 99久久99久久久精品蜜桃| 欧美人与性动交α欧美精品济南到| 搡老妇女老女人老熟妇| 午夜影院日韩av| 国产午夜福利久久久久久| 国产一级毛片七仙女欲春2| 亚洲专区字幕在线| 99国产精品99久久久久| 成人欧美大片| 国产精品 欧美亚洲| 俺也久久电影网| 制服丝袜大香蕉在线| 国产一区二区在线av高清观看| 国产又色又爽无遮挡免费看| 日本黄大片高清| 欧美激情久久久久久爽电影| 久久久久免费精品人妻一区二区| 午夜精品一区二区三区免费看| 日日夜夜操网爽| 一级毛片精品| 色尼玛亚洲综合影院| 日本撒尿小便嘘嘘汇集6| 欧美成狂野欧美在线观看| 一个人观看的视频www高清免费观看 | 麻豆久久精品国产亚洲av| 免费无遮挡裸体视频| 757午夜福利合集在线观看| 精品高清国产在线一区| 高潮久久久久久久久久久不卡| 日本一本二区三区精品| 丰满人妻熟妇乱又伦精品不卡| 国产v大片淫在线免费观看| 成人av在线播放网站| 好男人在线观看高清免费视频| 午夜福利在线观看吧| 免费观看人在逋| 亚洲狠狠婷婷综合久久图片| 女生性感内裤真人,穿戴方法视频| 色综合亚洲欧美另类图片| 五月伊人婷婷丁香| 精品久久久久久,| 亚洲精品在线观看二区| 此物有八面人人有两片| 午夜视频精品福利| 精品国产超薄肉色丝袜足j| 午夜两性在线视频| 日韩中文字幕欧美一区二区| 亚洲国产高清在线一区二区三| 久久婷婷成人综合色麻豆| 国产亚洲精品一区二区www| 黄色丝袜av网址大全| 精品午夜福利视频在线观看一区| 少妇的丰满在线观看| 国产真实乱freesex| 午夜福利视频1000在线观看| 日韩高清综合在线| 69av精品久久久久久| 男女视频在线观看网站免费 | 成人欧美大片| 亚洲在线自拍视频| 国产av麻豆久久久久久久| 亚洲精品av麻豆狂野| 亚洲精品av麻豆狂野| 50天的宝宝边吃奶边哭怎么回事| 50天的宝宝边吃奶边哭怎么回事| 亚洲国产日韩欧美精品在线观看 | 巨乳人妻的诱惑在线观看| 全区人妻精品视频| 日韩中文字幕欧美一区二区| 成人高潮视频无遮挡免费网站| 可以在线观看的亚洲视频| 丝袜美腿诱惑在线| 久久人妻福利社区极品人妻图片| АⅤ资源中文在线天堂| 亚洲av成人av| 欧美黄色片欧美黄色片| 国产av一区二区精品久久| 国产男靠女视频免费网站| 亚洲成人久久性| 亚洲中文字幕日韩| 不卡av一区二区三区| 日日摸夜夜添夜夜添小说| 色综合婷婷激情| 国产亚洲精品综合一区在线观看 | 悠悠久久av| 精品久久久久久久人妻蜜臀av| 亚洲人成网站高清观看| 久久伊人香网站| 久久性视频一级片| 欧美日韩乱码在线| 免费观看人在逋| 性色av乱码一区二区三区2| 久久精品国产亚洲av高清一级| 久久久久久大精品| 亚洲av电影在线进入| 99re在线观看精品视频| 国产精品综合久久久久久久免费| 久久精品人妻少妇| 精品少妇一区二区三区视频日本电影| 日本熟妇午夜| 女同久久另类99精品国产91| 日本成人三级电影网站| 一区二区三区激情视频| 女人高潮潮喷娇喘18禁视频| 99国产极品粉嫩在线观看| 精品国产亚洲在线| 在线观看www视频免费| 999精品在线视频| 777久久人妻少妇嫩草av网站| 又黄又爽又免费观看的视频| 国产精品乱码一区二三区的特点| 在线国产一区二区在线| 国产成人精品久久二区二区免费| 黄色毛片三级朝国网站| 亚洲精品av麻豆狂野| 小说图片视频综合网站| 三级男女做爰猛烈吃奶摸视频| 国产黄片美女视频| 黑人巨大精品欧美一区二区mp4| 亚洲专区国产一区二区| 日韩精品青青久久久久久| 欧美精品啪啪一区二区三区| 少妇粗大呻吟视频| 伊人久久大香线蕉亚洲五| 午夜a级毛片| 黄片小视频在线播放| 亚洲av日韩精品久久久久久密| av有码第一页| 国产伦人伦偷精品视频| 日韩大码丰满熟妇| 精品熟女少妇八av免费久了| 国产成人av教育| 中文字幕久久专区| 亚洲av中文字字幕乱码综合| 欧美不卡视频在线免费观看 | 国产午夜精品久久久久久| 亚洲七黄色美女视频| 色播亚洲综合网| 久久性视频一级片| 别揉我奶头~嗯~啊~动态视频| 欧美丝袜亚洲另类 | 亚洲成人免费电影在线观看| 一边摸一边做爽爽视频免费| 日韩欧美 国产精品| 少妇粗大呻吟视频| 天堂动漫精品| 51午夜福利影视在线观看| 亚洲人成电影免费在线| 久久九九热精品免费| 禁无遮挡网站| 亚洲九九香蕉| 国产成人精品无人区| 听说在线观看完整版免费高清| 亚洲激情在线av| 1024香蕉在线观看| 国产精品久久久久久精品电影| 国产欧美日韩精品亚洲av| 天堂√8在线中文| 久久精品国产亚洲av香蕉五月| 亚洲精品久久成人aⅴ小说| 久久这里只有精品中国| 国产高清激情床上av| 91麻豆精品激情在线观看国产| 国产精品av久久久久免费| 可以免费在线观看a视频的电影网站| 欧美中文日本在线观看视频| 国产久久久一区二区三区| 在线观看舔阴道视频| 国内精品一区二区在线观看| 免费无遮挡裸体视频| 999久久久精品免费观看国产| 男女午夜视频在线观看| 村上凉子中文字幕在线| 五月伊人婷婷丁香| 岛国视频午夜一区免费看| 亚洲精品国产精品久久久不卡| 国产黄色小视频在线观看| 国产精品美女特级片免费视频播放器 | 身体一侧抽搐| www.999成人在线观看| 丝袜人妻中文字幕| 国产区一区二久久| 日本一本二区三区精品| 男男h啪啪无遮挡| 成年版毛片免费区| 欧美+亚洲+日韩+国产| 久久国产乱子伦精品免费另类| 久久99热这里只有精品18| 舔av片在线| 制服诱惑二区| 国内精品久久久久久久电影| 少妇的丰满在线观看| 国产精品永久免费网站| 亚洲av五月六月丁香网| 男人舔女人下体高潮全视频| 69av精品久久久久久| 狂野欧美激情性xxxx| 欧美激情久久久久久爽电影| 91麻豆精品激情在线观看国产| 精品久久久久久久久久免费视频| 久久久久九九精品影院| 性色av乱码一区二区三区2| 1024视频免费在线观看| 亚洲人成伊人成综合网2020| 老司机福利观看| 精品久久久久久久久久免费视频| 女人爽到高潮嗷嗷叫在线视频| av免费在线观看网站| 在线观看免费视频日本深夜| 久久久久免费精品人妻一区二区| 国产一区二区三区视频了| 日韩精品青青久久久久久| 亚洲av成人av| 一本久久中文字幕| 99久久精品国产亚洲精品| 精品无人区乱码1区二区| 俺也久久电影网| 非洲黑人性xxxx精品又粗又长| 国产精品久久电影中文字幕| 日本在线视频免费播放| 在线播放国产精品三级| 国产激情偷乱视频一区二区| 亚洲va日本ⅴa欧美va伊人久久| 日本免费一区二区三区高清不卡| 国产高清激情床上av| 亚洲精品美女久久久久99蜜臀| 91av网站免费观看| 成人手机av| 午夜成年电影在线免费观看| 久久精品成人免费网站| 久久性视频一级片| 免费在线观看亚洲国产| 久久人妻av系列| 久久久久国产精品人妻aⅴ院| 国产三级中文精品| 亚洲精品美女久久av网站| 久久人妻福利社区极品人妻图片| 麻豆成人午夜福利视频| 国产高清videossex| 成人永久免费在线观看视频| 波多野结衣高清无吗| 午夜免费观看网址| 成人午夜高清在线视频| 在线观看免费午夜福利视频| 久久久久精品国产欧美久久久| 搡老熟女国产l中国老女人| 中文亚洲av片在线观看爽| 少妇人妻一区二区三区视频| 国产成年人精品一区二区| 性色av乱码一区二区三区2| 亚洲人成电影免费在线| 制服人妻中文乱码| 国产精品亚洲美女久久久| 999精品在线视频| 两个人免费观看高清视频| 淫秽高清视频在线观看| 成在线人永久免费视频| 欧美乱妇无乱码| 色综合欧美亚洲国产小说| 在线观看日韩欧美| 欧美乱妇无乱码| 亚洲国产中文字幕在线视频| 黑人操中国人逼视频| 在线观看www视频免费| 国产精品,欧美在线| 免费搜索国产男女视频| 久久久水蜜桃国产精品网| 国产成人影院久久av| 久久久久精品国产欧美久久久| av免费在线观看网站| 美女黄网站色视频| 亚洲黑人精品在线| 伦理电影免费视频| 精品国产超薄肉色丝袜足j| 琪琪午夜伦伦电影理论片6080| 又爽又黄无遮挡网站| 两性午夜刺激爽爽歪歪视频在线观看 | 国产伦在线观看视频一区| 成人av一区二区三区在线看| 国产免费av片在线观看野外av| 91av网站免费观看| 99精品久久久久人妻精品| 啦啦啦观看免费观看视频高清| 又紧又爽又黄一区二区| 丁香欧美五月| а√天堂www在线а√下载| 日本撒尿小便嘘嘘汇集6| 99久久99久久久精品蜜桃| 此物有八面人人有两片| 欧美日韩亚洲综合一区二区三区_| 亚洲一区高清亚洲精品| 欧美日本视频| 精品久久久久久,| 亚洲国产精品成人综合色| 少妇的丰满在线观看| 在线观看舔阴道视频| 午夜福利在线在线| 欧美一区二区国产精品久久精品 | 青草久久国产| 正在播放国产对白刺激| 国产免费男女视频| 天天躁夜夜躁狠狠躁躁| 一进一出好大好爽视频| 精品免费久久久久久久清纯| 99久久精品国产亚洲精品| 99久久99久久久精品蜜桃| 婷婷精品国产亚洲av在线| 久久人妻福利社区极品人妻图片| 亚洲一区高清亚洲精品| 超碰成人久久| 女人高潮潮喷娇喘18禁视频| 岛国视频午夜一区免费看| 久久中文字幕人妻熟女| 女人被狂操c到高潮| 欧美不卡视频在线免费观看 | 香蕉国产在线看| 丁香六月欧美| 每晚都被弄得嗷嗷叫到高潮| 亚洲国产欧美人成| 女警被强在线播放| 91九色精品人成在线观看| 精品人妻1区二区| 丰满人妻一区二区三区视频av | 少妇的丰满在线观看| 国产亚洲精品综合一区在线观看 | 欧美乱妇无乱码| 久久草成人影院| 岛国在线观看网站| 国产精品影院久久| 欧美午夜高清在线| 亚洲国产欧美一区二区综合| 老司机福利观看| 免费无遮挡裸体视频| 12—13女人毛片做爰片一| 深夜精品福利| 日韩大码丰满熟妇| www.精华液| 岛国在线观看网站| 18禁黄网站禁片免费观看直播| 国产黄色小视频在线观看| 一卡2卡三卡四卡精品乱码亚洲| 日本熟妇午夜| 中文字幕高清在线视频| 亚洲精品一区av在线观看| 免费观看人在逋| 久久伊人香网站| 亚洲中文字幕一区二区三区有码在线看 | 国产av麻豆久久久久久久| 神马国产精品三级电影在线观看 | 成人精品一区二区免费| 亚洲真实伦在线观看| 大型av网站在线播放| 欧美中文综合在线视频| 亚洲人成网站在线播放欧美日韩| 美女高潮喷水抽搐中文字幕| 成人av在线播放网站| 91九色精品人成在线观看| 99re在线观看精品视频| 久久久久国内视频| 久久久精品大字幕| 999久久久国产精品视频| 极品教师在线免费播放| 91麻豆av在线| av福利片在线观看| 男女床上黄色一级片免费看| 亚洲一卡2卡3卡4卡5卡精品中文| 好看av亚洲va欧美ⅴa在| 国产精品av视频在线免费观看| 亚洲欧美日韩高清专用| 人人妻人人看人人澡| 欧美在线黄色| 欧美乱妇无乱码| 在线观看日韩欧美| 人人妻人人看人人澡| 亚洲成人中文字幕在线播放| 国产成人影院久久av| 国产精品野战在线观看| 色在线成人网| 丝袜人妻中文字幕| 麻豆一二三区av精品| 亚洲乱码一区二区免费版| 成人午夜高清在线视频| 精品一区二区三区av网在线观看| 婷婷精品国产亚洲av在线| 成人午夜高清在线视频| 夜夜躁狠狠躁天天躁| 日韩精品青青久久久久久| 久久久久久久精品吃奶| 免费在线观看日本一区| 97人妻精品一区二区三区麻豆| 久久九九热精品免费| 一本大道久久a久久精品| АⅤ资源中文在线天堂| 熟女少妇亚洲综合色aaa.| 精品电影一区二区在线| 51午夜福利影视在线观看| 人妻丰满熟妇av一区二区三区| 久久亚洲精品不卡| 国产成人一区二区三区免费视频网站| av免费在线观看网站| 长腿黑丝高跟| 可以免费在线观看a视频的电影网站| 动漫黄色视频在线观看| 免费人成视频x8x8入口观看| 国产1区2区3区精品| 国产av一区二区精品久久| 欧美黄色淫秽网站| 久久婷婷成人综合色麻豆| 中文字幕熟女人妻在线| 级片在线观看| 少妇人妻一区二区三区视频| 成人手机av| 99国产精品一区二区三区| 一二三四社区在线视频社区8| 在线看三级毛片| 亚洲成人免费电影在线观看| 免费看美女性在线毛片视频| 国产黄a三级三级三级人| 99久久精品国产亚洲精品| 777久久人妻少妇嫩草av网站| 床上黄色一级片| 美女扒开内裤让男人捅视频| 久久欧美精品欧美久久欧美| 嫁个100分男人电影在线观看| 欧美高清成人免费视频www| 久久这里只有精品中国| 亚洲成人久久爱视频| 精品少妇一区二区三区视频日本电影| 90打野战视频偷拍视频| 日本在线视频免费播放| 好男人电影高清在线观看| 午夜免费激情av| 女人爽到高潮嗷嗷叫在线视频| 欧美黑人精品巨大| 老司机午夜十八禁免费视频| 欧美成人午夜精品| 亚洲av电影在线进入| 国产精品永久免费网站| 日韩精品青青久久久久久| tocl精华| 精品不卡国产一区二区三区| 18禁美女被吸乳视频| 国产精品永久免费网站| 又粗又爽又猛毛片免费看| 狠狠狠狠99中文字幕| 日日夜夜操网爽| 午夜免费观看网址| 国产单亲对白刺激| 日韩免费av在线播放| 中亚洲国语对白在线视频| netflix在线观看网站| 亚洲国产欧洲综合997久久,| 伦理电影免费视频| 亚洲成人中文字幕在线播放| 久久久国产成人免费| www日本在线高清视频| 国产欧美日韩精品亚洲av| 法律面前人人平等表现在哪些方面| 久久久久久人人人人人| 久久久久九九精品影院| 亚洲国产欧美网| 日韩三级视频一区二区三区| 观看免费一级毛片| 午夜福利欧美成人| 亚洲一区高清亚洲精品| 久久久久久人人人人人| 国模一区二区三区四区视频 | 国产人伦9x9x在线观看| 人人妻,人人澡人人爽秒播| 国产欧美日韩一区二区精品| 亚洲国产高清在线一区二区三| 日本a在线网址| 脱女人内裤的视频| 久久久久久久久久黄片| 在线播放国产精品三级| 亚洲成人中文字幕在线播放| aaaaa片日本免费| 每晚都被弄得嗷嗷叫到高潮| 大型av网站在线播放| 好看av亚洲va欧美ⅴa在| 99在线人妻在线中文字幕| 特大巨黑吊av在线直播| 国内少妇人妻偷人精品xxx网站 | 欧美日韩乱码在线| 99热这里只有是精品50| 国产三级在线视频| 欧美人与性动交α欧美精品济南到| 久久精品亚洲精品国产色婷小说| 免费高清视频大片| 精品午夜福利视频在线观看一区| 午夜免费成人在线视频| 国产av又大| 亚洲国产高清在线一区二区三| 岛国在线免费视频观看| 男男h啪啪无遮挡| 国产av不卡久久| 成人18禁高潮啪啪吃奶动态图| 色噜噜av男人的天堂激情| 亚洲成a人片在线一区二区| 久久精品91蜜桃| 高清毛片免费观看视频网站| 亚洲欧美精品综合一区二区三区| 大型av网站在线播放| 国产伦一二天堂av在线观看| 久久久水蜜桃国产精品网| 国产aⅴ精品一区二区三区波| 99re在线观看精品视频| 欧美色欧美亚洲另类二区| 亚洲精品在线美女| av超薄肉色丝袜交足视频| 熟妇人妻久久中文字幕3abv| 亚洲国产欧美人成| 99热这里只有是精品50| 黄色女人牲交| 精品日产1卡2卡| 最好的美女福利视频网| 久9热在线精品视频| 国产精品亚洲一级av第二区| 法律面前人人平等表现在哪些方面| 婷婷精品国产亚洲av在线| 国产熟女午夜一区二区三区| 在线a可以看的网站| 99国产精品一区二区蜜桃av| 黑人操中国人逼视频| 欧美一区二区国产精品久久精品 | 不卡av一区二区三区| 中文字幕熟女人妻在线| 国产伦一二天堂av在线观看| 最近最新中文字幕大全免费视频| 国产伦在线观看视频一区| 丝袜美腿诱惑在线| 在线国产一区二区在线| 久久久水蜜桃国产精品网| 日本一本二区三区精品| 久久精品国产清高在天天线| 欧美极品一区二区三区四区| 99re在线观看精品视频| 久久伊人香网站| 1024香蕉在线观看| 日本三级黄在线观看| 国产91精品成人一区二区三区| 怎么达到女性高潮| 欧美日韩中文字幕国产精品一区二区三区| 一级毛片精品| 最近视频中文字幕2019在线8| 欧美乱色亚洲激情| 久久中文字幕人妻熟女| 成人精品一区二区免费| 19禁男女啪啪无遮挡网站| 啦啦啦韩国在线观看视频| 中文字幕人妻丝袜一区二区| 啦啦啦观看免费观看视频高清| 深夜精品福利| 国内久久婷婷六月综合欲色啪| 午夜免费观看网址| 久久久久精品国产欧美久久久| 亚洲美女视频黄频| 91麻豆av在线| www日本黄色视频网| 色综合欧美亚洲国产小说| 美女大奶头视频| 夜夜夜夜夜久久久久| 午夜福利在线在线| 18禁黄网站禁片午夜丰满| 麻豆久久精品国产亚洲av| 国产成人影院久久av| 精品福利观看| 国产高清有码在线观看视频 | 成年版毛片免费区| 久久人妻福利社区极品人妻图片| 中文字幕av在线有码专区| 国产亚洲欧美在线一区二区| 制服人妻中文乱码| 美女黄网站色视频| 正在播放国产对白刺激| 18禁国产床啪视频网站| 91老司机精品| 五月玫瑰六月丁香| 久久久精品大字幕| 久久久久久大精品| 欧美乱色亚洲激情| 啪啪无遮挡十八禁网站| 一区二区三区激情视频| 午夜精品久久久久久毛片777| 午夜福利高清视频| 99精品久久久久人妻精品| 99久久久亚洲精品蜜臀av| 亚洲人成电影免费在线| 欧美+亚洲+日韩+国产| 精品一区二区三区四区五区乱码| 国产精品久久久久久亚洲av鲁大| 99久久精品国产亚洲精品| 少妇人妻一区二区三区视频|