梁澤智++黃潔平
[摘要]目的 探討蟲(chóng)草素(Cordycepin)對(duì)高糖介導(dǎo)大鼠腎小管上皮細(xì)胞p38MAPK通路及TGF-β1表達(dá)的影響。方法 體外培養(yǎng)大鼠近端腎小管上皮細(xì)胞株(NRK52E細(xì)胞株),分為正常對(duì)照組(NG組)、高糖組(HG組)、高糖+蟲(chóng)草素組(HG+C組)。應(yīng)用定量RT-PCR測(cè)定NRK52E p38MAPK及TGF-β1 mRNA的表達(dá);采用Western印跡方法檢測(cè)不同時(shí)間點(diǎn)p-p38MAPK、TGF-β1蛋白的表達(dá)水平。結(jié)果 與NG組比較,HG組NRK52E細(xì)胞的p38MAPK、TGF-β1 mRNA表達(dá)增多(P<0.01);p-p38MAPK蛋白、TGF-β1蛋白表達(dá)與mRNA表達(dá)趨勢(shì)一致(P<0.05);而蟲(chóng)草素可以顯著抑制高糖介導(dǎo)的NRK52E細(xì)胞p38MAPK的活化及TGF-β1的表達(dá)。結(jié)論 蟲(chóng)草素可以抑制高糖介導(dǎo)大鼠腎小管上皮細(xì)胞p38MAPK活化及TGF-β1表達(dá)。
[關(guān)鍵詞]p38MAPK;蟲(chóng)草素;TGF-β1;葡萄糖
[中圖分類號(hào)] R285.5 [文獻(xiàn)標(biāo)識(shí)碼] A [文章編號(hào)] 1674-4721(2017)06(b)-0004-04
[Abstract]Objective To investigate effect of cordycepin on p38MAPK pathway and TGF-β1 express in NRK52E cells stimulated by high glucose.Methods NRK52E cells were cultured in the mediun with normal glucose concentration (group NG),high glucose concentration (group HG) and high glucose concentration+cordycepin (group HG+C).The expression of p38MAPK and TGF-β1 mRNA was measured by quantitative RT-PCR;the expression level of p-p38MAPK and TGF-β1 protein was detected by Western blot.Results The p38MAPK and TGF-β1 mRNA in NRK52E cells were highly expressed in group HG compared with group NG (P<0.01);the tendency of p-p38MAPK and TGF-β1 protein expressed was accordance with expression of mRNA.However,cordycepin can significantly inhibit the activation of p38MAPK pathway and TGF-β1 express in NRK52E cells stimulated by high glucose.Conclusion Cordycepin can significantly inhibit the activation of p38MAPK pathway and TGF-β1 express in NRK52E cells stimulated by high glucose.
[Key words]P38MAPK;Cordycepin;TGF-β1;Glucose
糖尿病腎?。╠iabetc nephropathy,DN)是導(dǎo)致終末期腎病(end-stage renal disease,ESRD)最常見(jiàn)的原因之一[1],小管間質(zhì)纖維化是其重要的臨床表現(xiàn)[2]。多種因素參與了糖尿病腎病的發(fā)生及發(fā)展[3],包括高糖、細(xì)胞通路的激活[4]等。p38絲裂原活化蛋白激酶(p38MAPK)是MAPK家族的一個(gè)亞族,可被高糖等因素激活,激活后可通過(guò)上調(diào)TGF-β/Smad等多條信號(hào)轉(zhuǎn)導(dǎo)途徑[5]最終導(dǎo)致了腎小球的纖維化[6]。TGF-β1是公認(rèn)的致纖維化因子,在腎纖維化過(guò)程中發(fā)揮重要作用。研究發(fā)現(xiàn),TGF-β1和p38MAPK存在相互串話[7],共同導(dǎo)致了腎臟的纖維化。蟲(chóng)草素是中國(guó)名貴草藥冬蟲(chóng)夏草的主要成分之一,在腎臟中具有重要保護(hù)作用,但是機(jī)制尚未明確,本實(shí)驗(yàn)通過(guò)體外培養(yǎng)NRK52E細(xì)胞,觀察蟲(chóng)草素對(duì)高糖介導(dǎo)的NRK52E細(xì)胞p38MAPK通路及TGF-β1表達(dá)的影響,探討蟲(chóng)草素對(duì)腎臟保護(hù)作用的機(jī)制。
1材料與方法
1.1材料
1.1.1試劑 NRK52E細(xì)胞(腎小管上皮細(xì)胞,中山大學(xué)余學(xué)清教授惠贈(zèng)),蟲(chóng)草素(Sigma公司,貨號(hào):C3394-10MG),葡萄糖(Sigma公司,貨號(hào):G7021-100G),TRizol試劑(Invitrogen公司,貨號(hào):15596026),逆轉(zhuǎn)錄試劑盒(SuperScriptRⅢ First-Strand Synthesis System for RT-PCR kits,Invitrogen公司),PCR擴(kuò)增試劑盒(SYBRRSelect Master Mix,Invitrogen公司),胎牛血清(美國(guó)Gibco BRL,貨號(hào):16000-044),兔抗大鼠p-p38MAPK多克隆抗體(英國(guó)New England Biolabs),小鼠抗大鼠TGF-β1單克隆抗體(美國(guó)Abcam)等。
1.1.2儀器設(shè)備 恒溫CO2細(xì)胞培養(yǎng)箱:美國(guó)Thermo公司;倒置熒光顯微鏡:美國(guó)AXJOVERT公司;PCR擴(kuò)增儀PCT-200:美國(guó)Thermo公司;熒光定量PCR儀:Applied Biosystems;超微量分光光度計(jì) NANODROP-2000:美國(guó)Thermo公司;顯微鏡及成像系統(tǒng):OLYMPUS BX51;凝膠成像系統(tǒng):法國(guó)BIO-UISON100;超聲波細(xì)胞粉碎儀:SCIENTZ公司;定量酶標(biāo)儀:美國(guó)MRX2;電泳儀:美國(guó)Bio-RAD公司。
1.2方法
1.2.1細(xì)胞培養(yǎng)及分組 用低糖DEME完全培養(yǎng)基(含10%胎牛血清)培養(yǎng)細(xì)胞,待細(xì)胞貼壁60%~80%,改用無(wú)血清培養(yǎng)基進(jìn)行同步培養(yǎng),將細(xì)胞按照設(shè)計(jì)進(jìn)行分組并加入不同濃度葡萄糖:正常對(duì)照組(5.5 mmol/L)、高糖組(30 mmol/L)、高糖+蟲(chóng)草素組(30 mmol/L,蟲(chóng)草素濃度10 μg/ml),高糖+蟲(chóng)草素組使用蟲(chóng)草素進(jìn)行預(yù)先干預(yù)2 h。
1.2.2 qRT-PCR 待細(xì)胞培養(yǎng)足夠時(shí)間,收集細(xì)胞,提取細(xì)胞的總RNA。然后對(duì)RNA進(jìn)行OD值及濃度測(cè)定。取1 μg的總RNA按照試劑盒說(shuō)明書的方法進(jìn)行合成cDNA,然后再對(duì)逆轉(zhuǎn)錄產(chǎn)物進(jìn)行擴(kuò)增。采用primer 5.0軟件設(shè)計(jì)目的基因引物序列,由北京華大基因公司合成,所得引物用DEPC水稀釋后放于-20℃?zhèn)溆茫骰蛞镄蛄幸?jiàn)表1。反應(yīng)體系:SYBR 10 μl;Forward 0.16 μl;Reverse 0.16 μl;ddH2O 4.68 μl;cDNA 5 μl;反應(yīng)條件及步驟:①預(yù)變性:采取95℃進(jìn)行2 min;②變性:95℃的溫度進(jìn)行15 s;③退火:58℃進(jìn)行30 s;④延伸:72℃延伸30 s;⑤循環(huán):總共經(jīng)過(guò)40個(gè)循環(huán),再充分延伸10 min。將所合成的指標(biāo)(p38MAPK、TGF-β1)與內(nèi)參(GAPDH)的Ct值采取取對(duì)數(shù)的方式進(jìn)行比較,其比值表示待測(cè)指標(biāo)的mRNA的相對(duì)表達(dá)量。
1.2.3 Western blot 按設(shè)計(jì)分組培養(yǎng)細(xì)胞并加入不同的刺激,15 min、30 min、60 min、12 h、24 h、48 h后,收集細(xì)胞,提取細(xì)胞總蛋白,進(jìn)行超聲破碎,接著采用BCA定量法對(duì)蛋白進(jìn)行測(cè)定其濃度。采用8% SDS-PAGE分離膠上樣,電泳時(shí)先采用80 V,待樣品蛋白到達(dá)分離膠后,改成120 V,繼之在340 mA下轉(zhuǎn)膜2.5~3 h,使用5%脫脂牛奶封閉2 h,一抗采用濃度為:(p-p38MAPK,1∶3000;TGF-β1,1∶2000)過(guò)夜,使用脫脂牛奶洗滌加二抗(1∶5000~1∶10 000),暗室曝光、顯影,最后進(jìn)行灰度分析。
1.3統(tǒng)計(jì)學(xué)方法
采用SPSS 17.0統(tǒng)計(jì)學(xué)軟件進(jìn)行數(shù)據(jù)分析,計(jì)量資料數(shù)據(jù)用均數(shù)±標(biāo)準(zhǔn)差(x±s)表示,多組間比較采用單因素方差分析,組間兩兩比較采用LSD-t檢驗(yàn);以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2結(jié)果
2.1不同時(shí)間點(diǎn)NRK52E細(xì)胞的p38MAPK mRNA表達(dá)情況
高糖刺激后,不同時(shí)間點(diǎn)的p38MAPK mRNA的表達(dá)明顯升高,并且在15 min、24 h兩個(gè)時(shí)間段出現(xiàn)高峰;高糖+蟲(chóng)草素組的p38MAPK mRNA表達(dá)較高糖組明顯降低,較正常對(duì)照組升高(P<0.01)(圖1)。
2.2不同時(shí)間點(diǎn)NRK52E細(xì)胞的TGF-β1 mRNA表達(dá)情況
在高糖的刺激下,不同時(shí)間點(diǎn)的TGF-β1 mRNA的表達(dá)明顯升高,并且在呈時(shí)間依賴性增加;高糖+蟲(chóng)草素組的TGF-β1 mRNA較高糖組明顯降低,較正常對(duì)照組升高(P<0.01)(圖2)。
2.3不同時(shí)間點(diǎn)p38MAPK蛋白的表達(dá)情況
在高糖的刺激下,不同時(shí)間點(diǎn)的p-p38MAPK蛋白的表達(dá)明顯升高,并且在15 min、24 h兩個(gè)時(shí)間段出現(xiàn)高峰;高糖+蟲(chóng)草素組的p-p38MAPK蛋白表達(dá)較高糖組明顯降低,較正常對(duì)照組升高(P<0.01)(圖3)。
2.4不同時(shí)間點(diǎn)NRK52E細(xì)胞的TGF-β1蛋白表達(dá)情況
在高糖的刺激下,不同時(shí)間點(diǎn)的TGF-β1蛋白的表達(dá)呈時(shí)間依賴性地升高;高糖+蟲(chóng)草素組的TGF-β1蛋白表達(dá)較高糖組明顯降低,較正常對(duì)照組明顯升高(P<0.01)(圖4)。
3討論
糖尿病腎病是以腎小球系膜細(xì)胞增殖、肥大以及細(xì)胞外基質(zhì)過(guò)度積聚,最終導(dǎo)致腎臟纖維化。多種因素及細(xì)胞通路參與糖尿病腎病腎臟纖維化的發(fā)生及發(fā)展,包括TGF-β/Smad通路、p38MAPK通路[8]等。
TGF-β是公認(rèn)的導(dǎo)致腎臟細(xì)胞外基質(zhì)(ECM)沉積和纖維化的最重要的因子,在糖尿病腎病患者的發(fā)展中起著核心作用[9]。Zeisberg等[10]研究發(fā)現(xiàn),TGF-β1刺激后,人近端腎小管上皮細(xì)胞失去上皮細(xì)胞表型E-cadherin,獲得了肌成纖維細(xì)胞的表型α-SMA,并導(dǎo)致了細(xì)胞外基質(zhì)成分產(chǎn)生增加。有研究表明,在糖尿病腎病中,TGF-β可以通過(guò)激活TGF-β依賴的Smad信號(hào)通路,也可以激活非TGF-β依賴的信號(hào)通路,如p38MAPK,最終促進(jìn)ECM的合成、EMT的發(fā)生[11-12],最終引發(fā)腎間質(zhì)纖維化。
p38MAPK是各種細(xì)胞外信號(hào)刺激細(xì)胞內(nèi)信號(hào)傳遞的共同通路,它可以被多種因素激活。Lv等[13]發(fā)現(xiàn),高糖能夠?qū)е履I小管上皮細(xì)胞p38MAPK通路的激活,參與了EMT的發(fā)生;在糖尿病腎病中,p38MAPK 的活化可以直接調(diào)節(jié)α-SMA蛋白的合成[14],同時(shí)間接的活化Smad通路,參與了TGF-β1誘導(dǎo)的腎小管上皮細(xì)胞EMT的發(fā)生[15]。Tzeng等[16]用乙醇提取的金銀花可以抑制p38 MAPK的活化延緩了STZ誘導(dǎo)的糖尿病腎病的發(fā)生及發(fā)展。
冬蟲(chóng)夏草是我國(guó)傳統(tǒng)的名貴中草藥,具有“益肺腎﹑補(bǔ)精髓”之功效。蟲(chóng)草素是從其分離出來(lái)的單體,是一種核苷類似物。周巧玲等[17-18]的研究發(fā)現(xiàn),冬蟲(chóng)夏草可下調(diào)糖尿病腎病腎組織TGF-β1、CTGF及Ⅳ型膠原的表達(dá),減輕糖尿病腎病腎纖維化。除此外蟲(chóng)草素還可以抑制嘌呤合成,誘導(dǎo)凋亡,引起細(xì)胞周期阻滯、減少炎癥介質(zhì)釋放等藥理作用[19-20]。
本實(shí)驗(yàn)研究顯示,高糖介導(dǎo)下,不同時(shí)間點(diǎn)的p38MAPK、TGF-β1 mRNA及蛋白表達(dá)均明顯增高,蟲(chóng)草素干預(yù)后,高糖介導(dǎo)下的p38MAPK、TGF-β1 mRNA及其蛋白高表達(dá)均明顯下調(diào),提示蟲(chóng)草素可以抑制高糖介導(dǎo)大鼠腎小管上皮細(xì)胞p38MAPK通路活化及TGF-β1表達(dá)。因此,本研究推測(cè),蟲(chóng)草素可能通過(guò)抑制p38MAPK通路活化從而下調(diào)TGF-β/Smad信號(hào)轉(zhuǎn)導(dǎo),減輕糖尿病腎病腎臟纖維化。本研究組下一步將檢測(cè)蟲(chóng)草素對(duì)p38MAPK、TGF-β/Smad通路活化后下游相關(guān)蛋白的表達(dá)的影響,明確蟲(chóng)草素對(duì)糖尿病腎病防治機(jī)制,為糖尿病腎病的治療提供新的認(rèn)識(shí)和理論依據(jù)。
[參考文獻(xiàn)]
[1]Nazir N,Siddiqui K,Al-Qasim S,et al.Meta-analysis of diabetic nephropathy associated genetic variants in inflammation and angiogenesis involved in different biochemical pathways[J].BMC Med Genet,2014,15(1):103.
[2]Sasai Y,Iwakawa K,Yanagida K,et al.Advanced glycation endproducts stimulate renal epithelial cells to release chem-okines that recruit macrophages,leading to renal fibrosis[J].Biosci Biotechnol Biochem,2012,76(9):1741-1745.
[3]Goldberg R,Rubinstein AM,Gil N,et al.Role of heparanase-driven inflammatory cascade in pathogenesis of diabetic nephropathy[J].Diabetes,2014,63(12):4302-4313.
[4]Marketou NP,Chrousos GP,Kanaka-Gantenbein C.Diabetic nephropathy in type 1 diabetes:a review of early natural history,pathogenesis and diagnosis[J].Diabetes Metab Res Rev,2016.
[5]Rane MJ,Song Y,Jin S,et al.Interplay between Akt and p38 MAPK pathways in the regulation of renal tubular cell apoptosis associated with diabetic nephropathy[J].Am J Physiol Renal Physiol,2010,298(1):F49-F61.
[6]Li X,Liu W,Wang Q,et al.Emodin suppresses cell proliferation and fibronectin expression via p38MAPK pathway in rat mesangial cells cultured under high glucose[J].Mol Cell Endocrinol,2009,307(1):157-162.
[7]Xu Q,Tan Y,Zhang K,et al.Crosstalk between p38 and Smad3 through TGF-β1 in JEG-3 choriocarcinoma cells[J].Int J Oncol,2013,43(4):1187-1193.
[8]Kanasaki K,Taduri G,Koya D.Diabetic nephropathy:the role of inflammation in fibroblast activation and kidney fibrosis[J].Front Endocrinol,2013,4(1):7.
[9]Chung ACK,Lan HY.Molecular mechanisms of TGF-β signaling in renal fibrosis[J].Curr Pathobiol Rep,2013,1(4):291-299.
[10]Zeisberg M,Hanai J,Sugimoto H,et al.BMP-7 counteracts TGF-β1–induced epithelial-to-mesenchymal transition and reverses chronic renal injury[J].Nat Med,2003,9(7):964-968.
[11]Lan HY.Diverse roles of TGF-beta/Smads in renal fibrosis and inflammation[J].Int J Biol Sci,2011,7(7):1056-1067.
[12]Meng XM,Chung ACK,Lan HY.Role of the TGF-β/BMP-7/Smad pathways in renal diseases[J].Clin Sci (Lond),2013, 124(4):243-254.
[13]Lv ZM,Wang Q,Wan Q,et al.The role of the p38 MAPK signaling pathway in high glucose-induced epithelial-mesenchymal transition of cultured human renal tubular epithelial cells[J].PLoS One,2011,6(7):e22806.
[14]Lan HY.Transforming growth factor-β/Smad signalling in diabetic nephropathy[J].Clin Exp Pharmacol Physiol,2012, 39(8):731-738.
[15]Rhyu DY,Yang Y,Ha H,et al.Role of reactive oxygen species in TGF-β1-induced mitogen-activated protein kinase activation and epithelial-mesenchymal transition in renal tubular epithelial cells[J].J Am Soc Nephrol,2005,16(3):667-675.
[16]Tzeng TF,Liou SS,Chang CJ,et al.The ethanol extract of Lonicera japonica (Japanese honeysuckle) attenuates diabetic nephropathy by inhibiting p-38 MAPK activity in streptozotocin-induced diabetic rats[J].Planta Med,2014,80(2/3):121-129.
[17]周巧玲,劉抗寒,王衍慧,等.冬蟲(chóng)夏草對(duì)糖尿病腎病模型鼠腎組織轉(zhuǎn)化生長(zhǎng)因子B1,結(jié)締組織生長(zhǎng)因子表達(dá)的影響[J].腎臟病與透析腎移植雜志,2006,15(5):443-446.
[18]葉太生,周必發(fā),張瑩雯.百令膠囊對(duì)大鼠腎小球系膜細(xì)胞增殖,Ⅳ型膠原及TGF-β1 mRNA表達(dá)的影響[J].中國(guó)中西醫(yī)結(jié)合腎病雜志,2010,11(1):41-43.
[19]Baik JS,Kwon HY,Kim KS.Cordycepin induces apoptosis in human neuroblastoma SK-N-BE (2)-C and melanoma SK-MEL-2 cells[J].Indian J Biochem Biophys,2012,49(2):86-91.
[20]Cui J,Culbertson R,Mao Z,et al.A novel therapeutic treatment utilizing cordycepin and cladribine synergy to decrease adverse treatment effects in various cancer cell lines[J].JESS,2013,2:20-24.
(收稿日期:2017-04-25 本文編輯:任 念)