• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    k-NORMAL DISTRIBUTION AND ITS APPLICATIONS

    2017-07-18 11:47:12HANTianyongWENJiajinSONGAnchaoYEJianhua
    數(shù)學(xué)雜志 2017年4期
    關(guān)鍵詞:正態(tài)分布對數(shù)分類號

    HAN Tian-yong,WEN Jia-jin,SONG An-chao,YE Jian-hua

    (1.College of Information Science and Engineering,Chengdu University,Chengdu 610106,China)(2.School of Statistics,Southwestern University of Finance and Economics,Chengdu 611130,China)

    k-NORMAL DISTRIBUTION AND ITS APPLICATIONS

    HAN Tian-yong1,WEN Jia-jin1,SONG An-chao2,YE Jian-hua1

    (1.College of Information Science and Engineering,Chengdu University,Chengdu 610106,China)(2.School of Statistics,Southwestern University of Finance and Economics,Chengdu 611130,China)

    In this paper,we study the truncated variables andk-normal distribution.By using the theory of logarithmic concave function,we obtain the inequality chains involving variances of truncated variables and the function of truncated variables,which is the generalization of some classical results involving normal distribution and the hierarchical teaching model.Some simulation results and a real data analysis are shown.

    truncated random variables;k-normal distribution;hierarchical teaching model;logarithmic concave function;simulation

    1 Introduction

    With the expansion of university enrollment,various work to improve students’ability all round was continued to be carried out.How to increasingly improve teaching quality in the courses with large number of students(such as advanced mathematics)are discussed repeatedly.Since the examination scores of the large number of students obey normal distribution,statistical theory is a natural research tool for study of a large scale teaching(see[1,2]).

    The math score of the students of some grades in a university is a random variableξI,whereξI∈I=[0,100).Assume that the students are taught by divided intonclasses according to their math scores,written as:Class[a1,a2),Class[a2,a3),···,Class[an,an+1),wheren≥ 3,0=a1<a2<···<an+1=100,andai,ai+1are the lowest and the highest math scores of the students of the Class[ai,ai+1),respectively.This model of teaching is called hierarchical teaching model(see[1-4,7]).This teaching model is often used in college English and college mathematics teaching.In teaching practice,the previously mentioned score maybe the math score of national college entrance examination or entrance exams which represent the mathematical basis of the students,or in mathematical language,the initial value of the teaching.

    No doubt that this teaching model is better than traditional teaching model.However,the real reason for it’s high efficiency and the further improvement are not found.As far as we know,not many papers were published to deal these since the difficulty of computing the inde fi nite integrals involving the normal distribution density function.In[3],by means of numerical simulation,the authors proved the variance of the hierarchical class is smaller.In[4],the authors established some general properties of the variance of the hierarchical teaching,and established a linear model of teaching efficiency of hierarchical teaching model.If the students are divided into Superior-Middle-Poor three classes,the authors believe that the three classes,especially the third one will bene fi t most from the hierarchical teaching.

    In order to study the hierarchical teaching model,we need to give the de fi nition of truncated variables.

    De fi nition 1.1LetξI∈Ibe a continuous random variable,and let its probability density function(p.d.f.)bef:I→(0,∞).IfξI?∈I??Iis also a continuous random variable and its probability density function is

    then we call the random variableξI?a truncated variable of the random variableξI,denoted byξI??ξI;ifξI??ξI,andI??I,then we call the random variableξI?a proper Truncated Variable of the random variableξI,denoted byξI??ξI,hereI,I??(-∞,∞),IandI?are intervals.

    In the hierarchical teaching model,the math score of Class[ai,ai+1)is also a random variableξ[ai,ai+1)∈[ai,ai+1).Since[ai,ai+1)?I,we say it is a proper truncated variables of the random variableξI,written asξ[ai,ai+1)?ξI,i=1,2,···,n.Assume that Class[ai,ai+1)and Class[ai+1,ai+2)are merged into one,i.e.,

    Since[ai,ai+1)?[ai,ai+2)and[ai+1,ai+2)?[ai,ai+2),we know thatξ[ai,ai+1)andξ[ai+1,ai+2)are the proper truncated variables of the random variableξ[ai,ai+2).

    We remark here ifξI∈Iis a continuous random variable,and its p.d.f.isf:I→(0,∞),then the integrationfconverges,and it satis fi es the following two conditions

    According to the de fi nitions of the mathematical expectationEξI?and the varianceDξI?(see[8,9])with De fi nition 1.1,we are easy to get

    and

    whereξI?is a truncated variable of the random variableξI.

    In the hierarchical teaching model,what we concerned about is the relationship between the variance ofξ[ai,ai+1)and the variance ofξI,wherei=1,2,···,n.Its purpose is to determine the superiority and inferiority of the hierarchical teaching model and the traditional mode of teaching.If

    then we believe that the hierarchical teaching model is better than the traditional mode of teaching.Otherwise,we believe that the hierarchical teaching model is not worth promoting.

    2 k-Normal Distribution

    The normal distribution(see[3,4,8,9])is considered as the most prominent probability distribution in statistics.Besides the important central limit theorem that says the mean of a large number of random variables drawn from a common distribution,under mild conditions,is distributed approximately normally,the normal distribution is also tractable in the sense that a large number of related results can be derived explicitly and that many qualitative properties may be stated in terms of various inequalities.

    One of the main practical uses of the normal distribution is to model empirical distributions of many di ff erent random variables encountered in practice.For fi t the actual data more accurately,many research for generalizing this distribution are carried out.Some representative examples are the following.In 2001,Armando and other authors extended the p.d.f.to the normal-exponential-gamma form which contains four parameters(see[5]).In 2005,Saralees generalized it into the formKexp(see[6]).In 2014,Wen Jiajin rewrote the p.d.f ask-Normal Distribution as follows(see[7]).

    De fi nition 2.1Ifξis a continuous random variable and its p.d.f.is

    then we call the random variableξfollows thek-normal distribution,denoted by,whereμ∈(-∞,∞),σ∈(0,∞),k∈(1,∞),anddxis the gamma function.

    By the graph of the functionω(k)(depicted in Figure 3),we know that the functionis monotonically increasing.Hence the functionis monotonically decreasing.Note thatω?(2)=1,we get

    Using(2.4)and(2.5),we get our desired result(2.3).

    Figure 3:The graph of the functionω(k),0<k<1

    According to the previous results,we fi nd thatk-normal distribution is a new distribution similar to but di ff erent from the normal distribution and the generalized normal distribution(see[5,6]),it is also a natural generalization of the normal distribution,and it can be used to fi t a number of empirical distributions with di ff erent skewness and kurtosis as well.

    We remark here thatk-normal distribution has similar but distinct form to the generalized normal distribution in[6].By De fi nition 2.1,we know thatis the p.d.f.of normal distributionN(μ,σ).But the p.d.f.fors=2(in[6])is

    which does not match with normal distribution.So,to a certain extent,k-normal distribution is a better form of the generalized normal distribution.

    3 Main Results

    In this section,we will study the relationship among the variances of truncated variables.The main result of the paper is as follows.

    Theorem 3.1Let the p.d.f.f:I→(0,∞)of the random variableξIbe di ff erentiable,and letDξI?,DξI?,DξIbe the variances of the truncated variablesξI?,ξI?,ξI,respectively.If

    (i)f:I→(0,∞)is a logarithmic concave function;

    (ii)ξI??ξI,ξI??ξ,I??I?,

    then we have the inequalities

    Before prove Theorem 3.1,we fi rst establish the following three lemmas.

    Lemma 3.1LetξI∈Ibe a continuous random variable,and let its p.d.f.bef:I→(0,∞).IfξI??ξI,ξI??ξI,I??I?,then we have

    ifξI??ξI,ξI??ξI,I??I?,then we have

    ProofBy virtue of the hypotheses,we get

    thus

    It follows therefore from the above facts and De fi nition 1.1 that we have

    Lemma 3.2Let the functionf:I→(0,∞)be di ff erentiable.Iffis a logarithmic concave function,then we have

    ProofWe define an auxiliary functionFof the variablesuandvas

    Ifv=u,then we have

    By Cauchy mean value theorem,there exists a real numberθ∈(0,1)forsuch that

    Ifu<v,then we have

    Combining(3.5)and(3.6),we obtain

    SoF(u,v)≥f(u)>0.This proves inequality(3.4)foru<v.

    Ifu>v,then we have

    Combining(3.5)and(3.7),we obtain

    Lemma 3.3Let the functionf:I→(0,∞)be di ff erentiable.Iffis a logarithmic concave function,then the function

    satis fi es the following inequalities

    ProofFor the convenience of notation,two real numbers with same signαandβwill be written as.

    By the de fi nition,we know that

    The power mean inequality asserts(see[10])that

    then we are easy to get

    where

    Combining(3.9),(3.14),(3.17),v>uwith Lemma 3.2,we can do the straight calculation as follows

    By(3.17)andv>u,we get

    By(3.16)and(3.18),we get

    By(3.19)andv>u,we get

    From(3.11)and(3.20),for the case ofv>u,result(3.8)of Lemma 3.3 follows immediately.

    Next,we prove the case ofu>v.Based on the above analysis,we obtain the following relations

    Thus inequalities(3.8)still hold foru>v.This completes our proof.

    Now we turn our attention to the proof of Theorem 3.1.

    ProofWithout loss of generality,we can assume that

    Note that

    Ifα≤a<b<β,so according to(1.2),(3.10)and Lemma 3.3,we get

    hence

    Ifα<a<b≤β,so,according to(1.2),(3.10)and Lemma 3.3,we get

    That is to say,inequality(3.21)still holds.

    By Lemma 3.1,we haveξI??ξI,ξI??ξI,I??I??ξI??ξI?.Using inequality(3.21)forξI?,ξI?,we can obtain

    Combining inequalities(3.21)and(3.22),we get inequalities(3.1).

    This completes the proof of Theorem 3.1.

    From Theorem 3.1 we know that if the probability density function of the random variableξIis di ff erentiable and log concave,andξI?is the proper truncated variables of the random variableξI?,the variance ofξI?is less than the variance ofξI?.This result is of great signi fi cance in the hierarchical teaching model,see the next theorem.

    For the convenience of use,Theorem 3.1 can be slightly generalized as follows.

    Theorem 3.2Letφ:I→(-∞,∞)andf:I→(0,∞)be di ff erentiable functions,wherefbe the p.d.f.of the random variableξI,and letDφ(ξI?),Dφ(ξI?)withDφ(ξI)be the variances of the truncated variablesφ(ξI?),φ(ξI?)withφ(ξI),respectively.If

    (i)φ′(t)>0,?t∈I;

    (ii)the function(f? φ-1)(φ-1)′:φ(I)→(0,∞)is log concave;

    (iii)ξI??ξI,ξI??ξI,I??I?,

    then we have the following inequalities

    ProofSet.By condition(i),we can see that0 and

    By condition(ii),we can see thatis a logarithmic concave function.Combining conditions(i)and(iii)with Lemma 3.1,we have

    We can deduce from Theorem 3.1 that the following is true

    Thus inequalities(3.23)is valid.

    4 Applications

    In the hierarchical teaching model,the math score of the students of some grade in a university is a random variableξI,whereI=[0,100),ξI?ξ,ξ∈(-∞,∞).By using the central limit theorem(see[8]),we know thatξfollows a normal distribution,that is,2(μ,σ).If,in the grade,the top students and poor students are few,that is to say,the varianceDξof the random variableξis small,according to Figure 1 and Figure 2 with Lemma 2.1,we believe that there is a real numberk∈[2,∞)such that(μ,σ).Otherwise,there is a real numberk∈(1,2)such that(μ,σ).Then thek,σofNk(μ,σ)can be determined according to[5].

    We have collected three real data setsX1,X2 andX3,which are all math test score of the students from the unhierarchical,the fi rst level(superior)and the second level(poor)classes,containing 263,149 and 145 records,respectively.For further analyzing the data,we fi rst estimate parametersk,μ,σofNk(μ,σ),then draw probability density function ofNk(μ,σ)and frequency histogram of the corresponding data set in the same coordinate system,which also contains the probability density function curve graph of normal distribution.After that,we obtain three graphs forX1,X2 andX3,respectively(see Figure 4,Figure 5 and Figure 6 in Appendix B).These three fi gures show thatk-normal distribution is superior to normal distribution since kurtosis is bigger and variance is smaller.

    Further more,as shown in the histograms,the variance ofX1,X2 andX3 is decreasing.By observing the proportion of scores less than 60 ofX1,X2 andX3,we fi nd that the hierarchical teaching model bring better results,and that the second category(represented byX3)classes receive more signi fi cant bene fi ts from this teaching model.

    According to Theorem 3.1 and Lemma 2.1,we have

    Theorem 4.1In the hierarchical teaching model,if(μ,σ),wherek>1,then for alli,n:1≤i≤n-1,n≥3,we have

    where

    We accomplish simulation analysis about Theorem 3.1.The procedure of simulation design is shown in Appendix A.The results of the simulation are listed in the tables(see Tables 1-4 in Appendix A).By comparing the data in these tables,we fi nd that,no matter how to change the parametersk,μorσ,the variance of truncated variable is strictly less than that of untruncated variable.For example,for anyk,μorσas shown in Tables 1-4,

    this does verify the truth of Theorem 3.

    From Tables 1 and 3,we see that for eachσandI?(-∞,∞),if

    thenDξ1I<Dξ2I<Dξ3I.From Tables 2 and 4,for eachμandI?(-∞,∞),if

    thenDη1I<Dη2I<Dη3I.The truth of Theorem 3.1 is verified.

    Actually in appendix,the data set X1 is the math test score of unhierarchical students,X2 and X3 are math test score of hierarchical students.We have fi gured out their variances

    The factsD(X3)<D(X1)andD(X2)<D(X1),just show that the hierarchical teaching is more efficiency than unhierarchical teaching.

    [1]Yao Hui,Dai Yong,Xie Lin.Pareto-geometric distribution[J].J.Math.,2012,32(2):339-351.

    [2]Deng Yuhui.Probablity distribution of sample spacing[J].J.Math.,2004,24(6):685-689.

    [3]Yang Chaofeng,Pu Yingjuan.Bayes analysis of hierarchical teaching[J].Math.Prac.The.(in Chinese),2004,34(9):107-113.

    [4]Han Tianyong,Wen Jiajin.Normal distribution and associated teaching efficiency[J].Math.Prac.The.(in Chinese).2014,44(6):183-193.

    [5]Armando D,Graciela G,Ramon M.A practical procedure to estimate the shape parameter in the generalized Gaussian distribution,technique report[OL].Available:http://www.cimat.mx/reportes/enlinea/I-01-18 eng.pdf,2001.

    [6]Saralees N.A generalized normal distribution[J].J.Appl.Stat.2008,32(7):685-694.

    [7]Wen Jianjin,Han Tianyong,Cheng S S.Quasi-log concavity conjecture and its applications in statistics[J].J.Inequal.Appl.,2014,DOI:10.1186/1029-242X-2014-339.

    [8]Johnson O.Information theory and the central limit theorem[M].London:Imperial College Press,2004.

    [9]Wlodzimierz B.The normal distribution: characterizations with applications[M].New York:Springer-Verlag,1995.

    [10]Wang Wanlan.Approaches to prove inequalities(in Chinese)[M]Harbin:Harbin Institute of Technology Press,2011.

    [11]Tong T L.An adaptive solution to ranking and selection problems[J].Ann.Stat.,1978,6(3):658-672.

    [12]Bagnoli M,Bergstrom T.Log-concave probability and its applications[J].Econ.The.,2005,26(2):445-469.

    Appendix

    A The Simulation and Comparison of Variances of Truncatedk-Normal Variable

    The procedure of simulation design is as follows

    Step 1Choose the appropriate parameterk,μandσin the distributionNk(μ,σ);

    Step 2Generate 200 random numbers obeying the distribution(μ,σ);

    Step 3Use the 200 numbers to calculate the variance for six truncatedk-normal variablesξ(-∞,∞),ξ[0,60),ξ[60,80),ξ[80,100),ξ[0,80)andξ[60,100);

    Step 4Repeat Step 1 and Step 2 for 50 times;

    Step 5Calculate the mean of 50 variances for each truncatedk-normal variable,denoted byDξ(-∞,∞),Dξ[0,60),Dξ[60,80),Dξ[80,100),Dξ[0,80)andDξ[60,100)respectively;

    Step 6Change the value ofk,μandσ,and repeat Step 1,Step 2,Step 3,Step 4.All the results are listed in Tables 1-4(NaN indicates there is no random number for corresponding truncated variable).

    Table 1:k=3,σ=10

    Table 2:k=3,μ=75

    Table 3:k=1.5,σ=10

    Table 4:k=1.5,μ=75

    B Curve Fitting for Three Real Data SetsX1,X2andX3

    The results of curve fi tting for three real data sets are as follows(see Figure 4-6)

    k-正態(tài)分布及其應(yīng)用

    韓天勇1,文家金1,宋安超2,葉建華1

    (1.成都大學(xué)信息科學(xué)與工程學(xué)院,四川成都 610106)(2.西南財經(jīng)大學(xué)統(tǒng)計學(xué)院,四川成都 611130)

    近本文研究了截斷隨機變量和k-正態(tài)分布.利用對數(shù)凹函數(shù)理論,獲得了涉及截斷隨機變量和截斷隨機變量的函數(shù)的方差的不等式鏈,推廣了涉及正態(tài)分布和分層教學(xué)模型的一些經(jīng)典結(jié)論.同時在附錄部分給出了仿真結(jié)果.

    截斷隨機變量;k-正態(tài)分布;分層教學(xué)模型;對數(shù)凹函數(shù);仿真

    O174.13;O211.3;O211.5

    Figure 4:FittingX1

    Figure 5:FittingX2

    Figure 6:FittingX3

    on:62J10;62P25;60E05;60E15;26D15;26E60

    A Article ID: 0255-7797(2017)04-0737-14

    date:2016-02-25Accepted date:2016-09-28

    Supported by the Natural Science Foundation of Sichuan Science and Technology Department(2014SZ0107).

    Biography:Han Tianyong(1976-),male,born at Chengdu,Sichuan,associate professor,major in dynamical system,inequality and its application.

    MR(2010)主題分類號:62J10;62P25;60E05;60E15;26D15;26E60

    猜你喜歡
    正態(tài)分布對數(shù)分類號
    含有對數(shù)非線性項Kirchhoff方程多解的存在性
    指數(shù)與對數(shù)
    指數(shù)與對數(shù)
    對數(shù)簡史
    基于對數(shù)正態(tài)分布的出行時長可靠性計算
    正態(tài)分布及其應(yīng)用
    A Study on the Change and Developmentof English Vocabulary
    正態(tài)分布題型剖析
    χ2分布、t 分布、F 分布與正態(tài)分布間的關(guān)系
    Translation on Deixis in English and Chinese
    如日韩欧美国产精品一区二区三区| 人人妻人人澡人人看| 黄色 视频免费看| 精品久久久久久久久久免费视频 | 亚洲七黄色美女视频| 免费在线观看影片大全网站| 在线观看免费午夜福利视频| 欧美在线一区亚洲| 美女大奶头视频| 欧美日韩亚洲高清精品| 一边摸一边抽搐一进一小说| 日韩欧美一区视频在线观看| 久久精品91蜜桃| 大码成人一级视频| 一个人观看的视频www高清免费观看 | 交换朋友夫妻互换小说| 丁香欧美五月| 12—13女人毛片做爰片一| 精品国产国语对白av| 日本vs欧美在线观看视频| 香蕉丝袜av| 国产又爽黄色视频| 色婷婷久久久亚洲欧美| 国产精品永久免费网站| 亚洲精华国产精华精| 国产真人三级小视频在线观看| 国产成人啪精品午夜网站| 18禁观看日本| 操出白浆在线播放| 12—13女人毛片做爰片一| 制服诱惑二区| 午夜两性在线视频| 又大又爽又粗| 男人舔女人的私密视频| 久久久国产成人免费| 久久精品91蜜桃| 午夜免费激情av| 亚洲 国产 在线| 国产熟女xx| 久久久久精品国产欧美久久久| 欧美日韩一级在线毛片| 亚洲黑人精品在线| 日本精品一区二区三区蜜桃| 国产深夜福利视频在线观看| 欧美激情久久久久久爽电影 | 99久久综合精品五月天人人| 日韩高清综合在线| 久久久国产精品麻豆| 99国产综合亚洲精品| 欧美亚洲日本最大视频资源| 亚洲欧美一区二区三区久久| 高清在线国产一区| 日韩有码中文字幕| 国产成人精品无人区| 精品人妻在线不人妻| 国产精品综合久久久久久久免费 | 国产亚洲精品久久久久久毛片| 曰老女人黄片| 精品久久久精品久久久| 日韩精品中文字幕看吧| 久久影院123| 国产av又大| 黄色成人免费大全| 成人影院久久| 99久久国产精品久久久| 三上悠亚av全集在线观看| 国产精品亚洲一级av第二区| 亚洲国产欧美网| 国产成人啪精品午夜网站| 欧美成人免费av一区二区三区| 国产成人影院久久av| 亚洲九九香蕉| 一本大道久久a久久精品| 这个男人来自地球电影免费观看| 欧美激情 高清一区二区三区| 伊人久久大香线蕉亚洲五| 欧美不卡视频在线免费观看 | av福利片在线| 欧美精品一区二区免费开放| 亚洲一区二区三区欧美精品| 国产亚洲欧美在线一区二区| 国产高清激情床上av| 国产野战对白在线观看| 一二三四在线观看免费中文在| 精品卡一卡二卡四卡免费| 这个男人来自地球电影免费观看| 视频区欧美日本亚洲| 亚洲熟妇熟女久久| 久久欧美精品欧美久久欧美| 久热爱精品视频在线9| a级毛片黄视频| 精品国产国语对白av| 黄色怎么调成土黄色| 黄片播放在线免费| 免费久久久久久久精品成人欧美视频| 欧美人与性动交α欧美精品济南到| a在线观看视频网站| 免费观看人在逋| 国产一区二区在线av高清观看| 18禁国产床啪视频网站| 国产成人系列免费观看| 午夜视频精品福利| 老熟妇乱子伦视频在线观看| 久久国产亚洲av麻豆专区| 国产精品一区二区免费欧美| 免费不卡黄色视频| 69精品国产乱码久久久| 精品熟女少妇八av免费久了| www.www免费av| 日韩av在线大香蕉| 日韩人妻精品一区2区三区| 黄色视频,在线免费观看| www.999成人在线观看| av视频免费观看在线观看| 巨乳人妻的诱惑在线观看| 国产欧美日韩一区二区三区在线| 国产亚洲av高清不卡| 欧美+亚洲+日韩+国产| 激情视频va一区二区三区| 欧美精品啪啪一区二区三区| 一级黄色大片毛片| 欧美乱色亚洲激情| 亚洲欧美一区二区三区久久| 精品国产国语对白av| 久久青草综合色| 精品久久久久久久久久免费视频 | 国产乱人伦免费视频| 九色亚洲精品在线播放| 亚洲一区二区三区色噜噜 | 久久婷婷成人综合色麻豆| 亚洲精品一卡2卡三卡4卡5卡| 黑人操中国人逼视频| 女人爽到高潮嗷嗷叫在线视频| 亚洲专区字幕在线| 最新美女视频免费是黄的| 欧美一级毛片孕妇| 成人国语在线视频| 久久久久国产一级毛片高清牌| 日本三级黄在线观看| 欧美日韩亚洲国产一区二区在线观看| 亚洲成国产人片在线观看| 欧美丝袜亚洲另类 | 一区在线观看完整版| 国产成人欧美在线观看| 久久这里只有精品19| 别揉我奶头~嗯~啊~动态视频| 在线播放国产精品三级| 免费久久久久久久精品成人欧美视频| 久久午夜综合久久蜜桃| 黑人猛操日本美女一级片| 国产成人免费无遮挡视频| 亚洲情色 制服丝袜| 国产精品一区二区在线不卡| 91精品国产国语对白视频| 久久国产亚洲av麻豆专区| 午夜视频精品福利| 999久久久精品免费观看国产| 国产亚洲av高清不卡| 欧美成人午夜精品| 亚洲三区欧美一区| 不卡一级毛片| 黄网站色视频无遮挡免费观看| 欧美不卡视频在线免费观看 | 久久精品亚洲熟妇少妇任你| 国产成+人综合+亚洲专区| 午夜日韩欧美国产| netflix在线观看网站| 久久精品亚洲熟妇少妇任你| 亚洲色图av天堂| 午夜两性在线视频| 亚洲成人久久性| 国产真人三级小视频在线观看| av在线播放免费不卡| 两个人免费观看高清视频| 精品人妻在线不人妻| 国产亚洲欧美在线一区二区| 久久中文字幕人妻熟女| 性色av乱码一区二区三区2| 在线看a的网站| 久久精品成人免费网站| 亚洲五月婷婷丁香| 亚洲色图 男人天堂 中文字幕| 性欧美人与动物交配| 精品日产1卡2卡| 成人18禁在线播放| 91大片在线观看| 在线国产一区二区在线| 欧美乱码精品一区二区三区| 国产伦一二天堂av在线观看| 热re99久久精品国产66热6| 一进一出抽搐gif免费好疼 | 丝袜人妻中文字幕| 久久久精品国产亚洲av高清涩受| 国产97色在线日韩免费| 首页视频小说图片口味搜索| 免费看十八禁软件| 一区在线观看完整版| 在线观看日韩欧美| 国产一区二区三区在线臀色熟女 | 欧美丝袜亚洲另类 | 热99re8久久精品国产| 可以免费在线观看a视频的电影网站| 欧美成人免费av一区二区三区| 免费av中文字幕在线| 黄色a级毛片大全视频| 欧美国产精品va在线观看不卡| 亚洲专区国产一区二区| 丝袜在线中文字幕| 亚洲自拍偷在线| 亚洲男人天堂网一区| 亚洲精品美女久久久久99蜜臀| 亚洲av日韩精品久久久久久密| 黄色视频,在线免费观看| 亚洲黑人精品在线| 香蕉国产在线看| 在线观看免费午夜福利视频| 少妇的丰满在线观看| 夫妻午夜视频| 亚洲情色 制服丝袜| 国产激情欧美一区二区| 女人爽到高潮嗷嗷叫在线视频| 在线观看免费视频日本深夜| 黑人巨大精品欧美一区二区蜜桃| 婷婷精品国产亚洲av在线| 国产精品香港三级国产av潘金莲| 免费av毛片视频| 亚洲欧美一区二区三区黑人| 亚洲黑人精品在线| 两性夫妻黄色片| 亚洲成国产人片在线观看| 熟女少妇亚洲综合色aaa.| 精品一区二区三区av网在线观看| 在线国产一区二区在线| 老司机亚洲免费影院| 一区二区三区激情视频| 亚洲专区中文字幕在线| 美女大奶头视频| 他把我摸到了高潮在线观看| 一二三四社区在线视频社区8| 久久99一区二区三区| 欧美日韩视频精品一区| 性欧美人与动物交配| 亚洲欧洲精品一区二区精品久久久| 美女福利国产在线| 国产精品乱码一区二三区的特点 | 757午夜福利合集在线观看| 水蜜桃什么品种好| 无遮挡黄片免费观看| 91麻豆精品激情在线观看国产 | www.精华液| 可以在线观看毛片的网站| 女性被躁到高潮视频| 免费在线观看黄色视频的| 欧美黄色淫秽网站| 亚洲情色 制服丝袜| 一级黄色大片毛片| 91字幕亚洲| avwww免费| 成年人免费黄色播放视频| 国产色视频综合| 一级毛片精品| 免费在线观看影片大全网站| 国产蜜桃级精品一区二区三区| 国产亚洲欧美在线一区二区| 国产有黄有色有爽视频| 男女高潮啪啪啪动态图| 久久婷婷成人综合色麻豆| 国产亚洲欧美在线一区二区| 老司机午夜十八禁免费视频| 亚洲av成人一区二区三| 国产深夜福利视频在线观看| 亚洲中文av在线| 国产精品美女特级片免费视频播放器 | 黑人欧美特级aaaaaa片| 美女国产高潮福利片在线看| 精品人妻1区二区| 久久久久久大精品| 久久久国产成人免费| 人人澡人人妻人| 久久久久久免费高清国产稀缺| 国产精品香港三级国产av潘金莲| 日本免费a在线| 欧美一级毛片孕妇| 国产成+人综合+亚洲专区| 国产xxxxx性猛交| 嫁个100分男人电影在线观看| 看片在线看免费视频| 欧美av亚洲av综合av国产av| 1024视频免费在线观看| 日韩一卡2卡3卡4卡2021年| 91国产中文字幕| 欧美最黄视频在线播放免费 | 老汉色av国产亚洲站长工具| 成人国语在线视频| 999久久久精品免费观看国产| 性色av乱码一区二区三区2| 国产高清videossex| 免费看a级黄色片| a级毛片在线看网站| 亚洲中文日韩欧美视频| 在线观看一区二区三区| 国产av精品麻豆| 欧美日韩亚洲国产一区二区在线观看| 女人被躁到高潮嗷嗷叫费观| 亚洲av美国av| 在线av久久热| 女同久久另类99精品国产91| 免费高清视频大片| 成熟少妇高潮喷水视频| 老司机靠b影院| 亚洲狠狠婷婷综合久久图片| www国产在线视频色| av免费在线观看网站| 99国产综合亚洲精品| 欧美久久黑人一区二区| 亚洲精品在线观看二区| 色精品久久人妻99蜜桃| 久久 成人 亚洲| 亚洲第一av免费看| 久久九九热精品免费| 久久精品亚洲熟妇少妇任你| 久久香蕉国产精品| 很黄的视频免费| 亚洲色图av天堂| 黄片小视频在线播放| 午夜老司机福利片| 成人精品一区二区免费| 新久久久久国产一级毛片| 少妇裸体淫交视频免费看高清 | 国产高清视频在线播放一区| 在线天堂中文资源库| bbb黄色大片| 老熟妇乱子伦视频在线观看| 1024香蕉在线观看| 99热国产这里只有精品6| 精品高清国产在线一区| 国产不卡一卡二| 在线观看午夜福利视频| 久久青草综合色| 99国产极品粉嫩在线观看| 91av网站免费观看| 亚洲国产中文字幕在线视频| 欧美成人午夜精品| 淫秽高清视频在线观看| 中出人妻视频一区二区| 亚洲欧美日韩另类电影网站| 久久久水蜜桃国产精品网| 欧美丝袜亚洲另类 | 搡老岳熟女国产| 一边摸一边抽搐一进一小说| 国产aⅴ精品一区二区三区波| 黄色 视频免费看| 岛国视频午夜一区免费看| 波多野结衣一区麻豆| 麻豆一二三区av精品| avwww免费| 国产麻豆69| 水蜜桃什么品种好| 丰满的人妻完整版| 无人区码免费观看不卡| 在线十欧美十亚洲十日本专区| 国产欧美日韩精品亚洲av| 亚洲人成伊人成综合网2020| 动漫黄色视频在线观看| 99精国产麻豆久久婷婷| 淫妇啪啪啪对白视频| 国产男靠女视频免费网站| 久久久久九九精品影院| 国产亚洲精品综合一区在线观看 | 久久99一区二区三区| 99国产精品99久久久久| 欧美av亚洲av综合av国产av| 久久精品国产亚洲av高清一级| 亚洲欧洲精品一区二区精品久久久| 亚洲成人久久性| 黄色视频,在线免费观看| 伦理电影免费视频| 久久婷婷成人综合色麻豆| 日本免费a在线| 亚洲成人免费电影在线观看| 女生性感内裤真人,穿戴方法视频| 成人亚洲精品av一区二区 | 成人手机av| 久久精品亚洲熟妇少妇任你| 成年人免费黄色播放视频| 欧美另类亚洲清纯唯美| 亚洲成人免费av在线播放| 国产黄色免费在线视频| 欧美乱色亚洲激情| 天堂√8在线中文| 国产精品久久久久久人妻精品电影| 欧美成狂野欧美在线观看| 亚洲一区二区三区不卡视频| 免费在线观看完整版高清| a在线观看视频网站| netflix在线观看网站| 亚洲激情在线av| 99久久国产精品久久久| 久久国产精品影院| 久久中文字幕一级| 国产97色在线日韩免费| 最近最新中文字幕大全电影3 | 他把我摸到了高潮在线观看| 久久人妻福利社区极品人妻图片| 黄片大片在线免费观看| 又黄又爽又免费观看的视频| 国产免费现黄频在线看| 制服人妻中文乱码| 天天影视国产精品| 欧美日韩福利视频一区二区| 国产精品久久久久成人av| 在线天堂中文资源库| 美女扒开内裤让男人捅视频| 人人妻,人人澡人人爽秒播| 这个男人来自地球电影免费观看| 国产精品久久久久成人av| 国产亚洲欧美在线一区二区| 国产高清videossex| 美女大奶头视频| 热99re8久久精品国产| 日本黄色视频三级网站网址| 国产成人精品无人区| 精品卡一卡二卡四卡免费| 国产成年人精品一区二区 | 国产高清视频在线播放一区| 国产黄色免费在线视频| 欧美性长视频在线观看| 亚洲av日韩精品久久久久久密| 久久人妻av系列| 精品一品国产午夜福利视频| 首页视频小说图片口味搜索| 国产深夜福利视频在线观看| 欧美乱妇无乱码| 欧美成人午夜精品| 人成视频在线观看免费观看| 高清欧美精品videossex| 啦啦啦 在线观看视频| 成人亚洲精品av一区二区 | 久久国产精品影院| 精品免费久久久久久久清纯| av电影中文网址| 久久精品aⅴ一区二区三区四区| 久久亚洲真实| 久久精品亚洲熟妇少妇任你| 日韩欧美免费精品| 一区二区三区国产精品乱码| 久久精品影院6| 99精品在免费线老司机午夜| a级片在线免费高清观看视频| 免费av中文字幕在线| av欧美777| 久久久久久亚洲精品国产蜜桃av| 麻豆久久精品国产亚洲av | 曰老女人黄片| 欧美日韩乱码在线| 91在线观看av| 国产一区二区激情短视频| 91老司机精品| 欧美午夜高清在线| 国内久久婷婷六月综合欲色啪| 国产不卡一卡二| 大码成人一级视频| 男女午夜视频在线观看| 精品无人区乱码1区二区| 在线播放国产精品三级| 新久久久久国产一级毛片| 午夜精品在线福利| 高潮久久久久久久久久久不卡| 长腿黑丝高跟| 亚洲精品一区av在线观看| 亚洲欧美激情综合另类| 纯流量卡能插随身wifi吗| 午夜精品在线福利| 久久精品91蜜桃| 在线观看午夜福利视频| 国产视频一区二区在线看| 69av精品久久久久久| 一本综合久久免费| 嫩草影院精品99| 在线观看舔阴道视频| 国产精品自产拍在线观看55亚洲| 99国产精品99久久久久| 国产精品日韩av在线免费观看 | 亚洲aⅴ乱码一区二区在线播放 | 色综合婷婷激情| 亚洲久久久国产精品| 少妇裸体淫交视频免费看高清 | 精品久久久久久电影网| 成人特级黄色片久久久久久久| 久久久精品欧美日韩精品| 91老司机精品| 久久精品影院6| 伦理电影免费视频| 婷婷六月久久综合丁香| 欧美成人免费av一区二区三区| 一级a爱片免费观看的视频| 久久久久久亚洲精品国产蜜桃av| 每晚都被弄得嗷嗷叫到高潮| 天天添夜夜摸| 法律面前人人平等表现在哪些方面| 久久国产乱子伦精品免费另类| 久久这里只有精品19| 婷婷精品国产亚洲av在线| 欧美黄色淫秽网站| 99re在线观看精品视频| 少妇的丰满在线观看| 国产高清激情床上av| 国产av一区在线观看免费| 超色免费av| 变态另类成人亚洲欧美熟女 | 亚洲五月婷婷丁香| 三上悠亚av全集在线观看| 极品人妻少妇av视频| 精品人妻1区二区| 在线av久久热| 亚洲精品久久成人aⅴ小说| 亚洲欧洲精品一区二区精品久久久| 深夜精品福利| 黄片播放在线免费| 精品国产一区二区三区四区第35| 国产精品秋霞免费鲁丝片| 少妇粗大呻吟视频| 亚洲人成伊人成综合网2020| 亚洲少妇的诱惑av| 午夜老司机福利片| 久久婷婷成人综合色麻豆| tocl精华| 久久婷婷成人综合色麻豆| 久久九九热精品免费| 在线观看www视频免费| 成人黄色视频免费在线看| 亚洲 国产 在线| 桃色一区二区三区在线观看| 国产一区二区三区视频了| a在线观看视频网站| 欧美精品亚洲一区二区| 啪啪无遮挡十八禁网站| 国产精品一区二区精品视频观看| 国产精品 国内视频| 一级黄色大片毛片| 午夜免费激情av| 亚洲一区二区三区色噜噜 | 精品一区二区三区av网在线观看| 亚洲精品美女久久久久99蜜臀| 久久国产亚洲av麻豆专区| 极品教师在线免费播放| 一本大道久久a久久精品| 色精品久久人妻99蜜桃| 亚洲伊人色综图| 国产aⅴ精品一区二区三区波| 国产av精品麻豆| 激情视频va一区二区三区| 国产精品亚洲av一区麻豆| 国产精品一区二区三区四区久久 | e午夜精品久久久久久久| 亚洲第一青青草原| 高清欧美精品videossex| 后天国语完整版免费观看| 亚洲第一av免费看| 一级毛片精品| 久久久久久久久久久久大奶| 久久久久亚洲av毛片大全| 国产高清videossex| 国内毛片毛片毛片毛片毛片| 国产无遮挡羞羞视频在线观看| 欧美一级毛片孕妇| 欧美激情极品国产一区二区三区| 97人妻天天添夜夜摸| 99久久国产精品久久久| 国产91精品成人一区二区三区| 国产亚洲精品一区二区www| 成年人黄色毛片网站| 日韩 欧美 亚洲 中文字幕| 国产精品野战在线观看 | 欧美日韩亚洲高清精品| 久久伊人香网站| 日韩视频一区二区在线观看| 亚洲人成网站在线播放欧美日韩| 国产精品亚洲av一区麻豆| 老汉色av国产亚洲站长工具| 亚洲色图av天堂| 久久这里只有精品19| 亚洲第一青青草原| 女性被躁到高潮视频| 国产国语露脸激情在线看| 欧美老熟妇乱子伦牲交| 不卡av一区二区三区| 日本一区二区免费在线视频| 丰满的人妻完整版| 免费在线观看视频国产中文字幕亚洲| 亚洲国产欧美一区二区综合| 丰满饥渴人妻一区二区三| 三级毛片av免费| av网站在线播放免费| 91成人精品电影| 亚洲男人的天堂狠狠| 88av欧美| 精品高清国产在线一区| 男女之事视频高清在线观看| 久久国产精品影院| 中文字幕人妻熟女乱码| 村上凉子中文字幕在线| svipshipincom国产片| 一二三四社区在线视频社区8| 免费一级毛片在线播放高清视频 | 国产91精品成人一区二区三区| 可以在线观看毛片的网站| 国产有黄有色有爽视频| 97人妻天天添夜夜摸| 久久午夜亚洲精品久久| av中文乱码字幕在线| 欧洲精品卡2卡3卡4卡5卡区| 夜夜看夜夜爽夜夜摸 | 国产欧美日韩一区二区精品| 亚洲美女黄片视频|