張澤旺,富巍,蘇慶雄,楊堅(jiān)偉
1.廈門理工學(xué)院光電與通信工程學(xué)院,福建 廈門 361024;2.通信網(wǎng)絡(luò)與信息處理福建省高校重點(diǎn)實(shí)驗(yàn)室,福建 廈門 361024;3.廈門理工學(xué)院電子技術(shù)應(yīng)用研究所,福建 廈門 361024
基于輸電線傳輸?shù)拇蜮彍y(cè)控系統(tǒng)
張澤旺1,2,3,富巍3,蘇慶雄1,2,楊堅(jiān)偉1
1.廈門理工學(xué)院光電與通信工程學(xué)院,福建 廈門 361024;2.通信網(wǎng)絡(luò)與信息處理福建省高校重點(diǎn)實(shí)驗(yàn)室,福建 廈門 361024;3.廈門理工學(xué)院電子技術(shù)應(yīng)用研究所,福建 廈門 361024
針對(duì)傳統(tǒng)的打鈴系統(tǒng)信號(hào)接口多、控制功能單一等問(wèn)題,提出了一種基于輸電線傳輸?shù)男滦痛蜮彍y(cè)控系統(tǒng).該系統(tǒng)應(yīng)用載波調(diào)制和頻分復(fù)用等技術(shù),以微控制器AT89C51單片機(jī)作為系統(tǒng)的控制芯片,采用中斷等指令對(duì)軟件系統(tǒng)進(jìn)行了編程設(shè)計(jì),同時(shí)使用PCF8591、MAX232及相關(guān)電路實(shí)現(xiàn)了數(shù)據(jù)轉(zhuǎn)換與通信.測(cè)試結(jié)果表明,接收端解調(diào)信號(hào)的周期為63 μs,占空比為50%,與發(fā)送端調(diào)制信號(hào)參數(shù)一致,解調(diào)效果好,且響鈴系統(tǒng)控制精準(zhǔn).該打鈴測(cè)控系統(tǒng)成本低,維護(hù)管理方便.
電力載波通信;載波調(diào)制;打鈴系統(tǒng);測(cè)控傳輸
傳統(tǒng)的打鈴系統(tǒng)主要分兩種,一種是將所有的控制線接入主控室,并按需要在控制箱上做相應(yīng)的調(diào)整,缺點(diǎn)是信號(hào)接口多,且需要進(jìn)行大量的布線,花費(fèi)較大,在某種程度上也影響系統(tǒng)的美觀.另一種是將打鈴指令直接寫入打鈴系統(tǒng)中,只要時(shí)間一到便開(kāi)始在規(guī)定的時(shí)間內(nèi)響鈴,缺點(diǎn)是會(huì)發(fā)生各個(gè)響鈴不同步的情況,且控制功能單一,不易更改調(diào)整,只適合小型或單間的場(chǎng)所.綜上分析,設(shè)計(jì)了一種基于輸電線傳輸?shù)男滦痛蜮彍y(cè)控系統(tǒng),該系統(tǒng)無(wú)需重新架設(shè)通信線路,能復(fù)用輸電線路進(jìn)行通信,不占用無(wú)線電頻率資源,既可以省去布線的麻煩,后期維護(hù)也較為方便[1].
1.1 控制系統(tǒng)設(shè)計(jì)
基于輸電線傳輸?shù)拇蜮徔刂葡到y(tǒng)如圖1所示,由主機(jī)模組、分機(jī)模組和傳輸分配網(wǎng)絡(luò)等部分組成,主機(jī)模組有載波調(diào)制電路、DA(DigitaltoAnalog)轉(zhuǎn)換電路、顯示與控制電路、電源電路等,每個(gè)分機(jī)模組都有各自的載波解調(diào)電路、AD采集電路、響鈴電路、電源電路等.將控制數(shù)據(jù)等信號(hào)的頻譜搬移到高頻載波,即信號(hào)的載波調(diào)制.無(wú)需重新架設(shè)通信線路,能復(fù)用輸電線路進(jìn)行數(shù)據(jù)通信,不占用無(wú)線電頻率資源[2].當(dāng)載波調(diào)制信號(hào)送達(dá)分機(jī)接收端后,分機(jī)通過(guò)載波解調(diào)電路還原控制數(shù)據(jù)信號(hào),實(shí)現(xiàn)控制響鈴狀態(tài)[3].
圖1 系統(tǒng)控制框圖Fig.1Block diagram of system controlling
1.2 頻帶傳輸系統(tǒng)的設(shè)計(jì)
帶通調(diào)制技術(shù)中,幅移鍵控調(diào)制,會(huì)由于輸電線上的噪聲影響接收振幅,導(dǎo)致傳輸錯(cuò)誤;頻移鍵控調(diào)制是利用數(shù)字基帶信號(hào)控制載波的頻率變換,誤碼率較高;相移鍵控調(diào)制是利用數(shù)字基帶信號(hào)進(jìn)行相位控制連續(xù)載波,目前無(wú)線通訊和載波通訊的相關(guān)領(lǐng)域應(yīng)用較多,且誤碼率較低,所以本系統(tǒng)選擇相移鍵控調(diào)制方式[4].相移鍵控調(diào)制是用二進(jìn)制數(shù)字基帶信號(hào)來(lái)進(jìn)行相位控制連續(xù)載波系統(tǒng)[5].
數(shù)字相移健控調(diào)制器由基帶調(diào)制和數(shù)字上變頻部分組成,如圖2所示,能實(shí)現(xiàn)串并轉(zhuǎn)換、相位映射、成形濾波、內(nèi)插變換和數(shù)字上變頻[6-7].
圖2 數(shù)字PSK調(diào)制器方框圖Fig.2Block diagram of all-digital PSK modulator
數(shù)字式相移鍵控解調(diào)器由數(shù)字下變頻和基帶解調(diào)部分組成.采用高穩(wěn)定度晶體振蕩器產(chǎn)生本振時(shí)鐘,根據(jù)載波恢復(fù)的方式,設(shè)計(jì)為反饋型結(jié)構(gòu),如圖3所示.
圖3 數(shù)字PSK解調(diào)器結(jié)構(gòu)圖Fig.3Structure diagram of digital PSK modulator
反饋型與前饋型相比,利用定時(shí)恢復(fù)和載波恢復(fù)電路,消除同步參數(shù)對(duì)信號(hào)判斷的不利影響,優(yōu)化誤碼性能.在定時(shí)恢復(fù)的最佳采樣點(diǎn),載波相差檢測(cè)器形成相位誤差信號(hào),通過(guò)數(shù)字環(huán)路濾波器產(chǎn)生控制信號(hào),控制數(shù)字控制振蕩器的頻率和相位,以達(dá)到解調(diào)的目的[8].
2.1 響鈴監(jiān)控電路設(shè)計(jì)
為了更加精準(zhǔn)控制響鈴狀態(tài),設(shè)計(jì)了響鈴控制及其監(jiān)測(cè)電路,如圖4所示,用BUZZER蜂鳴器模擬打鈴,用MIC駐極體話筒監(jiān)測(cè)蜂鳴器接收到響鈴指令后,響鈴狀態(tài)是否正常,以便實(shí)時(shí)調(diào)整控制數(shù)據(jù)[9].
圖4 蜂鳴器和響鈴檢測(cè)示意圖Fig.4Schematic diagram of buzzer and alarm detection
圖4中,若電源電壓Ucc為5 V,選用駐極體話筒的工作電壓UM為4.5 V,電流峰值Imax為1 mA,則有:
由式(1)可知,R7≥500 Ω;偏置電阻R7選1 kΩ.
若設(shè)定蜂鳴器發(fā)出頻率3 kHz的脈沖,則MIC接收到周期約為330 μs,占空比為33%的脈沖,高電平持續(xù)時(shí)間約為100 μs,由圖4易知A點(diǎn)為低電平時(shí),Q1導(dǎo)通,電容短路放電,A點(diǎn)為高電平時(shí),Q1截止,電容充電,所以電容在高電平持續(xù)時(shí)間100 μs內(nèi)充電電壓Uc為:
且τ=R5C,代入式(2)可得,t=R5C ln(Ucc/Uc);
電容C在高電平100 μs內(nèi)充電電壓最高為0.82 V,示意圖如圖5所示;即單片機(jī)P2.7口接收電壓應(yīng)達(dá)0.82 V.
圖5 響鈴監(jiān)測(cè)電容充電曲線Fig.5Capacitor charge curve of alarm monitoring system
2.2 AD和DA轉(zhuǎn)化電路設(shè)計(jì)
AD采樣電路和DA轉(zhuǎn)換電路如圖6和圖7所示,兩個(gè)電路分別作用于主機(jī)發(fā)送模組和分機(jī)接收模組,由于速度上的限制所以可以考慮多個(gè)電力載波模塊差時(shí)檢查,差時(shí)接收[10].圖6電路上所示的滑動(dòng)變阻器和圖7電路LED指示是為了模擬波形的變化,也是為了檢查信號(hào)是否握手成功[11].
圖6 AD轉(zhuǎn)化過(guò)程Fig.6Process design of AD transform
圖7 DA轉(zhuǎn)化過(guò)程Fig.7Process of DA transform
2.3 串口通信電路設(shè)計(jì)
串口通信電路如圖8所示,電路采用雙工發(fā)送/接收器接口的電平轉(zhuǎn)換電路芯片MAX232為核心,外接合適的元器件構(gòu)成.其芯片內(nèi)部有自升壓電路,電平倍增電路,可將+5 V電平轉(zhuǎn)化成-10 V~+10 V,滿足RS-232C標(biāo)準(zhǔn)對(duì)應(yīng)的邏輯1和邏輯0的電平要求.片內(nèi)有2個(gè)發(fā)送器,2個(gè)接收器,有TTL信號(hào)輸入/RS-232C輸出的功能.該芯片可與TTL/CMOS電平兼容,使用簡(jiǎn)便[12].
圖8 MAX232外圍電路圖Fig.8Circuitry of peripheral of MAX232
軟件設(shè)計(jì)流程如圖9所示.串口通信模塊用來(lái)進(jìn)行數(shù)據(jù)的傳輸和指令的發(fā)送,時(shí)間計(jì)數(shù)模塊用來(lái)顯示標(biāo)準(zhǔn)時(shí)間、設(shè)置響鈴時(shí)間并確認(rèn)是否發(fā)出響鈴指令,顯示模塊是為了顯示設(shè)置時(shí)間和操作菜單等[13].
圖9 軟件設(shè)計(jì)流程Fig.9Software design flowchart
4.1 響鈴監(jiān)控電路測(cè)試
經(jīng)過(guò)對(duì)圖4響鈴監(jiān)控電路實(shí)際測(cè)試,響鈴電路監(jiān)測(cè)電容C在高電平100 μs內(nèi)電壓變化曲線如圖10所示.
圖10 響鈴監(jiān)測(cè)實(shí)際波形Fig.10Real waveform of alarm detection
由圖10可知,經(jīng)實(shí)際測(cè)試,每隔330 μs,在每個(gè)周期的高電平100 μs內(nèi),都能檢測(cè)到電容C兩端電壓,即單片機(jī)P2.7口對(duì)地電壓最高約為0.82 V,測(cè)試結(jié)果與圖5響鈴監(jiān)測(cè)理論數(shù)據(jù)一致,說(shuō)明響鈴系統(tǒng)控制精準(zhǔn),響鈴及其控制電路工作正常.
4.2 頻帶傳輸系統(tǒng)測(cè)試
4.2.1 測(cè)試原理PSK相移鍵控調(diào)制是利用載波的不同相位來(lái)傳遞數(shù)字信息,利用二進(jìn)制數(shù)據(jù)來(lái)控制載波的相位在0°~180°間切換來(lái)調(diào)制載波的零相位角度,該過(guò)程是進(jìn)行頻譜變換的過(guò)程,振幅和頻率保持不變.PSK控制結(jié)構(gòu)圖如圖11所示[14].
圖11 PSK控制結(jié)構(gòu)圖Fig.11Structure diagram of PSK controlling
4.2.2 測(cè)試結(jié)果分析系統(tǒng)經(jīng)過(guò)實(shí)際測(cè)試,發(fā)送端主機(jī)數(shù)字PSK調(diào)制器的輸出波形如圖12、接收端分機(jī)解調(diào)后波形如圖13所示[15],接收端解調(diào)信號(hào)周期T為63 μs,占空比D為50%,與發(fā)送端調(diào)制信號(hào)參數(shù)一致,對(duì)照波形表明,其發(fā)送調(diào)制、接收解調(diào)效果良好.
圖12 發(fā)送端主機(jī)PSK調(diào)制波形圖Fig.12Waveform of PSK modulation
圖13 接收端分機(jī)PSK解調(diào)波形圖Fig.13Waveform of PSK demodulation
本文設(shè)計(jì)的基于輸電線傳輸?shù)拇蜮彍y(cè)控系統(tǒng)采用輸電線路進(jìn)行通信,無(wú)需重新架設(shè)專線,不占用無(wú)線電頻率資源,能傳輸控制數(shù)據(jù)信息,以實(shí)現(xiàn)異地控制響鈴狀態(tài).系統(tǒng)經(jīng)實(shí)際測(cè)試,效果良好;并且成本較低、無(wú)輻射污染,可應(yīng)用于巡視監(jiān)控、智能家居、物聯(lián)網(wǎng)抄表、環(huán)境及路況監(jiān)視等眾多場(chǎng)合.符合智慧城市節(jié)能環(huán)保的設(shè)計(jì)要求,具有較好的應(yīng)用發(fā)展前景.
[1]張淑娥,孔英會(huì),高強(qiáng).電力系統(tǒng)通信技術(shù)[M].北京:中國(guó)電力出版社,2009.
[2]蔣偉,宋濤,吳兆平.智能配電網(wǎng)臺(tái)區(qū)用戶信息梳理系統(tǒng)設(shè)計(jì)[J].測(cè)控技術(shù),2015,34(11):135-138. JIANG W,SONG T,WU Z P.Design of information combing system for smart distribution grid transformer region customer[J].Measurement&Control Technology,2015,34(11):135-138.
[3]張澤旺.一種基于電力載波通信的無(wú)布線打鈴系統(tǒng).中國(guó)專利,ZL201420856021.9[P].2014-04-15.
[4]梁波,周生偉,韓云.電力載波技術(shù)在用電信息采集系統(tǒng)中的應(yīng)用[J].電力系統(tǒng)通信,2013,34(2):78-81.
LIANG B,ZHOU S W,HAN Y.Application of power linecarriertechnologyinpower-usinginformation collection system[J].Telecommunications for Electric Power System,2013,34(2):78-81.
[5]鄭安平,羅丹羽,婁藝.嵌入式以太網(wǎng)通信的智能電表設(shè)計(jì)[J].電力系統(tǒng)通信,2007,28(11):15-21.
ZHENG A P,LUO D Y,LOU Y.An embedded ethernet communication smart meters[J].Telecommunications for Electric Power System,2007,28(11):15-21.
[6]陳進(jìn)熹,王忠飛.基于電力載波的遠(yuǎn)程開(kāi)關(guān)[J].機(jī)電工程,2012,29(9):1095-1099.
CHEN J X,WANG Z F.Design of long-distance switch based on power line communication[J].Journal of Mechanical&Electrical Engineering,2012,29(9):1095-1099.
[7]于洪珍.通信電子電路[M].北京:清華大學(xué)出版社,2015.
[8]田印祥.全數(shù)字PSK調(diào)制解調(diào)器結(jié)構(gòu)的研究[J].電視技術(shù),2007,31(8):43-45.
TIAN Y X.The study of the structure of all-digital PSK modem[J].Ideo Engineering,2007,31(8):43-45.
[9]陳進(jìn)熹,朱鴻,丁潔瑾.基于電力載波的樓宇燈光集中控制系統(tǒng)設(shè)計(jì)[J].照明工程學(xué)報(bào),2015,26(5):57-60.
CHEN J X,ZHU H,DING J J.Design centralized control system of building lighting equipment based on power line carrier[J].China Illuminating Engineering Journal,2015,26(5):57-60.
[10]閻石.數(shù)字電子技術(shù)基礎(chǔ)[M].北京:高等教育出版社,2010.
[11]詹平紅,丁函,李文娟.單片機(jī)多串口通信擴(kuò)展的設(shè)計(jì)及其應(yīng)用[J].自動(dòng)化與儀器儀表,2015(2):3-4.
ZHAN P H,DING H,LI W J.Design and application ofSCMserialcommunicationextension[J]. Automation&Instrumentation,2015(2):3-4.
[12]季媛媛,文小玲.智能路燈監(jiān)控與管理系統(tǒng)的設(shè)計(jì)[J].武漢工程大學(xué)學(xué)報(bào),2016,38(5):404-409.
JI Y Y,WEN X L.Monitoring and management system of intelligent streetlight[J].Journal of Wuhan Institute of Technology,2016,38(5):404-409.
[13]徐敏,劉建春,關(guān)鍵生.單片機(jī)原理及應(yīng)用[M].北京:機(jī)械工業(yè)出版社,2012.
[14]樊昌信,曹麗娜.通信原理[M].北京:國(guó)防工業(yè)出版社,2015.
[15]張高境,熊興中.電力載波通信中的干擾特性及抑制技術(shù)分析[J].電信科學(xué),2016(2):182-188.
ZHANG G J,XIONG X Z.Interference characteristics andsuppressiontechniquesinpowerline communication[J].Telecommunications Science,2016(2):182-188.
本文編輯:陳小平
Wiring Free Ringing Control System Based on Power Line Transmission
ZHANG Zewang1,2,3,F(xiàn)U Wei3,SU Qingqiong1,2,YANG Jianwei1
1.School of Optoelectronices&Communication Engineering,Xiamen University of Technology,Xiamen 361024,China;2.Fujian Key Laboratory of Communication Network and Information Processing,Xiamen University of Technology,Xiamen 361024,China;3.Electronic Technology Application Research Institute,Xiamen University of Technology,Xiamen 361024,China
There are many problems in traditional bell ringing system,such as multi-interface of signal and single control function.A new type of bell ringing measure and control system was proposed based on power line transmission,adopting carrier modulation and frequency division multiplexing technology.The system introduces the instructions such as interrupt to be programmed,using microcontroller unit microcontroller AT89C51 as the control chip and PCF8591,MAX232 and related circuit as the data transfer and communication module.The test result shows that the period of demodulated signal in receiver is 63 μs,and the duty cycle is 50%,which are the same as the signal parameters in sender,revealing the demodulation effect is good,and the bell ringing system can be control precisely.Besides the bell ringing system has low cost,and is convenient in maintenance and management.
power line communication;carrier modulation;ringing system;information transmission
TN915.853;TN919.6.3;TP273.3
A
10.3969/j.issn.1674?2869.2017.03.015
1674-2869(2017)03-0296-06
2017-01-03
福建省教育廳A類科技項(xiàng)目(JA14244);福建省自然科學(xué)基金(2014J01254);廈門市科技計(jì)劃項(xiàng)目(3502Z20153019)
張澤旺,工程師,實(shí)驗(yàn)師.E-mail:zwzhang@xmut.edu.cn.
張澤旺,富巍,蘇慶雄,等.基于輸電線傳輸?shù)拇蜮彍y(cè)控系統(tǒng)[J].武漢工程大學(xué)學(xué)報(bào),2017,39(3):296-301. ZHANG Z W,F(xiàn)U W,SU Q X,et al.Wiring free ringing control system based on power line transmission[J]. Journal of Wuhan Institute of Technology,2017,39(3):296-301.