李 歡,楊玉盛,司友濤,劉 翥
(福建師范大學(xué)地理科學(xué)學(xué)院/福建省濕潤(rùn)亞熱帶山地生態(tài)重點(diǎn)實(shí)驗(yàn)室—省部共建國(guó)家重點(diǎn)實(shí)驗(yàn)室培育基地 福州 350007)
短期增溫及減少降雨對(duì)杉木人工林土壤DOM的數(shù)量及其光譜學(xué)特征的影響*
李 歡,楊玉盛,司友濤**,劉 翥
(福建師范大學(xué)地理科學(xué)學(xué)院/福建省濕潤(rùn)亞熱帶山地生態(tài)重點(diǎn)實(shí)驗(yàn)室—省部共建國(guó)家重點(diǎn)實(shí)驗(yàn)室培育基地 福州 350007)
本文選取我國(guó)中亞熱帶杉木人工林土壤進(jìn)行短期增溫以及減少50%降雨試驗(yàn),利用光譜技術(shù)研究增溫及減少降雨對(duì)土壤可溶性有機(jī)質(zhì)(DOM)數(shù)量和結(jié)構(gòu)的影響。試驗(yàn)設(shè)對(duì)照(CT)、增溫(W,土壤溫度增高5℃)、減少降雨(P,自然降雨量減少50%)、增溫與減少降雨交互作用(WP)4種處理。結(jié)果表明:1)增溫增加了土壤可溶性有機(jī)碳(DOC)數(shù)量,使DOM的芳香性指數(shù)和腐殖化指數(shù)減小,結(jié)構(gòu)變得簡(jiǎn)單易于分解;0~10 cm土層的土壤DOM含有較多的烷烴,酯類物質(zhì)較少;10~20 cm土層的DOM則含有較多的碳水化合物。2)減少降雨使土壤水分相對(duì)減少,土壤DOC的數(shù)量降低。0~10 cm土層土壤DOM的芳香性指數(shù)和腐殖化程度降低,DOM含有大量的烷烴;而10~20 cm土層土壤DOM的芳香性指數(shù)和腐殖化指數(shù)升高,碳水化合物少。減少降雨處理使土壤可溶性有機(jī)氮(DON)數(shù)量增加。3)增溫和減少降雨的交互作用增加了DOC和DON的數(shù)量,降低了DOM的芳香化程度和腐殖化程度;使0~10 cm土層的DOM含有較多的碳水化合物,而10~20 cm土層的DOM碳水化合物較少。4)對(duì)于0~10 cm土壤,增溫對(duì)土壤DOM的數(shù)量及結(jié)構(gòu)的作用最強(qiáng);隨著土壤深度增加到10~20 cm,減少降雨的作用逐漸明顯,其對(duì)DOM結(jié)構(gòu)的影響也達(dá)到顯著水平。溫度及降水對(duì)DOM的數(shù)量及化學(xué)結(jié)構(gòu)的變化具有重要意義,該研究結(jié)果可以為闡釋全球氣候變化背景下土壤DOM的動(dòng)態(tài)周轉(zhuǎn)及預(yù)測(cè)未來(lái)森林土壤碳氮的變化趨勢(shì)提供科學(xué)依據(jù)。
杉木人工林;土壤增溫;減少降雨;土壤可溶性有機(jī)質(zhì);芳香性指數(shù);腐殖化程度;光譜學(xué)特征
可溶性有機(jī)質(zhì)(dissolved organic matter,DOM)是能夠溶解于水、酸或堿溶液的有機(jī)物,通常定義為通過(guò)0.45 μm的孔徑濾膜的大小和結(jié)構(gòu)不同的有機(jī)分子的連續(xù)統(tǒng)一體[1]。它包括可溶性有機(jī)碳(dissolved organic carbon,DOC)、可溶性有機(jī)氮(dissolved organic nitrogen,DON)和可溶性有機(jī)磷(dissolved organic phosphorus,DOP)等[1-2]。DOM是陸地生態(tài)系統(tǒng)中一種極為活躍的化學(xué)組分,能敏感地反映土壤有機(jī)質(zhì)的變化[3];它也是土壤微生物最重要的能量和養(yǎng)分源,是陸地生物地球化學(xué)循環(huán)重要的組成部分[2];同時(shí)對(duì)營(yíng)養(yǎng)元素由森林生態(tài)系統(tǒng)向水環(huán)境的運(yùn)輸起著至關(guān)重要的作用[4]。
從工業(yè)革命至今,化石燃料的大量開(kāi)采和使用造成大氣中“溫室氣體”的劇增,改變了地球原有的大氣組分和生物化學(xué)循環(huán),產(chǎn)生了以氣候變暖為主要特征的氣候變化[5]。據(jù)2013年IPCC最新的氣候變化研究顯示,1880—2012年全球平均地表溫度大約上升了0.85℃[6]。氣候變暖還會(huì)導(dǎo)致陸地生態(tài)系統(tǒng)干旱頻繁,降雨格局改變,緯向平均降水很可能在高緯度和部分中緯度地區(qū)增加,而在亞熱帶地區(qū)則會(huì)減少[7]。目前人們已經(jīng)廣泛地觀測(cè)到全球和局域性的陸地生態(tài)降水的格局變化[8]。溫度和水分是影響生態(tài)系統(tǒng)過(guò)程的關(guān)鍵因子,全球變暖及降雨格局的改變勢(shì)必會(huì)影響森林生態(tài)系統(tǒng)的結(jié)構(gòu)與功能[9-10],而這首先體現(xiàn)在森林土壤DOM數(shù)量和質(zhì)量的變化上。因此研究土壤DOM對(duì)溫度和水分的響應(yīng)對(duì)于理解未來(lái)森林生態(tài)系統(tǒng)碳、氮循環(huán)有著重要的理論意義。
目前,溫度、降雨作為單因子控制試驗(yàn)的研究已有報(bào)道,但存在許多不足和爭(zhēng)議。有研究表明DOC數(shù)量在溫暖的氣候下增加[11]。MacDonald等[12]卻沒(méi)有發(fā)現(xiàn)溫度對(duì)土壤中的DOC有影響,這可能是因?yàn)镈OC的分解與產(chǎn)生速率相同。McDowell等[13]的研究表明,DON的濃度隨著溫度的升高而增加,夏季DON的含量比冬季高;另外有研究結(jié)果卻截然相反,夏季溫度較高,由于礦化速率加大,DON的濃度反而比較低[14]。土壤溫度和濕度是影響凋落物和土壤有機(jī)質(zhì)的微生物分解過(guò)程的主要因素,進(jìn)而影響土壤DOM;而Guggenberger等[15]并沒(méi)有發(fā)現(xiàn)水分對(duì)土壤DOC濃度和組分有影響。由此可見(jiàn),溫度與水分的作用對(duì)土壤DOM的影響極為復(fù)雜。
因此,在野外典型森林生態(tài)系統(tǒng)建立多氣候因子試驗(yàn)平臺(tái),模擬未來(lái)全球氣候變化,探討溫度和水分對(duì)土壤DOM的影響具有重要的意義。然而,現(xiàn)有的野外增溫控制平臺(tái)主要集中在中高緯地區(qū),關(guān)于我國(guó)亞熱帶地區(qū)的生態(tài)系統(tǒng)水平的野外增溫結(jié)合多種氣候變化因子的試驗(yàn)鮮有報(bào)道[16]。我國(guó)濕潤(rùn)亞熱帶地區(qū)是全球同緯度的“綠洲”,同時(shí)由于商品林基地建設(shè),此地區(qū)大面積的常綠闊葉林被改造成杉木(Cunninghamia lanceolata)人工林,占世界人工林面積的6.5%[17]。為深入了解杉木人工林對(duì)未來(lái)氣候變化的響應(yīng),本文在杉木幼林設(shè)置增溫與減少降雨多因子試驗(yàn)平臺(tái),并以土壤DOM為對(duì)象,結(jié)合紫外-可見(jiàn)光譜(UV-Vis)、熒光光譜(FS)以及傅里葉變換紅外光譜(FTIR)等技術(shù),研究DOM的數(shù)量以及化學(xué)結(jié)構(gòu)對(duì)增溫及降水的響應(yīng),以期深入了解全球氣候變化對(duì)森林生態(tài)系統(tǒng)碳、氮循環(huán)的影響。
1.1 試驗(yàn)地概況
試驗(yàn)區(qū)位于福建三明森林生態(tài)系統(tǒng)與全球變化定位觀測(cè)研究站——三明陳大林業(yè)國(guó)有林場(chǎng)觀測(cè)點(diǎn)(26°19N′,117°36′E)。該地平均海拔300 m,屬中亞熱帶季風(fēng)氣候,年均氣溫19.1℃,年均降雨量1 749 mm,相對(duì)濕度81%。土壤為黑云母花崗巖發(fā)育的紅壤[18]。
1.2 試驗(yàn)設(shè)計(jì)
于2013年在試驗(yàn)地設(shè)置若干個(gè)面積為2 m×2 m的試驗(yàn)小區(qū),四周用4塊PVC板(200 cm×70 cm)焊接,使小區(qū)與小區(qū)之間的土壤隔開(kāi),防止各小區(qū)相互干擾。將黑云母花崗巖發(fā)育的土壤分層(0~10 cm、10~20 cm、20~70 cm)取回后剔除粗根、石塊和其他雜物,然后將土壤分層混合均勻重填回試驗(yàn)小區(qū),同時(shí)采用壓實(shí)法調(diào)整土壤容重與原位土壤容重接近,以最大程度地消除樣地間的異質(zhì)性。
試驗(yàn)設(shè)對(duì)照(CT)、增溫(W)、減少降雨(P)、增溫與減少降雨交互作用(WP)4種處理,每個(gè)處理3個(gè)重復(fù)。于2013年l0月在所有試驗(yàn)小區(qū)平行布設(shè)相同的加熱電纜,深度為10 cm,間距為20 cm,且在最外圍環(huán)繞一周,保證樣地增溫的均勻性。電纜布設(shè)完成5個(gè)月后(2014年3月)開(kāi)始通電增溫(只有W和WP小區(qū)增溫,且增溫土壤始終比對(duì)照土壤高5℃)。減少降雨處理即在P和WP試驗(yàn)小區(qū)內(nèi),在離地面1.5 m處每隔5 cm均勻地布設(shè)一個(gè)0.05 m×5 m的透明U型管,從而隔離50%的自然降雨[16]。于每個(gè)試驗(yàn)小區(qū)內(nèi)種植4棵杉木幼樹(shù),杉木的位置設(shè)于兩條電纜線之間(圖1)。
圖1 試驗(yàn)樣地圖Fig.1 Pictures of experimental plots
1.3 樣品采集
于2014年10月進(jìn)行采樣,在每個(gè)小區(qū)按S型布設(shè)5個(gè)土壤取樣點(diǎn),按0~10 cm、10~20 cm分層取樣。樣品帶回室內(nèi),去除碎屑、砂礫以及植物根系,將每塊樣地中的5個(gè)取樣點(diǎn)相同層次的土樣混合成一個(gè)樣品,過(guò)2 mm篩,取一部分測(cè)定土壤基本理化性質(zhì),其余部分用于提取DOM。
1.4 樣品測(cè)定
1.4.1 土壤基本理化性質(zhì)測(cè)定
pH采用CHN868型pH計(jì)(Thermo Orion)測(cè)定,水土比為2.5∶1。土壤總有機(jī)碳、總氮采用碳氮元素分析儀(VarioMAX,Elementar,Munchen,Germany)測(cè)定。4種處理的土壤基本性質(zhì)見(jiàn)表1。
1.4.2 土壤DOM的測(cè)定
土壤DOM的提取采用水浸提法[19]。采用有機(jī)碳分析儀(TOC-VCPH,Shimadzu,Kyoto,Japan)測(cè)定濾液中的DOC含量;采用連續(xù)流動(dòng)分析儀(San++,Skalar,Breda,Netherlands)測(cè)定DON含量。使用紫外-可見(jiàn)分光光度計(jì)(UV-2450,Shimadzu,Kyoto,Japan)測(cè)定紫外可見(jiàn)吸光值,通過(guò)測(cè)定待測(cè)液在波長(zhǎng)為254 nm處的吸收值(Special Ultraviolet-Visible Absorption,SUVA)可以分析DOM的芳香化程度。SUVA也稱芳香性指數(shù)(aromaticity index,AI),計(jì)算方法為AI =(UV254/DOC)×100(UV254為254 nm處的紫外光吸收)[20]。采用日立F7000儀器(F7000,Hitachi,Toykyo,Japan)測(cè)定熒光光譜,激發(fā)和發(fā)射光柵狹縫寬度為5 nm,掃描速度為1 200 nm·min-1,其中激發(fā)光譜波長(zhǎng)為254 nm,發(fā)射波長(zhǎng)范圍為300~480 nm;熒光同步波長(zhǎng)范圍為250~500 nm。為提高靈敏度,熒光光譜測(cè)定前用稀鹽酸將待測(cè)溶液的pH值調(diào)為2[20]。其中熒光同步光譜波長(zhǎng)460 nm與345 nm處熒光強(qiáng)度的比值為腐殖化指數(shù)(humification index,synchronous mode,HIX),即HIX=I460/I345(I460:熒光同步光譜波長(zhǎng)為460 nm時(shí)的熒光強(qiáng)度;I345:熒光同步光譜波長(zhǎng)為345 nm時(shí)的熒光強(qiáng)度)[20]。腐殖化指數(shù)可以表示DOM的聚合程度[21]。將4 mg冷凍干燥的樣品與400 mg干燥的KBr(光譜純)研磨混勻,并在10 t·cm-2壓強(qiáng)下壓制成薄片,用FTIR光譜儀(Cary 660 FTIR)測(cè)定紅外光譜,掃描范圍設(shè)為4 000~400 cm-1。
1.5 數(shù)據(jù)處理與分析
使用SPSS 19.0軟件進(jìn)行數(shù)據(jù)分析。采用單因素方差分析和獨(dú)立樣本t檢驗(yàn)比較相同土層不同處理間和同一處理在不同土層間土壤DOM的數(shù)量和光譜學(xué)特征值的差異性。采用雙因素方差分析分析同一土層中W、P因子對(duì)DOM的數(shù)量和光譜學(xué)特征值的影響(P<0.05)。相關(guān)圖表采用Microsoft Excel、Origin完成。
2.1 增溫、減少降雨及其交互作用下土壤性質(zhì)的變化
如表1所示,與CT相比,兩土層的土壤經(jīng)W、P、WP處理后,土壤含水量均呈下降的趨勢(shì)。土壤經(jīng)W、P、WP處理后土壤pH均降低,其中W和WP處理后土壤pH顯著低于不增溫的土壤;在同一種處理下,10~20 cm土層的pH高于0~10 cm土層。在0~10 cm和10~20 cm土層,與CT相比,W、P、WP的SOC、STN和C/N均有降低趨勢(shì)。
表1 增溫和降雨減少及其交互作用對(duì)杉木人工林土壤主要性質(zhì)的影響Table 1 Main soil properties ofCunninghamia lanceolataplantation under short-term soil warming and precipitation reduction and their interaction
2.2 增溫、減少降雨及其交互作用對(duì)土壤DOM數(shù)量的影響
由圖2可知,在0~10 cm土層,與CT相比,W、WP兩種處理均增加了土壤DOC的含量,分別增加7%、19%;而P處理則降低了土壤DOC的含量。在10~20 cm土層,各處理DOC含量與0~10 cm土層有相同的變化趨勢(shì),但差異并不顯著。同一種處理的土壤,DOC含量均表現(xiàn)為0~10 cm土層高于10~20 cm。對(duì)于兩個(gè)土層,W、P、WP的土壤DON含量均高于CT,且上層土壤的DON含量大于下層土壤。
2.3 增溫、減少降雨及其交互作用對(duì)土壤DOM紫外光譜特征的影響
表2為4種處理的土壤DOM的紫外光譜特征。由表2可知,在0~10 cm土層,與CT相比,W、P以及WP處理的土壤,AI值均降低,分別降低了53%、27%、60%,雙因素方差分析顯示,W的作用顯著(表3)。在10~20 cm土層,與CT相比,W、WP處理的土壤,AI值分別降低了45%、15%,而P處理的土壤,AI值卻升高了78%,雙因素方差分析顯示,W和P的作用顯著(表3)??傮w上看,CT、W處理的土壤AI值隨土層加深而降低,而P、WP處理土壤AI值隨著土層加深而升高,但是沒(méi)有顯著性差異。
2.4 增溫、減少降雨及其交互作用對(duì)土壤DOM熒光光譜特征的影響
圖3為4種處理土壤DOM的熒光發(fā)射光譜圖。圖3顯示,在0~10 cm與10~20 cm土層,與CT相比,W、P、WP處理后,波峰對(duì)應(yīng)的發(fā)射光的波長(zhǎng)向短波方向移動(dòng),且波峰對(duì)應(yīng)的波長(zhǎng)順序?yàn)?WP 圖2 增溫和降雨減少及其交互作用對(duì)杉木人工林土壤可溶性有機(jī)碳及可溶性有機(jī)氮數(shù)量的影響Fig.2 Quantities of soil dissolved organic carbon and dissolved organic nitrogen ofCunninghamia lanceolataplantation under short-term soil warming and precipitation reduction and their interaction 表2 增溫和降雨減少及其交互作用對(duì)杉木人工林土壤可溶性有機(jī)質(zhì)(DOM)的光譜學(xué)特征值的影響Table 2 Spectroscopic characteristics of soil dissolved organic matter (DOM) ofCunninghamia lanceolataplantation under short-term soil warming and precipitation reduction and their interaction 表3 增溫、減少降雨及其交互作用對(duì)杉木人工林土壤可溶性有機(jī)質(zhì)(DOM)數(shù)量及光譜學(xué)特征影響的方差分析Table 3 Variance analyses of soil warming,precipitation reduction and their interaction on quantity and spectroscopic characteristics of soil dissolved organic matter (DOM) ofCunninghamia lanceolataplantation under short-term soil warming and precipitation reduction and their interaction 如表2所示,在0~10 cm土層,W、P、WP處理土壤DOM的腐殖化指數(shù)HIX值均比CT低,其中W、WP顯著降低了50%、46%,表明CT土壤DOM腐殖化程度最高。雙因素方差分析顯示,W的作用顯著(表3)。在10~20 cm土層,與CT相比,W、WP的HIX值無(wú)顯著性變化,而P則顯著升高,雙因素方差分析顯示,P對(duì)HIX的作用顯著(表3)。 圖3 增溫、減少降雨及其交互作用下杉木人工林土壤可溶性有機(jī)質(zhì)(DOM)的熒光發(fā)射光譜圖Fig.3 Fluorescence emission spectra of soil dissolved organic matter (DOM) ofCunninghamia lanceolataplantation under short-term soil warming and precipitation reduction and their interaction 2.5 增溫、減少降雨及其交互作用對(duì)土壤DOM的傅里葉紅外光譜特征的影響 圖4為不同處理土壤DOM的紅外光譜。紅外光譜在3 696 cm-1附近的吸收峰為N-H的伸縮振動(dòng)吸收;3 600~3 200 cm-1范圍內(nèi)強(qiáng)而寬的吸收峰為氫鍵鍵合的羥基的伸縮振動(dòng),它主要來(lái)自DOM樣品中的纖維素、淀粉和糖類等碳水化合物以及醇類、酚類等;2 960 cm-1附近的吸收峰為-CH3的反對(duì)稱伸縮振動(dòng);2 852 cm-1附近的吸收峰為-CH2的對(duì)稱伸縮振動(dòng);1 680 cm-1附近的吸收峰為C=O伸縮振動(dòng);1 610 cm-1附近的吸收峰為有機(jī)羧酸鹽R-CO2-的反對(duì)稱伸縮振動(dòng)以及木質(zhì)素中與苯環(huán)相連的C=O的伸縮振動(dòng);1 383 cm-1處的吸收峰為烷烴的C-H的彎曲振動(dòng);1 149 cm-1、1 120 cm-1附近的吸收峰為碳水化合物的C-O伸縮振動(dòng);1 033 cm-1可能是一些酯類的吸收;900~650 cm-1處的吸收峰為芳烴C-H的面外彎曲振動(dòng)[22-23]。 在0~10 cm土層,W處理在1 383 cm-1處的吸收峰的相對(duì)強(qiáng)度高于CT,但1 033 cm-1的吸收峰卻相對(duì)變?nèi)?說(shuō)明土壤經(jīng)增溫處理后,促進(jìn)了DOM的分解,產(chǎn)生了大量的烷烴。P處理在1 383 cm-1有最強(qiáng)的吸收峰,其相對(duì)比例高于其他3種處理,可見(jiàn)減少降雨對(duì)DOM的分解也有一定的作用,與此相對(duì)應(yīng)的是P的芳香性指數(shù)和腐殖化指數(shù)降低,土壤DOM含有的芳香化合物比CT少。WP處理的DOM在碳水化合物區(qū)的相對(duì)吸收強(qiáng)度明顯高于P處理,但烷基吸收弱于P處理,和CT處理的DOM相似。說(shuō)明在增溫和減少降雨雙因子交互作用下,土壤DOM的縮合程度降低,芳香物質(zhì)減少,WP的DOM分解后產(chǎn)生了較多的碳水化合物。值得注意的是WP的N-H吸收在4種處理中是最明顯的,與此對(duì)應(yīng)的是WP的DON含量高于其他幾種處理。 對(duì)于10~20 cm土壤,W處理在1 149 cm-1和1 120 cm-1處的吸收相對(duì)于CT變強(qiáng),表明含有較多的碳水化合物,這是因?yàn)樵鰷厥褂袡C(jī)質(zhì)分解,DOM的芳香性指數(shù)和腐殖化程度降低;P處理的烷基吸收峰(1 383 cm-1)相當(dāng)尖銳,說(shuō)明該土層土壤經(jīng)減少降雨處理后,有機(jī)質(zhì)分解后產(chǎn)生較多的烷基化合物;WP和CT之間的紅外吸收較為接近。整體而言,P、WP中的碳水化合物較少。 DOM是土壤有機(jī)質(zhì)中活躍的組分[3],本研究選取以杉木幼林土壤DOM為研究對(duì)象,探討土壤增溫和減少降雨的影響。對(duì)于0~10 cm土層,增溫使DOC呈數(shù)量增加且結(jié)構(gòu)變簡(jiǎn)單的趨勢(shì)。土壤DOM樣品的芳香化程度及分子量與其紫外吸收值SUVA呈正相關(guān)關(guān)系[24-25],而DOM的腐殖化程度HIX能夠描述DOM的分子結(jié)構(gòu)以及DOM中芳香性化合物的含量[26-27]。其中W處理的SOC含量最低但DOC含量高,這很可能是單純的W處理通過(guò)升高溫度降低了SOC的活化能,使SOC分解加快[28]。Marilley等[29]發(fā)現(xiàn)增溫能夠增加微生物量碳(MBC)的含量,激發(fā)效應(yīng)通過(guò)激活微生物活性來(lái)釋放出更多胞外酶來(lái)促進(jìn)原有SOC的分解[30]。紅外光譜顯示,W在1 383 cm-1的吸收比例比CT大,在1 033 cm-1的吸收比例變小;在1 383 cm-1處的吸收來(lái)自烷基結(jié)構(gòu),是礦化后的產(chǎn)物,這也是W處理土壤加快DOM礦化的證據(jù)。W與CT相比,碳水化合物吸收區(qū)的相對(duì)比例增強(qiáng),這與W的AI和HIX最低相吻合。單純P處理的土壤DOC數(shù)量最少,其結(jié)構(gòu)也比W和WP復(fù)雜。由于水分減少,SOC轉(zhuǎn)化為DOC的機(jī)會(huì)減少,易于被微生物分解的DOC早已分解完,所以P的1 383 cm-1的烷基吸收峰最大,P的DOC結(jié)構(gòu)也比增溫樣地復(fù)雜。P處理的SOC相比于CT降低,一方面可能是土壤孔隙變大后自養(yǎng)呼吸加大所致;另一方面是由于來(lái)自于地上杉木穿透雨的數(shù)量和植物根系分泌物減少,土壤中的碳輸入相對(duì)減少所致。長(zhǎng)時(shí)間的干旱會(huì)使植物缺少水分,從而限制其生長(zhǎng)[31],因此減少了土壤DOC的來(lái)源。WP處理的土壤DOC數(shù)量最多,SOC的數(shù)量和CT也十分接近。WP是W和P的雙重因子疊加,土壤增溫的活化作用有利于SOC向DOC的轉(zhuǎn)化,同時(shí)由于土壤水分的減少,微生物活性大大降低,DOC被分解的速率也大大降低,因而WP的DOC數(shù)量最多。WP處理的DOC的AI也最低,WP的紅外和CT最為接近,這些都說(shuō)明WP處理中微生物分解DOC的活性明顯低于W和P處理。雙因子方差分析顯示,對(duì)于0~10 cm土壤,僅W因子對(duì)DOC數(shù)量和結(jié)構(gòu)的影響達(dá)到顯著水平。 圖4 增溫、減少降雨及其交互作用下杉木人工林土壤可溶性有機(jī)質(zhì)(DOM)紅外光譜圖Fig.4 FTIR spectra of soil dissolved organic matter (DOM) ofCunninghamia lanceolataplantation under short-term soil warming and precipitation reduction and their interaction 對(duì)于10~20 cm土層,各處理的DOC和DON數(shù)量與上層土壤有相似趨勢(shì);但DOC的結(jié)構(gòu)與上層土略有差異。在這一土層中P處理的DOC最少,結(jié)構(gòu)也最復(fù)雜(與其他處理的差異達(dá)顯著水平),可能是因?yàn)樵?0~20 cm深度,水分減少的影響更加顯著,大于對(duì)0~10 cm表層土壤的影響;水分減少不利于SOC活化為DOC,也不利于植物生長(zhǎng),降低了根系分泌物等的產(chǎn)生,因而土壤DOC中碳水化合物的含量低,微生物可利用的碳少。紅外光譜中,這層土壤P處理比CT的1 383 cm-1強(qiáng),這些烷基結(jié)構(gòu)不易被微生物利用,應(yīng)該是分解后的產(chǎn)物;同時(shí)P處理在1 033 cm-1處的吸收也減弱,與此相反的是P處理的0~10 cm土層在1 033 cm-1處的吸收沒(méi)有減弱;紅外的數(shù)據(jù)和AI、HIX相吻合。由于P處理的上述影響,WP處理的土壤DOC結(jié)構(gòu)也比W處理復(fù)雜。雙因子方差分析顯示,P和W處理在影響10~20 cm土壤DOC的AI和HIX時(shí)都達(dá)到顯著水平。然而,需要指出的是,雖然P處理的土壤DOC最不容易被微生物利用,但P處理的SOC相對(duì)來(lái)說(shuō)比較低,僅僅比W高處理,這一方面是因?yàn)镻處理的植物生物量減少,另一方面也說(shuō)明P處理的SOC也曾經(jīng)快速礦化,只是在此次取樣分析時(shí)快速分解階段已經(jīng)結(jié)束,只剩下難以分解的物質(zhì)。 P因子對(duì)DON數(shù)量的影響大于W因子,P和WP處理的DON含量最高。氮是微生物分解有機(jī)質(zhì)所需的營(yíng)養(yǎng)元素,DON的積累從某種意義上來(lái)講意味著微生物礦化速率慢,這應(yīng)該是微生物分解的底物碳的質(zhì)量較低所致。事實(shí)上,本試驗(yàn)中兩層土的SOC和STN有相似的變化趨勢(shì),這進(jìn)一步說(shuō)明整體來(lái)看,對(duì)于微生物分解土壤有機(jī)質(zhì)同時(shí)需要碳源和氮源,而碳或者氮有一方面質(zhì)量較低,都會(huì)影響微生物礦化SOC的速率。 本研究通過(guò)一系列光譜手段發(fā)現(xiàn),土壤增溫可以活化土壤SOC為DOC,通過(guò)激發(fā)效應(yīng)等渠道促進(jìn)SOC的礦化,使土壤由碳匯轉(zhuǎn)變?yōu)樘荚?土壤DOM的芳香性指數(shù)和腐殖化程度降低。減少降雨在短期內(nèi)會(huì)加速SOC礦化,使土壤SOC含量降低,DOM的結(jié)構(gòu)變得較簡(jiǎn)單;但到后期減少降雨會(huì)通過(guò)降低底物的可利用性來(lái)抑制微生物的活性,土壤DOC的結(jié)構(gòu)變得復(fù)雜,芳香化和腐殖化程度升高,同時(shí)使DON富集。增溫×減少降雨處理的DOM數(shù)量最多,這是增溫和減少降雨共同作用的結(jié)果;在增溫、減少降雨雙因子交互作用下,土壤DOM的其芳香性指數(shù)和腐殖化指數(shù)均減小。對(duì)于0~10 cm土壤,土壤增溫的作用最強(qiáng);隨著土壤深度增加到10~20 cm,水分減少的作用逐漸明顯,減少降雨也成為一個(gè)顯著影響DOM結(jié)構(gòu)的因子,且減少降雨是唯一顯著影響DON數(shù)量的因子。 溫度和降水對(duì)DOM數(shù)量及結(jié)構(gòu)的變化具有重要意義,但是野外條件相對(duì)復(fù)雜,影響DOM的動(dòng)態(tài)周轉(zhuǎn)還包括其他機(jī)制,只有通過(guò)長(zhǎng)期觀測(cè),并將其他因素的影響機(jī)制考慮進(jìn)來(lái),才能更好地了解氣候變化對(duì)土壤碳氮循環(huán)的影響。 References [1]Kalbitz K,Solinger S,Park J H,et al.Controls on the dynamics of dissolved organic matter in soils:A review[J].Soil Science,2000,165(4):277–304 [2]楊玉盛,郭劍芬,陳光水,等.森林生態(tài)系統(tǒng)DOM的來(lái)源、特性及流動(dòng)[J].生態(tài)學(xué)報(bào),2003,23(3):547–558 Yang Y S,Guo J F,Chen G S,et al.Origin,property and flux of dissolved organic matter in forest ecosystems[J].Acta Ecologica Sinica,2003,23(3):547–558 [3]Biederbeck V O,Janzen H H,Campbell C A,et al.Labile soil organic matter as influenced by cropping practices in an arid environment[J].Soil Biology and Biochemistry,1994,26(12):1647–1656 [4]Bolan N S,Adriano D C,Kunhikrishnan A,et al.Chapter one-dissolved organic matter:Biogeochemistry,dynamics,and environmental significance in soils[J].Advances in Agronomy,2011,110:1–75 [5]周廣勝,王玉輝.全球生態(tài)學(xué)[M].北京:氣象出版社,2003 Zhou G S,Wang Y H.Global Ecology[M].Beijing:Meteorological Press,2003 [6]Stocker T,Plattner G K,Dahe Q.IPCC climate change 2013:the physical science basis-findings and lessons learned[C]//EGU General Assembly Conference.EGU General Assembly Confer-ence Abstracts.Vienna,Austria:EGU,2014 [7]董思言,高學(xué)杰.長(zhǎng)期氣候變化——IPCC第五次評(píng)估報(bào)告解讀[J].氣候變化研究進(jìn)展,2014,10(1):56–59 Dong S Y,Gao X J.Long-term climate change:Interpretation of IPCC fifth assessment report[J].Progressus Inquisitiones de Mutatione Climatis,2014,10(1):56–59 [8]IPCC.Climate Change 2007:The Physical Science Basis.Contribution of Working Group Ⅰ to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[R].Cambridge,United Kingdom and New York,NY,USA:Cambridge University Press,2007 [9]Aronson E L,Mcnulty S G.Appropriate experimental ecosystem warming methods by ecosystem,objective,and practicality[J].Agricultural and Forest Meteorology,2009,149(11):1791–1799 [10]Melillo J M,Steudler P A,Aber J D,et al.Soil warming and carbon-cycle feedbacks to the climate system[J].Science,2002,298(5601):2173–2176 [11]Perdue E M,Gjessing E T,Glaze W.Organic Acids in Aquatic Ecosystems:Report of the Dahlem Workshop on Organic Acids in Aquatic Ecosystems,Berlin 1989,May 7-12[M].Wiley,1990 [12]MacDonald N W,Randlett D L,Zak D R.Soil warming and carbon loss from a lake states Spodosol[J].Soil Science Society of America Journal,1999,63(1):211–218 [13]McDowell W H,Currie W S,Aber J D,et al.Effects of chronic nitrogen amendments on production of dissolved organic carbon and nitrogen in forest soils[J].Water,Air,and Soil Pollution,1998,105(1/2):175–182 [14]Huang W Z,Schoenau J J.Fluxes of water-soluble nitrogen and phosphorus in the forest floor and surface mineral soil of a boreal aspen stand[J].Geoderma,1998,81(3/4):251–264 [15]Guggenberger G,Zech W.Composition and dynamics of dissolved carbohydrates and lignin-degradation products in two coniferous forests,N.E.Bavaria,Germany[J].Soil Biology and Biochemistry,1994,26(1):19–27 [16]劉小飛,林廷武,熊德成,等.土壤增溫及降雨隔離對(duì)杉木幼林林下植被生物量的影響[J].亞熱帶資源與環(huán)境學(xué)報(bào),2014,9(3):92–95 Liu X F,Lin T W,Xiong D C,et al.Interactive responses of undergrowth vegetation biomass in Chinese fir to soil warming and precipitation separation[J].Journal of Subtropical Resources and Environment,2014,9(3):92–95 [17]Piao S L,Fang J Y,Ciais P,et al.The carbon balance of terrestrial ecosystems in China[J].Nature,2009,458(7241):1009–1013 [18]劉小飛,陳仕東,熊德成,等.高頻觀測(cè)的土壤異養(yǎng)呼吸晝夜變化[J].亞熱帶資源與環(huán)境學(xué)報(bào),2014,9(1):92–94 Liu X F,Chen S D,Xiong D C,et al.High-frequency analysis of the diel patterns of soil heterotrophic respiration[J].Journal of Subtropical Resources and Environment,2014,9(1):92–94 [19]Wu J S,Jiang P K,Chang S X,et al.Dissolved soil organic carbon and nitrogen were affected by conversion of native forests to plantations in subtropical China[J].Canadian Journal of Soil Science,2010,90(1):27–36 [20]Akagi J,Zsolnayá,Bastida F.Quantity and spectroscopic properties of soil dissolved organic matter (DOM) as a function of soil sample treatments:Air-drying and pre-incubation[J].Chemosphere,2007,69(7):1040–1046 [21]Zsolnay A,Baigar E,Jimenez M,et al.Differentiating with fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to drying[J].Chemosphere,1999,38(1):45–50 [22]Kanokkantapong V,Marhaba T F,Panyapinyophol B,et al.FTIR evaluation of functional groups involved in the formation of haloacetic acids during the chlorination of raw water[J].Journal of Hazardous Materials,2006,136(2):188–196 [23]He X S,Xi B D,Wei Z M,et al.Physicochemical and spectroscopic characteristics of dissolved organic matter extracted from municipal solid waste (MSW) and their influence on the landfill biological stability[J].Bioresource Technology,2011,102(3):2322–2327 [24]Wang Q Y,Wang Y,Wang Q C,et al.Effects of land use changes on the spectroscopic characterization of hot-water extractable organic matter along a chronosequence:Correlations with soil enzyme activity[J].European Journal of Soil Biology,2013,58:8–12 [25]Scott E E,Rothstein D E.The dynamic exchange of dissolved organic matter percolating through six diverse soils[J].Soil Biology and Biochemistry,2014,69:83–92 [26]Ohno T.Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter[J].Environmental Science &Technology,2002,36(4):742–746 [27]Michel K,Matzner E,Dignac M F,et al.Properties of dissolved organic matter related to soil organic matter quality and nitrogen additions in Norway spruce forest floors[J].Geoderma,2006,130(3/4):250–264 [28]劉煜,胡小飛,陳伏生,等.馬尾松和苦櫧林根際土壤礦化和根系分解CO2釋放的溫度敏感性[J].應(yīng)用生態(tài)學(xué)報(bào),2013,24(6):1501–1508 Liu Y,Hu X F,Chen F S,et al.Temperature sensitivity of CO2fluxes from rhizosphere soil mineralization and root decomposition inPinusmassonianaandCastanopsis sclerophyllaforests[J].Chinese Journal of Applied Ecology,2013,24(6):1501–1508 [29]Marilley L,Hartwig U A,Aragno M.Influence of an elevated atmospheric CO2content on soil and rhizosphere bacterial communities beneathLoliumperenneandTrifoliumrepensunder field conditions[J].Microbial Ecology,1999,38(1):39–49 [30]Kuzyakov Y,Friedel J K,Stahr K.Review of mechanisms and quantification of priming effects[J].Soil Biology and Biochemistry,2000,32(11/12):1485–1498 [31]Eamus D.Ecophysiological traits of deciduous and evergreen woody species in the seasonally dry tropics[J].Trends in Ecology &Evolution,1999,14(1):11–16 Effects of short-term global warming and precipitation reduction on the quantity and spectral characteristics of soil DOM inCunninghamia lanceolataplantation* LI Huan,YANG Yusheng,SI Youtao**,LIU Zhu As a small but reactive soil organic matter (SOM) pool,dissolved organic matter (DOM) is considered to be a sensitive indicator of the dynamic of SOM and an important component of terrestrial biogeochemical cycle.The quality and quan-tity of DOM are crucial in the dynamics of C,N and other nutrients in forest soils because these attributes are closely related to carbon accumulation in soil and nutrient availability to microorganisms and plants.Global warming has been widely recognized and has induced drastic changes in global precipitation patterns.Because temperature and precipitation are the two most important environmental drivers regulating forest SOM cycle,it is critical that we have a solid understanding of the response of soil DOM to such climatic changes.In this study,we conducted a short-term experiment in aCunninghamia lanceolataplantation in subtropical China that stimulated soil warming and precipitation decline.The objective of the study was to address the effects of the two factors (temperature and precipitation) on the quantity and composition of DOM.The experimental design was a randomized complete block factorial design,with warming and precipitation as fixed factors.The four treatments(each replicated three time) were set up in the experiment included no warming and natural precipitation (CT),warming and natural precipitation (W),no warming and reduced precipitation (P),warming with reduced precipitation (WP).We found that:1) W treatment increased the quantity of labile soil dissolved organic carbon (DOC),but decreased the aromaticity and humification degree of DOM.The 0-10 cm soil layer contained more alkanes and little esters,while the 10-20 cm soil layer had more carbohydrates.2) P treatment resulted in a smaller soil water content,which limited DOC production.In the 0-10 cm soil layer,soil DOM was apparently less humified and less condensed,with much alkanes present.However,in the 10-20 cm soil layer,aromaticity and humification degree were enhanced,while the quantity of carbohydrates decreased.In addition,precipitation decline also improved the quantity of DON.3) The combination of warming climate and declining precipitation increased the concentrations of DOC and DON,and reduced the aromaticity index and humification degree.The 0-10 cm soil layer had relatively more carbohydrates than the 10-20 cm soil layer.4) In the 0-10 cm soil layer,warming climate was the only factor that significantly influenced the quantity and quality of DOM.With increasing soil depth,precipitation decline became the second significant factor influencing soil DOM structure.Our results provided a deeper insight into the dynamic changes of soil DOM under global warming and declining precipitation,which was helpful in more accurately predicting soil C and N cycle in response to future global climate change. Cunninghamia lanceolataplantation;Soil warming;Precipitation reduction;Soil dissolved organic matter;Aromaticity index;Humification degree;Spectral characteristics Jan.20,2017;accepted Mar.14,2017 S718.5 :A :1671-3990(2017)07-0949-09 10.13930/j.cnki.cjea.170070 李歡,楊玉盛,司友濤,劉翥.短期增溫及減少降雨對(duì)杉木人工林土壤DOM的數(shù)量及其光譜學(xué)特征的影響[J].中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào),2017,25(7):949-957 Li H,Yang Y S,Si Y T,Liu Z.Effects of short-term global warming and precipitation reduction on the quantity and spectral characteristics of soil DOM inCunninghamia lanceolataplantation[J].Chinese Journal of Eco-Agriculture,2017,25(7):949-957 *國(guó)家自然科學(xué)基金面上項(xiàng)目(31570606)和福建省自然科學(xué)基金面上項(xiàng)目(2015J01120)資助 ** 通訊作者:司友濤,主要從事森林土壤有機(jī)質(zhì)的穩(wěn)定與全球碳、氮循環(huán)的研究。E-mail:yt.si@fjnu.edu.cn 李歡,主要從事森林生態(tài)系統(tǒng)碳氮循環(huán)的研究。E-mail:lhsylvia@163.com 2017-01-20 接受日期:2017-03-14 *This study was supported by the National Natural Science Foundation of China (31570606) and Fujian Natural Science Foundation(2015J01120). ** Corresponding author,E-mail:yt.si@fjnu.edu.cn3 討論
4 結(jié)論
(College of Geographical Sciences,Fujian Normal University / Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded),Fuzhou 350007,China)
中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào)(中英文)2017年7期