侯蘭偉,孫宏偉,王鋼,連波,姜能志,孫琳,*
( 濰坊醫(yī)學(xué)院1. 心理學(xué)系; 2. 認(rèn)知神經(jīng)重點(diǎn)實(shí)驗(yàn)室; 3. 生物科學(xué)與技術(shù)學(xué)院,山東濰坊 261053)
研究進(jìn)展
嚙齒類動(dòng)物注意定勢(shì)轉(zhuǎn)移任務(wù)研究進(jìn)展
侯蘭偉1,孫宏偉1,王鋼2,連波3,姜能志1,孫琳1,2*
( 濰坊醫(yī)學(xué)院1. 心理學(xué)系; 2. 認(rèn)知神經(jīng)重點(diǎn)實(shí)驗(yàn)室; 3. 生物科學(xué)與技術(shù)學(xué)院,山東濰坊 261053)
認(rèn)知是前額葉執(zhí)行功能的重要組成部分,其過程主要包括注意定勢(shì)的組建、維持和轉(zhuǎn)移,而認(rèn)知的行為學(xué)表現(xiàn)結(jié)果不僅受到外在的注意定勢(shì)轉(zhuǎn)移任務(wù)(attentional set-shifting task,ASST)檢測(cè)方法的影響,同時(shí)還受到內(nèi)在特定腦區(qū)及特定神經(jīng)遞質(zhì)的調(diào)控。因此本綜述回顧了有關(guān)ASST檢測(cè)認(rèn)知靈活性的發(fā)展歷程,分析了嚙齒類動(dòng)物ASST的檢測(cè)方法、原理及檢測(cè)方法之間的異同,并系統(tǒng)地總結(jié)了不同腦區(qū)在認(rèn)知過程中的作用及多種神經(jīng)遞質(zhì)包括多巴胺,乙酰膽堿,去甲腎上腺素,5-羥色胺等在ASST過程中所扮演的重要角色,詳細(xì)地闡明了目前有關(guān)ASST檢測(cè)認(rèn)知靈活性的發(fā)展現(xiàn)狀,亟待解決的問題及未來發(fā)展趨勢(shì),為進(jìn)一步挖掘認(rèn)知靈活性的調(diào)控機(jī)制和影響因素提供重要的理論依據(jù)。
注意定勢(shì)轉(zhuǎn)移任務(wù);嚙齒類動(dòng)物;多巴胺;乙酰膽堿;5-羥色胺;去甲腎上腺素
認(rèn)知靈活性是一種靈活的轉(zhuǎn)換心理表征及將注意定勢(shì)轉(zhuǎn)換到能夠適應(yīng)變化的或不可預(yù)測(cè)的情景中的能力,其本質(zhì)是研究被試者能否產(chǎn)生協(xié)調(diào)有序而有目的性的行為及對(duì)認(rèn)知過程進(jìn)行良好的控制和調(diào)節(jié)。而ASST主要通過檢測(cè)受試者的注意定勢(shì)轉(zhuǎn)移能力來反映受試者的認(rèn)知靈活性,最早可追溯到1920年精神分裂癥病人認(rèn)知能力檢測(cè)的規(guī)劃、排序、分類任務(wù)試驗(yàn)[1]。 在人類研究中,ASST主要用于收集人類神經(jīng)病變有關(guān)疾病的認(rèn)知障礙信息;而在靈長類動(dòng)物實(shí)驗(yàn)中,則可增強(qiáng)研究者對(duì)額葉皮質(zhì)系統(tǒng)行為靈活性的神經(jīng)化學(xué)基礎(chǔ)的認(rèn)識(shí)[2]。隨后ASST用來研究嚙齒類動(dòng)物注意定勢(shì)轉(zhuǎn)移能力[3]。這項(xiàng)任務(wù)利用嚙齒類動(dòng)物先天的覓食習(xí)慣,引入可供辨別因素,以能否正確尋找并挖掘碗中的食物為判斷標(biāo)準(zhǔn)來檢測(cè)嚙齒類動(dòng)物注意定勢(shì)轉(zhuǎn)移能力。目前,檢測(cè)嚙齒類動(dòng)物注意定勢(shì)轉(zhuǎn)移能力最常用的實(shí)驗(yàn)是由Birrell提出的七階段測(cè)試法[3],F(xiàn)ox[4]和Liston[5]提出的五階段檢測(cè)法及Bissonette提出的4-內(nèi)維度辨別(intradimensional acquisition, ID)檢測(cè)法[6]。
圖1 七階段測(cè)試法檢測(cè)裝置Fig.1 Ilustration of the detection device of 7-stage task program
1.1 ASST的基本步驟
適應(yīng)期在籠內(nèi)訓(xùn)練大鼠挖掘碗中的獎(jiǎng)賞物。隨后訓(xùn)練期將大鼠放置在ASST特定裝置中(如圖1),訓(xùn)練大鼠挖掘用木屑作為填充物并有獎(jiǎng)賞食物的碗,直到大鼠出現(xiàn)穩(wěn)定的正確挖掘行為。測(cè)試期包括簡(jiǎn)單辨別(simple discrimination,SD)、復(fù)雜辨別(compound discrimination,CD)、第一次逆轉(zhuǎn)學(xué)習(xí)(reversal learning 1,REV1)、內(nèi)維度辨別(intradi mensional shift,IDS)、第二次逆轉(zhuǎn)學(xué)習(xí)(reversal learning 2,REV2)、外維度辨別(extradimensional shift,EDS)及第三次逆轉(zhuǎn)學(xué)習(xí)(reversal learning 3,REV3)七個(gè)階段。每個(gè)辨別階段均需連續(xù)六次正確挖掘方可進(jìn)入下一測(cè)試階段。
1.2 ASST測(cè)試階段順序的探究
七階段測(cè)試中:SD階段,大鼠學(xué)會(huì)用單一相關(guān)維度(氣味)進(jìn)行辨別,指引大鼠形成用該維度辨別的能力;CD階段引入另一不相關(guān)維度(填充物),強(qiáng)化大鼠用氣味維度進(jìn)行辨別;REV1階段將氣味維度進(jìn)行逆轉(zhuǎn),相關(guān)辨別維度不變,旨在抑制前階段形成的刺激優(yōu)勢(shì),也進(jìn)一步加強(qiáng)大鼠用相關(guān)維度進(jìn)行辨別的注意定勢(shì);ID階段引入相同性質(zhì)的新維度刺激替代原先的維度刺激,相關(guān)辨別維度仍不變,檢測(cè)前階段注意定勢(shì)組建程度;REV2階段,相關(guān)維度的目標(biāo)性氣味刺激與非目標(biāo)性氣味刺激互換,相關(guān)性辨別維度仍不變,旨在抑制刺激優(yōu)勢(shì),加強(qiáng)組建注意定勢(shì);ED階段,新的維度刺激重新被引入,且相關(guān)性辨別維度與非相關(guān)性辨別維度互換,旨在指引大鼠完成注意定勢(shì)轉(zhuǎn)移;REV3階段,原先的目標(biāo)性刺激與非目標(biāo)性刺激互換,相關(guān)性辨別維度不變,不僅強(qiáng)化注意定勢(shì),還可證明ED階段的表現(xiàn)缺陷并非偶然事件,而是實(shí)驗(yàn)程序中正常表現(xiàn)。在測(cè)試過程中,記錄潛伏期(大鼠進(jìn)入測(cè)試區(qū)到出現(xiàn)挖掘行為的時(shí)間)和完成某階段的試驗(yàn)次數(shù)及正確與否。(見圖1)
五階段ASST檢測(cè)法,檢測(cè)程序依次包括:SD、CD、ID、REV和ED五個(gè)階段。由于不同檢測(cè)階段間的順序關(guān)系和逆轉(zhuǎn)學(xué)習(xí)次數(shù)存在差異,故動(dòng)物更容易形成注意定勢(shì)的組建。而在4-ID測(cè)試程序中,得到的行為學(xué)結(jié)果也與七階段檢測(cè)不同,因此研究者可根據(jù)自己的實(shí)驗(yàn)設(shè)計(jì)及要求合理選擇檢測(cè)方法。
在檢測(cè)小鼠注意定勢(shì)轉(zhuǎn)移能力時(shí),正常組小鼠在ID和ED階段并沒有表現(xiàn)出差異[7],表明小鼠在該檢測(cè)程序中沒有組建注意定勢(shì)及實(shí)驗(yàn)組小鼠在ED階段的表現(xiàn)缺陷是不具有參考意義的。然而在Bissonette[6]的研究中發(fā)現(xiàn),小鼠在4-ID檢測(cè)程序中可以組建注意定勢(shì),這表明需要更多ID階段來組建注意定勢(shì)。在利用氣味和放置碗的平臺(tái)質(zhì)地兩個(gè)辨別維度的實(shí)驗(yàn)中,小鼠也組建了注意定勢(shì),提示在后續(xù)小鼠ASST測(cè)試中可嘗試?yán)闷脚_(tái)質(zhì)地和氣味兩種辨別維度來檢測(cè)注意定勢(shì)轉(zhuǎn)移能力。
后頂葉皮質(zhì)病變導(dǎo)致大鼠ED階段行為表現(xiàn)受損,但并不影響REV階段的表現(xiàn)[4];扣帶回病變則會(huì)導(dǎo)致大鼠ID階段行為表現(xiàn)受損,且導(dǎo)致大鼠無法組建注意定勢(shì)[5];紋狀體病變主要影響大鼠注意定勢(shì)的組建且使之在REV階段行為表現(xiàn)受損[8],而基底前腦受損則會(huì)導(dǎo)致大鼠REV階段行為表現(xiàn)受損[9];內(nèi)側(cè)前額葉病變的大鼠能夠組建注意定勢(shì),但注意定勢(shì)轉(zhuǎn)移受損[10];眶部前額葉(orbital prefrontal cortex,OFC)病變的大鼠表現(xiàn)出REV、注意定勢(shì)組建及注意定勢(shì)轉(zhuǎn)移階段受損[11]。
4.1 多巴胺
多巴胺(dopamine,DA)主要調(diào)節(jié)嚙齒類動(dòng)物逆轉(zhuǎn)學(xué)習(xí)的靈活性。在大鼠紋狀體中注射少許D2受體激動(dòng)劑,可減少前額葉(prefrontal cortex,PFC)DA的輸出,而PFC的病變則進(jìn)一步導(dǎo)致紋狀體的損傷,使大鼠REV階段行為受損[12,13]。PFC的DA在認(rèn)知過程中的功能大致呈倒置的“U”型,即DA功能低下(精神分裂癥大鼠模型)或是亢進(jìn)均(Δ-9-四氫大麻酚)都可造成大鼠在ASST檢測(cè)過程中注意定勢(shì)轉(zhuǎn)移能力的下降[14-16]。大鼠自食甲基苯丙胺21 d,會(huì)降低PFC中DA傳導(dǎo)水平,大鼠在ED階段表現(xiàn)顯著受損,但不影響REV階段的表現(xiàn);而大劑量腹腔注射甲基苯丙胺會(huì)導(dǎo)致PFC的DA水平下降,使得大鼠REV階段行為受損[17]。給予精神分裂癥大鼠腹腔注射Δ-9-四氫大麻酚,可提高PFC的DA水平,導(dǎo)致大鼠REV階段和ID階段表現(xiàn)受損[18]。
4.2 乙酰膽堿
乙酰膽堿(acetylcholine,ACh)介導(dǎo)大鼠注意定勢(shì)組建、轉(zhuǎn)移及REV階段的行為表現(xiàn),故ACh水平的降低會(huì)導(dǎo)致大鼠REV階段和ED階段的表現(xiàn)受損[14-19]。然而通過東莨菪鹼阻斷膽堿能系統(tǒng),可導(dǎo)致大鼠在REV和ED階段的表現(xiàn)受損[20]。GSK189254通過阻斷組胺H3受體,提高阿爾茲海默病模型PFC的Ach水平,促進(jìn)大鼠在REV和ED階段的表現(xiàn)[21]。而通過急性腹腔注射尼古丁提高α7nAChR受體活性,可促進(jìn)ACh的利用率,明顯改善大鼠在ID階段和ED階段的行為表現(xiàn)[19]。并且在精神分裂癥的大鼠模型中,α7nAChR激動(dòng)劑SSR-180711可改善由腹側(cè)海馬微量注射河豚毒素導(dǎo)致大鼠在ED階段的行為的損傷[22]。此外,老年大鼠模型伴有顯著ED和REV兩階段受損,但是通過注射膽堿酯酶拮抗劑他克林(可水解的ACh),改善衰老引起的大鼠在REV階段的行為缺陷[24]。
4.3 去甲腎上腺素
去甲腎上腺素(norepinephrine,NA)主要與DA及五羥色胺(serotonin,5-HT)相互作用介導(dǎo)大鼠在REV階段的行為表現(xiàn)。短期注射高劑量的NA再攝取拮抗劑托墨西汀可提高大鼠PFC中NA和DA的輸出水平,并改善由抗DβH皂草素引起的注意定勢(shì)轉(zhuǎn)移受損[24,25]。通過α2-腎上腺素能受體拮抗劑阿替美唑[26]或NA再攝取拮抗劑地昔帕明[27]提高大鼠PFC的NA水平,可改善大鼠在REV和ED階段的表現(xiàn),這可能是由于PFC輸出的NA并作用于其他部位而出現(xiàn)的結(jié)果,或者通過NA的作用提高DA水平或是增強(qiáng)5-HT的釋放,提高大鼠在REV和ED階段的行為表現(xiàn)[28]。此外,NA可獨(dú)立作用于大鼠注意定勢(shì)的轉(zhuǎn)移。有研究顯示,抗DβH皂草素可降低PFC的NA水平[24,29],或者6-OH-DA抑制NA投射系統(tǒng)向PFC投射[30],都可損傷大鼠注意定勢(shì)的轉(zhuǎn)移而不會(huì)影響大鼠在ASST中其他階段的表現(xiàn)。
4.4 5-羥色胺
5-HT主要介導(dǎo)大鼠在REV及注意定勢(shì)轉(zhuǎn)移階段的受損。慢性不可預(yù)知性應(yīng)激會(huì)導(dǎo)致大鼠在REV和ED階段受損,5-HT再攝取抑制劑依他普侖可以改善此模型大鼠ED階段的受損表現(xiàn)[31];束縛性應(yīng)激則導(dǎo)致大鼠ED階段行為受損,給予5-HT(7)受體拮抗劑SB-269970可改善此階段[32]。西酞普蘭給藥后可提高5-HT水平并改善大鼠由慢性間斷性冷刺激導(dǎo)致REV階段受損和整體辨別學(xué)習(xí)能力的下降[33]。亞急性注射5-HT受體拮抗劑SB-399885-T可提高OFC中5-HT的水平,并可提高大鼠整體的辨別學(xué)習(xí)能力,尤其是REV和ED階段[34],但急性注射此藥(30 mg/kg)隔天后檢測(cè)發(fā)現(xiàn)并不提高大鼠在ASST測(cè)試中的表現(xiàn)[35]。
ASST是研究與額葉認(rèn)知有關(guān)的包括精神分裂癥、帕金森癥、阿爾茨海默病及注意缺陷多動(dòng)癥等多種神經(jīng)退行性疾病的檢測(cè)工具。由于嚙齒類動(dòng)物和人類有著本質(zhì)的物種差異,行為學(xué)檢測(cè)只能提供表觀的行為表現(xiàn),以后需要依據(jù)更多的電生理學(xué)檢測(cè)特定腦區(qū)神經(jīng)電活動(dòng)來評(píng)估認(rèn)知靈活性。并且日后要挖掘多種神經(jīng)遞質(zhì)之間協(xié)同/拮抗或是串聯(lián)/并聯(lián)作用及各神經(jīng)遞質(zhì)構(gòu)建的認(rèn)知網(wǎng)絡(luò)機(jī)制。認(rèn)知的研究已經(jīng)逐漸從行為學(xué)的探討到解剖學(xué)定位轉(zhuǎn)移,神經(jīng)化學(xué)遞質(zhì)的調(diào)節(jié),但是認(rèn)知神經(jīng)功能網(wǎng)絡(luò)極其復(fù)雜,是否具有其他非認(rèn)知區(qū)腦區(qū)部位的參與,神經(jīng)遞質(zhì)在認(rèn)知過程中扮演的角色如何,仍需專業(yè)學(xué)者更進(jìn)一步地探索與闡明。
[1] Vigotsky LS, Kasanin JJ. Thought in schizophrenia [J]. Arch Neurol Psychiatry, 1934, 31: 63-70.
[2] Robbins TW, James M, Owen AM. A study of performance on tests from the CANTAB battery sensitive to frontal lobe dysfunction in a large sample of normal volunteers: implications for theories of executive functioning and cognitive aging. Cambridge Neuropsychological Test Automated Battery [J]. J Int Neuropsychol Soc, 1998, 4(5): 474-490.
[3] Birrell JM, Brown VJ. Birrell JM, et al. Medial frontal cortex mediates perceptual attentional set shifting in the rat [J]. J Neurosci, 2000, 20: 4320-4324.
[4] Fox MT, Barense MD, Baxter MG. Perceptual attentional set-shifting is impaired in rats with neurotoxic lesions of posterior parietal cortex [J]. J Neurosci, 2003, 23: 676-681.
[5] Liston C, Miller MM, Goldwater DS, et al. Stress-induced alterations in prefrontal cortical dendritic morphology predict selective impairments in perceptual attentional set-shifting [J]. J Neurosci, 2006, 26(30): 7870-7874.
[6] Bissonette GB, Martins GJ, Franz TM, et al. Double dissociation of the effects of medial and orbital prefrontal cortical lesions on attentional and affective shifts in mice [J]. J Neurosci, 2008, 28, 44: 11124-11130.
[7] Brooks SP, Betteridge H, Trueman RC, et al. Selective extra-dimensional set shifting deficit in a knock-in mouse model of Huntington’s disease [J]. Brain Res Bull, 2006, 69(4): 452-457.
[8] Izquierdo A, Belcher AM, Scott, L et al. Reversal-specific learning impairments after a binge regimen of methamphetamine in rats: possible involvement of striatal dopamine [J]. Neuropsychopharmacology, 2010, 35(2): 505-514.
[9] Tait DS, Brown VJ. Lesions of the basal forebrain impair reversal learning but not shifting of attentional set in rats [J]. Behav Brain Res, 2008, 187(1): 100-108.
[10] Tait DS, Marston HM, Shahid M, et al. Asenapine restores cognitive flexibility in rats with medial prefrontal cortex lesions [J]. Psychopharmacology (Berl), 2009, 202(1-3): 295-306.
[11] Chase AE, Tait DS, Brown VJ. Lesions of the orbital prefrontal cortex impair the formation of attentional set in rats [J]. Eur J Neurosci, 2012, 36(3): 2368-2375.
[12] Bach ME, SimpsonEH, Kahn L, et al. Transient and selective overexpression of D2 receptors in the striatum causes persistent deficits in conditional associative learning [J]. Proc Natl Acad Sci U S A, 2008, 105(41): 16027-16032.
[13] Goto Y, Grace AA. Dopaminergic modulation of limbic and cortical drive of nucleus accumbens in goal-directed behavior [J]. Nat Neurosci, 2005, 8(6): 805-812.
[14] Mattay VS, Goldberg TE, Fera F, et al. Catechol O-methyltransferase val158-met genotype and individual variation in the brain response to amphetamine [J]. Proc Natl Acad Sci U S A, 2003, 100(10): 6186-6191.
[15] Vijayraghavan S, Wang M, Birnbaum SG, et al. Inverted-U dopamine D1 receptor actions on prefrontal neurons engaged in working memory [J]. Nat Neurosci, 2007, 10(3): 376-384.
[16] Berridge CW, Shumsky JS, Andrzejewski ME, et al. Differential sensitivity to psychostimulants across prefrontal cognitive tasks: differential involvement of noradrenergic α1- and α2-receptors [J]. Biol Psychiatry, 2012, 71(5): 467-473.
[17] Parsegian A, Glen WB, Lavin A, et al. Methamphetamine self-administration produces attentional set-shifting deficits and alters prefrontal cortical neurophysiology in rats [J]. Biol Psychiatry, 2011, 69(3): 253-259.
[18] Jentsch JD, Andrusiak E, Tran A, et al. Delta 9-tetrahydrocannabinol increases prefrontal cortical catecholaminergic utilization and impairs spatial working memory in the rat: blockade of dopaminergic effects with HA966 [J]. Neuropsychopharmacology, 1997, 16(6): 426-432.
[19] Allison C, Shoaib M. Nicotine improves performance in an attentional set shifting task in rats [J]. Neuropharmacology, 2013, 64: 314-320.
[20] Chen KC, Baxter MG, Rodefer JS. Central blockade of muscarinic cholinergic receptors disrupts affective and attentional set-shifting [J]. Eur J Neurosci, 2004, 20(4): 1081-1088.
[21] Medhurst AD, Atkins AR, Beresford IJ, et al. GSK189254, a novel H3 receptor antagonist that binds to histamine H3 receptors in Alzheimer's disease brain and improves cognitive performance in preclinical models [J]. J Pharmacol Exp Ther, 2007, 321(3): 1032-1045.
[22] Wallace TL, Callahan PM, Tehim A, et al. RG3487, a novel nicotinic α7receptor partial agonist, improves cognition and sensorimotor gating in rodents [J]. J Pharmacol Exp Ther, 2011, 336(1): 242-253.
[23] Tait DS, Chase EA, Brown VJ. Tacrine improves reversal learning in older rats [J]. Neuropharmacology, 2013, 73: 284-289.
[24] Newman LA, Darling J, McGaughy J. Atomoxetine reverses attentional deficits produced by noradrenergic deafferentation of medial prefrontal cortex [J]. Psychopharmacology (Berl), 2008, 200(1): 39-50.
[25] Bymaster FP, Katner JS, Nelson DL, et al. Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: a potential mechanism for efficacy in attention deficit/hyperactivity disorder [J]. Neuropsychopharmacology, 2002, 27(5): 699-711.
[26] Lapiz MD, Morilak DA. Noradrenergic modulation of cognitive function in rat medial prefrontal cortex as measured by attentional set shifting capability [J]. Neuroscience, 2006 137(3): 1039-1049.
[27] Lapiz MD, Bondi CO, Morilak DA. Chronic treatment with desipramine improves cognitive performance of rats in an attentional set-shifting test [J]. Neuropsychopharmacology, 2007, 32(5): 1000-1010.
[28] Gobert A, Rivet JM, Cistarelli L, et al. α2-α adrenergic receptor blockade markedly potentiates duloxetine- and fluoxetine-induced increases in noradrenaline, dopamine, and serotonin levels in the frontal cortex of freely moving rats [J]. J Neurochem, 1997, 69(6): 2616-2619.
[29] McGaughy J, Ross RS, Eichenbaum H. Noradrenergic, but not cholinergic, deafferentation of prefrontal cortex impairs attentional set-shifting [J]. Neuroscience, 2008, 153(1): 63-71.
[30] Tait DS, Brown VJ, Farovik A, et al. Lesions of the dorsal noradrenergic bundle impair attentional set-shifting in the rat [J]. Eur J Neurosci, 2007, 25(12): 3719-3724.
[31] Bondi CO, Rodriguez G, Gould GG, et al. Chronic unpredictable stress induces a cognitive deficit and anxiety-like behavior in rats that is prevented by chronic antidepressant drug treatment [J]. Neuropsychopharmacology, 2008, 33(2): 320-331.
[32] Nikiforuk A. Selective blockade of 5-HT7 receptors facilitates attentional set-shifting in stressed and control rats [J]. Behav Brain Res, 2012, 226(1): 118-123.
[33] Lapiz-Bluhm MD, Soto-Pina AE, Hensler JG, et al. Chronic intermittent cold stress and serotonin depletion induce deficits of reversal learning in an attentional set-shifting test in rats [J]. Psychopharmacology (Berl), 2009, 202(1-3): 329-341.
[34] Hatcher PD, Brown VJ, Tait DS, et al. 5-HT6 receptor antagonists improve performance in an attentional set shifting task in rats [J]. Psychopharmacology (Berl), 2005, 181(2): 253-259.
[35] Burnham KE, Baxter MG, Bainton JR, et al. Activation of 5-HT(6) receptors facilitates attentional set shifting [J]. Psychopharmacology (Berl), 2010, 208(1): 13-21.
Research progress of the attentional set-shifting task in rodents
HOU Lan-wei1, SUN Hong-wei1, WANG Gang2, LIAN Bo3, JIANG Neng-zhi1, SUN Lin1, 2*
(1. Department of Psychology; 2. Laboratory for Cognitive Neuroscience; 3. School of Bioscience and Technology, Weifang Medical University, Shandong,Weifang 261053,China)
Attentional set-shifting tasks are used as a measure of human fronto-executive function. the cognitive processes involved in forming an attentional set, maintaining an attentional set and shifting an attentional set are vulnerable to dysfunction arising from a number of human neurological disorders (such as attentional deficit/hyperactivity disorder, depression, schizophrenia) and neurodegenerative diseases (such as Parkinson’s, Huntington’s, Alzheimer’s diseases). Recently, researches on rodents mainly continue to illustrate normal rats which are caused by different operating different performance in the attentional set-shifting tasks. And also there are few studies committed to observe the adaptability of the rats in attentional set-shifting tasks as well as different performance between species of rodents in attentional set shifting tasks. In addition, these results have elucidated the roles of multiple neurotransmitters in the manifestation of cognitive processes. This review focuses on the methodology of the attentional set-shifting tasks and the role of the neurotransmitter in cognitive processes.
Attentional set shifting task(ASST); Rodents; Dopamine; Acetylcholine; 5-serotonin; Norepinephrine
SUN Lin. E-mail: linsun2013@wfmc.edu.cn
山東省優(yōu)秀中青年科學(xué)家科研獎(jiǎng)勵(lì)基金計(jì)劃項(xiàng)目(編號(hào):BS2014YY043);山東省自然科學(xué)基金項(xiàng)目(編號(hào):ZR2014CL012);濰坊醫(yī)學(xué)院科技創(chuàng)新研究基金項(xiàng)目(編號(hào):K1301011);濰坊醫(yī)學(xué)院教育教學(xué)改革與研究基金項(xiàng)目(編號(hào):2015Y024)。
侯蘭偉(1996-),男,專業(yè):心理應(yīng)激及物質(zhì)成癮實(shí)驗(yàn)動(dòng)物病理模型及行為學(xué)研究。E-mail: weilanhou2014wfmc@163.com
孫琳,女,講師,博士研究生,研究方向:心理應(yīng)激及物質(zhì)成癮的腦機(jī)制及藥物研究。E-mail: linsun2013@wfmc.edu.cn
Q95-33
A
1005-4847(2017)03-0340-05
10.3969/j.issn.1005-4847.2017.03.020
2016-08-29