• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    熱源井抽灌同井連續(xù)取/放熱特性試驗(yàn)

    2017-07-12 18:45:37偉,倪龍,姚
    關(guān)鍵詞:砂箱熱源含水層

    宋 偉,倪 龍,姚 楊

    (1. 北方工業(yè)大學(xué)土木工程學(xué)院,北京 100144;2. 哈爾濱工業(yè)大學(xué)市政環(huán)境工程學(xué)院,哈爾濱 150090)

    熱源井抽灌同井連續(xù)取/放熱特性試驗(yàn)

    宋 偉1,2,倪 龍2※,姚 楊2

    (1. 北方工業(yè)大學(xué)土木工程學(xué)院,北京 100144;2. 哈爾濱工業(yè)大學(xué)市政環(huán)境工程學(xué)院,哈爾濱 150090)

    針對(duì)抽灌同井連續(xù)運(yùn)行特性的研究不足,利用單井循環(huán)地下?lián)Q熱系統(tǒng)砂箱試驗(yàn)臺(tái),以沈陽(yáng)和上海2地采暖期和空調(diào)期的時(shí)間尺度為依據(jù),分別開展了連續(xù)取熱和連續(xù)放熱2種運(yùn)行模式下抽灌同井運(yùn)行特性的試驗(yàn)研究。結(jié)果表明,抽灌同井在該試驗(yàn)條件下對(duì)取熱工況更加敏感,取熱比放熱更為困難。在連續(xù)取熱工況下,含水層在受到外界初次干擾的影響更為明顯,第2個(gè)運(yùn)行周期的累計(jì)取熱量降幅為6個(gè)運(yùn)行周期累計(jì)取熱量降幅的57.1%。在熱/冷負(fù)荷占優(yōu)的地區(qū),應(yīng)根據(jù)建筑負(fù)荷采取輔助手段及時(shí)對(duì)含水層進(jìn)行熱量/冷量補(bǔ)給,保證熱泵機(jī)組高效運(yùn)行。

    井;地下水;水源熱泵系統(tǒng);抽灌同井;砂箱試驗(yàn);含水層;連續(xù)運(yùn)行

    0 引 言

    抽灌同井作為單井循環(huán)地下?lián)Q熱系統(tǒng)的一種熱源井形式,最早于1992年應(yīng)用在丹麥技術(shù)大學(xué)的一次足尺寸的試驗(yàn)研究中[1]。由于課題負(fù)責(zé)人的變故,該項(xiàng)研究未能繼續(xù)深入,很長(zhǎng)時(shí)間沒(méi)有相關(guān)的研究報(bào)道。張遠(yuǎn)東對(duì)抽灌同井進(jìn)行了相關(guān)模擬研究,其中包括地下水的參數(shù)、井的結(jié)構(gòu)參數(shù)、抽水量等因素對(duì)含水層的溫度影響,但該模型并未得到試驗(yàn)驗(yàn)證[2]。倪龍等對(duì)抽灌同井進(jìn)行了較深入的研究,包括季節(jié)儲(chǔ)能特性的分析[3],含水層參數(shù)對(duì)抽灌同井的影響[4],地下水滲流理論研究[5],熱負(fù)荷對(duì)系統(tǒng)的影響[6],多層含水層中系統(tǒng)的特性[7],井參數(shù)對(duì)系統(tǒng)的影響[8],以及相關(guān)的模擬研究[9]。王玉林等[10-11]對(duì)抽灌同井地下水三維非穩(wěn)定流動(dòng)的三維數(shù)學(xué)模型通過(guò)Laplace變換、分離變量法以及傅里葉延拓等方法得出了水頭變化的解析表達(dá)式。

    相關(guān)的理論與試驗(yàn)[12-14]對(duì)單井循環(huán)地下?lián)Q熱系統(tǒng)的特性進(jìn)行了探索性的研究,數(shù)學(xué)模型優(yōu)化[15-19]與實(shí)際運(yùn)行特性[20-24]所研究的熱源井類型主要針對(duì)抽灌同井的原型—循環(huán)單井。通過(guò)對(duì)熱源井的熱力特性分析[25-28],抽灌同井由于中間隔斷區(qū)的存在,回水幾乎完全進(jìn)入含水層,使得熱源井的熱貫通量較低,在單井循環(huán)地下?lián)Q熱系統(tǒng)中具有明顯優(yōu)勢(shì)。鑒于其連續(xù)運(yùn)行試驗(yàn)研究的缺乏,本文選取抽灌同井作為研究對(duì)象,根據(jù)沈陽(yáng)和上海2地采暖期和空調(diào)期的時(shí)間尺度,開展了連續(xù)取熱和連續(xù)放熱2種不同運(yùn)行模式下抽灌同井運(yùn)行特性的試驗(yàn)研究。

    1 室內(nèi)砂箱試驗(yàn)

    1.1 砂箱試驗(yàn)臺(tái)

    在地下水運(yùn)動(dòng)特性的研究中,通常將含水層遠(yuǎn)端邊界考慮成等壓、等溫邊界。所以在試驗(yàn)過(guò)程中,保持砂箱的等壓、等溫的邊界條件是實(shí)現(xiàn)可信模擬的關(guān)鍵。文中試驗(yàn)臺(tái)通過(guò)初始水箱、高位水箱和橡塑保溫板等來(lái)維持砂箱的等壓、等溫邊界條件,模擬含水層邊界;采用電加熱器、負(fù)荷水箱和分體空調(diào)機(jī)來(lái)制造抽回水溫差,模擬熱源井承擔(dān)的建筑冷/熱負(fù)荷。單井循環(huán)地下?lián)Q熱系統(tǒng)的熱源井與抽灌同井結(jié)構(gòu)圖如圖1所示,砂箱試驗(yàn)臺(tái)系統(tǒng)圖如圖2所示,砂箱試驗(yàn)臺(tái)各部件參數(shù)如表1所示。

    其中,砂箱箱體采用聚丙烯PPR板,砂箱外壁采用橡塑保溫,砂箱內(nèi)壁四周加設(shè)不銹鋼絲網(wǎng),砂箱內(nèi)裝填洗滌干凈的粗砂,經(jīng)篩分稱重,該規(guī)格粗砂中各類型砂子質(zhì)量百分?jǐn)?shù)分別為0.63%(Ф≤1 mm)、31.72%(1 mm<Ф<2 mm)、67.65%(Ф≥2 mm),Ф為砂子的粒徑。熱源井也采用聚丙烯PPR管開孔,在熱源井外壁纏繞一層不銹鋼濾網(wǎng),100目,用于截留直徑在0.15 mm以上的砂粒。采用黃銅管模擬抽灌同井,其高度與含水層厚度相當(dāng),抽/回區(qū)間距為300 mm,抽水區(qū)和回水區(qū)開孔長(zhǎng)度均為150 mm[29]。井的開孔區(qū)上下兩端各焊有直徑為70 mm的銅環(huán),并開槽加裝密封圈,模擬抽灌同井的中間隔斷區(qū)。

    圖1 熱源井與抽灌同井結(jié)構(gòu)圖Fig.1 Structure of thermal source well and pumping and recharging well

    圖2 砂箱試驗(yàn)臺(tái)系統(tǒng)圖示意圖Fig.2 Schematic diagram of sand tank experimental table system

    表1 砂箱試驗(yàn)臺(tái)各部件參數(shù)Table 1 Each component parameters of sand tank experiment

    1.2 試驗(yàn)方案

    本文砂箱試驗(yàn)臺(tái)幾何比例為1:100,根據(jù)相似理論,按照雷諾數(shù)相等推算,時(shí)間比例應(yīng)為1:10 000,模擬全年8 760 h的試驗(yàn)持續(xù)時(shí)間僅為53 min,因此冬季采暖期、夏季空調(diào)期和2個(gè)恢復(fù)期,每個(gè)運(yùn)行工況的持續(xù)時(shí)間不到15 min。為了能夠更加清晰的觀察不同運(yùn)行模式對(duì)抽灌同井的影響,增加累計(jì)取熱量和放熱量,經(jīng)過(guò)前期試驗(yàn)探索,適當(dāng)延長(zhǎng)系統(tǒng)運(yùn)行時(shí)間,也能保證砂箱試驗(yàn)臺(tái)遠(yuǎn)端邊界不受影響。為此,將試驗(yàn)持續(xù)時(shí)間增加1倍,近似取120 min。即將各工況時(shí)間比例放大到1:4 320,用120 min模擬實(shí)際工程中抽灌同井運(yùn)行1 a。

    對(duì)于給定的建筑負(fù)荷,含水層溫度的高低雖與初始地溫有很大的關(guān)系,但其溫度變化幅度與初始地溫關(guān)系不大,因此試驗(yàn)過(guò)程中初始地溫保持不變。另外,本試驗(yàn)臺(tái)提供的建筑負(fù)荷發(fā)生情況與實(shí)際抽灌同井系統(tǒng)有較大差別。在實(shí)際工程中,熱源井的負(fù)荷是為了滿足建筑的需要,與地區(qū)、天氣、建筑功能等有關(guān),但基本與含水層初始地溫?zé)o關(guān),且不具備重復(fù)性。然而本試驗(yàn)臺(tái)中,負(fù)荷是通過(guò)砂箱中抽出的“地下水”與負(fù)荷水箱中的冷/熱水換熱產(chǎn)生的,與初始地溫關(guān)系較大。當(dāng)負(fù)荷水箱中的冷/熱水溫度保持基本不變時(shí),維持初始地溫不變,負(fù)荷的變化就不會(huì)很大,能夠創(chuàng)造近似的相同負(fù)荷,便于突出運(yùn)行模式的影響。

    本次試驗(yàn)?zāi)M抽灌同井的全年工況,負(fù)荷水箱溫度針對(duì)取熱工況和放熱工況分別設(shè)定為4和30 ℃,砂箱初始地溫設(shè)定為20 ℃,循環(huán)水泵流量設(shè)定為0.54 m3/h,砂箱滿水壓力為17.4 kPa。試驗(yàn)設(shè)計(jì)時(shí)以沈陽(yáng)和上海兩地采暖期和空調(diào)期時(shí)間分配為對(duì)象,分別進(jìn)行連續(xù)取熱/放熱工況的試驗(yàn)測(cè)試,每個(gè)試驗(yàn)工況均分為6個(gè)周期,每個(gè)周期均為120 min,各工況的啟停時(shí)間按照各自地區(qū)采暖期、空調(diào)期和恢復(fù)期的相同時(shí)間比例確定,各工況的時(shí)間分配如表2所示,其中累計(jì)換熱量由下式計(jì)算

    式中Tg為抽水溫度,℃;Tr為回水溫度,℃;t為時(shí)間,s;Q為熱源井的累計(jì)換熱量,kJ;Cw為水的容積比熱容,kJ/m3·℃;Qw,p為抽水流量,m3/s。

    1.3 試驗(yàn)步驟

    試驗(yàn)測(cè)試前,首先打開初始供水閥門A與初始回水閥門B,緩慢地自下而上充水,并經(jīng)閥門B溢流進(jìn)入初始水箱,該飽水過(guò)程一般約需24 h[30],充分排除砂箱中的氣泡。其次,調(diào)試試驗(yàn)工況,關(guān)閉砂箱底部進(jìn)水閥門A,打開閥門D,改由高位水箱供水,持續(xù)15 min,使砂箱中的“地下水”處于穩(wěn)定狀態(tài),溢水管始終保持有水流溢出,控制邊界水頭恒定。最后,打開抽灌同井的進(jìn)出口閥門E和閥門F,開啟循環(huán)水泵,開始測(cè)試。

    表2 沈陽(yáng)和上海全年工況實(shí)際/模擬時(shí)間分配Table 2 Actual/simulation time distribution of annual operating condition in Shenyang and Shanghai

    2 試驗(yàn)結(jié)果與分析

    2.1 連續(xù)取熱工況

    圖3給出了抽灌同井在連續(xù)取熱工況下6個(gè)周期抽水溫度的變化情況。該工況按照沈陽(yáng)地區(qū)采暖期和空調(diào)期的時(shí)間分配進(jìn)行試驗(yàn),每個(gè)周期冬季取熱時(shí)間為48.3 min,恢復(fù)期為71.7 min。從圖3中可以看出,6個(gè)周期的抽水溫度整體呈現(xiàn)下降趨勢(shì)。說(shuō)明在模擬抽灌同井運(yùn)行6 a的過(guò)程中,由于地下含水層自然恢復(fù)時(shí)所補(bǔ)充的熱量不足,導(dǎo)致抽灌同井的抽水溫度逐年降低。

    圖3 連續(xù)取熱工況下的抽水溫度Fig.3 Temperature of outlet water in continuous heating condition

    雖然各周期的抽水溫度呈逐年下降趨勢(shì),但是在每個(gè)周期內(nèi),除第1個(gè)周期的抽水溫度一直下降外,其余運(yùn)行周期的抽水溫度均先下降后略有上升。說(shuō)明在第1個(gè)周期的試驗(yàn)中,熱源井承擔(dān)的負(fù)荷較大,致使其抽水溫度逐漸下降;而在第2至第6個(gè)運(yùn)行周期中,在系統(tǒng)運(yùn)行平穩(wěn)后,其抽水溫度幾乎保持不變,說(shuō)明在本周期內(nèi)地下含水層所提供的熱量與當(dāng)時(shí)所模擬的建筑負(fù)荷大小相當(dāng),并未導(dǎo)致抽水溫度一直下降。從而可以推斷,在此試驗(yàn)條件不變的情況下繼續(xù)試驗(yàn),由于并沒(méi)有其他熱量對(duì)含水層進(jìn)行補(bǔ)充,系統(tǒng)的抽水溫度還會(huì)繼續(xù)下降。

    圖4給出了抽灌同井在連續(xù)取熱工況下6個(gè)周期的平均抽回水溫度的變化情況。從圖4中可以清晰的看出在6個(gè)測(cè)試周期內(nèi)抽灌同井的平均抽回水溫度逐年下降。在模擬系統(tǒng)6 a的運(yùn)行過(guò)程中,系統(tǒng)的平均抽水溫度從第1個(gè)周期的16.7 ℃逐漸降低到第6個(gè)周期的13.1 ℃,熱源井的平均抽水溫度降低了3.6 ℃,降低幅度達(dá)21.6%;系統(tǒng)的平均回水溫度從第1個(gè)周期的11.7 ℃逐漸降低到第6個(gè)周期的9.3 ℃,熱源井的平均回水溫度降低了2.4 ℃,降低幅度為20.5%。這說(shuō)明抽灌同井在模擬熱負(fù)荷占優(yōu)地區(qū)的運(yùn)行過(guò)程中,在自然恢復(fù)期內(nèi),地下含水層并不能恢復(fù)到最初狀態(tài)。平均抽水溫度的降低會(huì)影響熱泵機(jī)組的運(yùn)行效率,所以在該地區(qū)需要特別注意這種抽水溫度逐年降低的情況,并采取輔助手段及時(shí)對(duì)地下含水層進(jìn)行熱量補(bǔ)給,否則將導(dǎo)致整個(gè)熱泵系統(tǒng)無(wú)法正常運(yùn)行。

    圖4 連續(xù)取熱工況下的平均抽/回水溫度Fig.4 Mean temperature of outlet/inlet water in continuous heating condition

    圖5 給出了抽灌同井在連續(xù)取熱工況下6個(gè)周期的累計(jì)取熱量的變化情況。從圖5中可以看出,在6個(gè)測(cè)試周期內(nèi)抽灌同井的累計(jì)取熱量與平均抽水溫度一樣呈逐年下降趨勢(shì)。在模擬系統(tǒng)6 a的運(yùn)行過(guò)程中,熱源井的累計(jì)取熱量從第1個(gè)周期的8 890.0 kJ逐漸降低到第6個(gè)周期的6 841.1 kJ,熱源井的累計(jì)取熱量降低了2 048.9 kJ,降低幅度高達(dá)23.0%。其中,第2個(gè)運(yùn)行周期的累計(jì)取熱量為7 720.6 kJ,較第1個(gè)運(yùn)行周期的累計(jì)取熱量降低了1 169.4 kJ,其降幅為6個(gè)運(yùn)行周期累計(jì)取熱量降低幅度的57.1%,這也是第1個(gè)運(yùn)行周期抽水溫度一直下降的原因,說(shuō)明地下含水層在受到外界初次干擾的影響最為明顯。

    圖5 連續(xù)取熱工況下的累計(jì)取熱量Fig.5 Accumulative heat absorption quantities in continuous heating condition

    2.2 連續(xù)放熱工況

    圖6給出了抽灌同井在連續(xù)放熱工況下6個(gè)周期抽水溫度的變化情況。該工況按照上海地區(qū)采暖期和空調(diào)期的時(shí)間分配進(jìn)行試驗(yàn),夏季放熱時(shí)間為50 min,恢復(fù)期為70 min。從圖6中可以看出,6個(gè)周期的抽水溫度逐漸升高,說(shuō)明在模擬抽灌同井運(yùn)行6 a的過(guò)程中,由于地下含水層自然恢復(fù)時(shí)所補(bǔ)充的冷量不足,導(dǎo)致抽灌同井的抽水溫度逐年升高。從圖6中還可以看出,各個(gè)周期的抽水溫度不但呈逐年上升趨勢(shì),在每個(gè)周期內(nèi),熱源井的抽水溫度也呈逐漸上升趨勢(shì)。說(shuō)明在1個(gè)周期內(nèi),地下含水層所提供的冷量并不能滿足當(dāng)時(shí)所模擬的建筑負(fù)荷的要求,從而導(dǎo)致抽水溫度急劇上升。與連續(xù)取熱工況類似,如果試驗(yàn)條件不變?cè)囼?yàn)繼續(xù)進(jìn)行,由于并沒(méi)有其他冷量對(duì)含水層進(jìn)行補(bǔ)充,系統(tǒng)的抽水溫度還會(huì)繼續(xù)升高。

    圖6 連續(xù)放熱工況下的抽水溫度Fig.6 Temperature of outlet water in continuous cooling condition

    圖7 給出了抽灌同井在連續(xù)放熱工況下6個(gè)周期的平均抽回水溫度的變化情況。從圖7中可以清晰地看出在6個(gè)測(cè)試周期內(nèi),抽灌同井的平均抽回水溫度逐年升高。在模擬系統(tǒng)6 a的運(yùn)行過(guò)程中,系統(tǒng)的平均抽水溫度從第1個(gè)周期的21.1 ℃逐漸升高到第6個(gè)周期的25.6 ℃,熱源井的平均抽水溫度升高了4.5 ℃,升高幅度達(dá)21.3%;系統(tǒng)的平均回水溫度從第1個(gè)周期的25.9 ℃逐漸升高到第6個(gè)周期的30.6 ℃,熱源井的平均回水溫度升高了4.7 ℃,升高幅度為18.1%。同連續(xù)取熱工況,抽灌同井在僅放熱運(yùn)行過(guò)程中,靠地下含水層自然恢復(fù)也不能使其恢復(fù)至最初狀態(tài)。平均抽水溫度的升高同樣會(huì)影響熱泵機(jī)組的運(yùn)行效率,所以在僅放熱運(yùn)行時(shí)需要注意這種抽水溫度逐年升高的情況,并適當(dāng)采取輔助手段及時(shí)對(duì)地下含水層進(jìn)行冷量補(bǔ)給。

    圖7 連續(xù)放熱工況下的平均抽/回水溫度Fig.7 Mean temperature of outlet/inlet water in continuous cooling condition

    圖8 給出了抽灌同井在連續(xù)放熱工況下6個(gè)周期的累計(jì)放熱量的變化情況。從圖8中可以看出在6個(gè)測(cè)試周期內(nèi)抽灌同井的累計(jì)放熱量呈逐年下降趨勢(shì)。在模擬系統(tǒng)6 a的運(yùn)行過(guò)程中,系統(tǒng)的累計(jì)放熱量從第1個(gè)周期的9 923.2 kJ逐漸降低到第6個(gè)周期的9 324.9 kJ,熱源井的累計(jì)放熱量降低了598.3 kJ,降低幅度僅為6.0%,每個(gè)周期平均降幅1%。與該系統(tǒng)在沈陽(yáng)地區(qū)運(yùn)行模式中的6個(gè)周期累計(jì)取熱量降幅23.0%相比,地下含水層僅通過(guò)自然恢復(fù)期即能使自身得到較好的恢復(fù)。可見,抽灌同井對(duì)取熱工況更加敏感,取熱比放熱更為困難。因此,在連續(xù)取熱工況條件下,應(yīng)對(duì)含水層熱量的補(bǔ)充給予足夠的重視。

    圖8 連續(xù)放熱工況下的累計(jì)放熱量Fig.8 Accumulative heat rejection quantities in continuous cooling condition

    3 結(jié) 論

    1)抽灌同井在模擬熱/冷負(fù)荷占優(yōu)的地區(qū)運(yùn)行過(guò)程中,地下含水層在自然恢復(fù)期內(nèi)均不能恢復(fù)到最初狀態(tài)。連續(xù)運(yùn)行6個(gè)周期累計(jì)取熱量降幅23.0%,相比連續(xù)放熱工況,熱源井的累計(jì)放熱量降低幅度僅為6.0%,每個(gè)周期平均降幅1%。在該試驗(yàn)條件下,該熱源井對(duì)取熱工況更加敏感,取熱比放熱更為困難。

    2)在連續(xù)取熱/放熱工況中,系統(tǒng)運(yùn)行6個(gè)周期的平均抽水溫度降低/升高的幅度分別為21.6%和21.3%。在連續(xù)取熱工況下,地下含水層在受到外界初次干擾的影響更為明顯。系統(tǒng)在第2個(gè)運(yùn)行周期的累計(jì)取熱量降幅為六個(gè)運(yùn)行周期累計(jì)取熱量降低幅度的57.1%。

    3)在該試驗(yàn)條件下,地下含水層所提供的熱量或冷量均不能滿足模擬建筑負(fù)荷的要求,并導(dǎo)致抽水溫度下降或急劇上升。在實(shí)際工程中,應(yīng)根據(jù)建筑負(fù)荷采取輔助手段及時(shí)對(duì)地下含水層進(jìn)行能量補(bǔ)給,保證熱泵機(jī)組高效運(yùn)行。

    [1] Sorensen S N, Reffstrup J. Prediction of long-term operational conditions for single-well groundwater heat pump plants[C]//The 27th Intersociety Energy Conversion Engineering Conference, San Diego, CA, USA, 1992.

    [2] 張遠(yuǎn)東. 單(多)井抽灌對(duì)淺部地溫場(chǎng)的影響研究[D]. 北京:中國(guó)科學(xué)院地質(zhì)與地球物理研究所,2004. Zhang Yuandong. Thermal Impact of Energy Abstraction on Geo-Temperature Field of Shallow Groundwater Aquifers by Single Well, Double and Muti-Well Systems[D]. Beijing: Institute of Geology and Geophysics, Chinese Academy of Sciences, 2004. (in Chinese with English abstract)

    [3] 倪龍,姜益強(qiáng),姚楊,等. 抽灌同井季節(jié)性儲(chǔ)能分析[J]. 哈爾濱工業(yè)大學(xué)學(xué)報(bào),2010,42(8):1287-1291. Ni Long, Jiang Yiqiang, Yao Yang, et al. Analyses of seasonal thermal energy storage for a pumping & recharging well[J]. Journal of Harbin Institue of Technology, 2010, 42(8): 1287-1291. (in Chinese with English abstract)

    [4] 倪龍,馬最良. 含水層參數(shù)對(duì)同井回灌地下水源熱泵的影響[J]. 天津大學(xué)學(xué)報(bào),2006,39(2):229-243. Ni Long, Ma Zuiliang. Effect of aquifer parameters on groundwater heat pump with pumping and recharging in the same well[J]. Journal of Tianjin University, 2006, 39(2): 229-243. (in Chinese with English abstract)

    [5] 倪龍,馬最良. 同井回灌地下水源熱泵地下水滲流理論研究[J]. 太陽(yáng)能學(xué)報(bào),2006,27(12):1219-1224. Ni Long, Ma Zuiliang. Study on the seepage theory for groundwater heat pump with pumping & recharge in the same well[J]. Acta Energiae Solaris Sinica, 2006, 27(12): 1219-1224. (in Chinese with English abstract)

    [6] 倪龍,馬最良. 熱負(fù)荷對(duì)同井回灌地下水源熱泵的影響[J].暖通空調(diào),2005,35(3):12-14. Ni Long, Ma Zuiliang. Effect of heating load on the groundwater source heat pump system with pumping and recharging in same well[J]. HV&AC, 2005, 35(3): 12-14. (in Chinese with English abstract)

    [7] 倪龍,馬最良. 多層含水層中同井回灌地下水源熱泵特性分析[J]. 建筑熱能通風(fēng)空調(diào),2005,24(3):10-13. Ni Long, Ma Zuiliang. The analyses of characteristic on groundwater heat pump with pumping & recharging in the same well in multilayer aquifer[J]. Building Energy & Environment, 2005, 24(3): 10-13. (in Chinese with English abstract)

    [8] 倪龍,馬最良. 井參數(shù)對(duì)同井回灌地下水源熱泵的影響[J].流體機(jī)械,2006,34(3):65-69. Ni Long, Ma Zuiliang. Effection of well parameters on groundwater heat pump with pumping & recharging in the same well[J]. Fluid Machinery, 2006, 34(3): 65-69. (in Chinese with English abstract)

    [9] Ni Long, Li Haorong, Jiang Yiqiang, et al. A model of groundwater seepage and heat transfer for single-well ground source heat pump systems[J]. Applied Thermal Engineering, 2011, 31(14/15): 2622-2630.

    [10] 王玉林. 承壓地下水開采井流模型及其滲流理論研究[D].杭州:浙江大學(xué),2011. Wang Yulin. Studies on Models and Theories for Well Flow Due to Confined Water Exploitation[D]. Hangzhou: Zhejiang University, 2011. (in Chinese with English abstract)

    [11] 王玉林,謝康和,李傳勛,等. 抽-灌同軸非完整井承壓層非穩(wěn)定流模型及解析解[J]. 水利學(xué)報(bào),2012,43(1):60-67. Wang Yulin, Xie Kanghe, Li Chuanxun, et al. A mathematical model and its analytical solution for confined aquifer subjected to pumping and recharge implemented by a single partially penetrating well[J]. Journal of Hydraulic Engineering, 2012, 43(1): 60-67. (in Chinese with English abstract)

    [12] 倪龍,姜益強(qiáng),姚楊,等. 循環(huán)單井與含水層的原水交換[J].太陽(yáng)能學(xué)報(bào),2010,31(6):743-748. Ni Long, Jiang Yiqiang, Yao Yang, et al. Original groundwater exchange of a standing column well with aquifer[J]. Acta Energiae Solaris Sinica, 2010, 31(6): 743-748. (in Chinese with English abstract)

    [13] Lee K S. Modeling on The cyclic operation of standing column wells under regional groundwater flow[J]. Journal of Hydrodynamics, 2011, 23(3): 295-301.

    [14] Vasile M. Experimental investigation of the reliability of residential standing column heat pump systems without bleed in cold climates[J]. Applied Thermal Engineering, 2013, 52(1): 230-243.

    [15] Bose J E, Ledbetter C W, Partin J R. Experimental results of a low-cost solar-assisted heat pump system using earth coil and Geo-Thermal Well Storage[C]//The 4th Annual Heat Pump Technology Conference, Stillwater, OKC, USA, 1979.

    [16] Braud H, Klimkowski H, Oliver J. Earth source heat exchanger for heat pumps[J]. ASAE Transactions, 1983, 26: 1818-1822.

    [17] Mei V C, Fisher S K. Vertical concentric tube ground-coupled heat exchangers[J]. ASHRAE Transactions, 1983, 89(2B): 391-406.

    [18] Mikler V. A Theoretical and Experimental Study of The Energy Well Performance[D]. Master thesis, Pennsylvania State University, 1993.

    [19] Yuill G K, Mikler V. Analysis of the effect of induced groundwater flow on heat transfer from a vertical open-hole concentric-tube thermal well[J]. Ashrae Transactions, 1995, 101(1): 173-185.

    [20] Orio C D. Geothermal heat pumps and standing column wells[J]. Geothermal Resources Council Transactions, 1994, 18: 375-379.

    [21] Orio C D. Design, use & example of standing column wells[C]//IGSPHA Technical Meeting, Stillwater, OKC, USA, 1995.

    [22] Orio C D.Geothermal heat pump applications industrial/commercial[J]. Energy Engineering, 1999, 96(3): 58-66.

    [23] Orio C D, Johnson C N, Rees S J, et al. A Survey of standing column well installations in North America[J]. Ashrae Transactions, 2005, 111(2): 109-121.

    [24] Orio C D, Johnson C N, Poor K D. Geothermal standing column wells: Ten years in a new England school[J]. Ashrae Transactions, 2006, 112(2): 57-64.

    [25] 宋偉,倪龍,姚楊. 單井循環(huán)系統(tǒng)在不同初始地溫下的特性[J]. 哈爾濱工程大學(xué)學(xué)報(bào),2014,35(3):342-346. Song Wei, Ni Long, Yao Yang. Characteristics of single well systems in different initial aquifer temperatures[J]. Journal of Harbin Engineering University. 2014, 35(3): 342-346. (in Chinese with English abstract)

    [26] 宋偉,倪龍,姚楊. 不同抽回間距的單井循環(huán)地下水源熱泵系統(tǒng)試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(2):205-211. Song Wei, Ni Long, Yao Yang. Experiment on single well groundwater heat pump systems in different distances between pumping and injection screens[J]. Transactions ofthe Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(2): 205-211. (in Chinese with English abstract)

    [27] 宋偉,倪龍,姚楊. 單井循環(huán)地下水源熱泵換熱特性CFD模擬與驗(yàn)證[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(24):201-206. Song Wei, Ni Long, Yao Yang. CFD Simulation and experiment of heat exchanger characteristic for single well cycling underground heat pump[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(24): 201-206. (in Chinese with English abstract)

    [28] 宋偉,倪龍,姚楊. 單井循環(huán)地下水源熱泵熱源井排放實(shí)驗(yàn)[J]. 太陽(yáng)能學(xué)報(bào),2016,37(11):2843-2848. Song Wei, Ni Long, Yao Yang. Thermal well bleed experiment for single well cycling groundwater heat pump[J]. Acta Energiae Solaris Sinica, 2016, 37(11): 2843-2848. (in Chinese with English abstract)

    [29] 倪龍,宋偉,唐明宇,等. 單井循環(huán)地下?lián)Q熱系統(tǒng)初步試驗(yàn)研究[J]. 建筑科學(xué),2012,28(增刊2):195-197. Ni Long, Song Wei, Tang Mingyu, et al. Preliminary experimental study on single well cycling ground heat exchanger system[J]. Building Science. 2012, 28(Supp.2): 195-197. (in Chinese with English abstract)

    [30] 陳崇希,萬(wàn)軍偉,詹紅兵,等. “滲流-管流耦合模型”的物理模擬及其數(shù)值模擬[J]. 水文地質(zhì)工程地質(zhì),2004(1):1-8. Chen Chongxi, Wan Junwei, Zhan Hongbin, et al. Physical and numerical simulation of seepage-pipe coupling model[J]. Hydrogeology & Engineering Geology. 2004(1): 1-8. (in Chinese with English abstract)

    Experiment on characteristics of continuous heat absorption/release for pumping and recharging in same thermal well

    Song Wei1,2, Ni Long2※, Yao Yang2
    (1. School of Civil Engineering, North China University of Technology, Beijing 100144, China; 2. School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China)

    Groundwater heat pump system is an ideal approach to heat and cool the building due to its attractive advantages. When using groundwater as a primary energy source in combination with heat pump, the groundwater is pumped from the pumping area, heated/cooled in the heat exchanger of the heat pump, and then reinjected into the irrigation area. Single well groundwater heat pump (SWGWHP) is a new member of groundwater heat pump, which has become increasingly popular for using because of the economic advantages. In general, SWGWHP includes standing column well (SCW), pumping & recharging well (PRW), and forced external circulation standing column well (FECSCW). Their pumping and injection pipes are placed in a same well, the low part of which is pumping water and the top part recharging water. The SCW needs to drill hole in the bedrock directly, and then most of the water circulates in the well bore and the heat exchange takes place in the well wall, while small part of water goes out of the borehole and exchanges the heat with aquifer raw water. There are some clapboards in PRW that make the thermal well divided into 3 parts, i.e. injection zone (in the top part), seal zone (in the middle part), and production zone (in the low part). The FECSCW is similar to PRW. The difference between them is that the diameter of borehole in FECSCW is larger than the one in PRW. Moreover, the gap of borehole in FECSCW is filled with sorted gravel. Through previous research on the thermal features of three kinds of thermal wells, PRW has obvious advantages in 3 kinds of SWGWHP. Because its middle partition area exists, the backwater is reinjected into the aquifer completely, while thermal transfixion occurs rarely. In view of less experimental research on continuous operation, this paper selects the PRW as the research object. According to the heating/cooling period in Shenyang and Shanghai, 2 different modes of continuous operation in PRW have been carried out using a physical simulation experimental sandbox of SWGWHP, which can accurately reflect the actual physical phenomena. In this experimental research, time of operating condition has been distributed by heating season, air-conditioning season, and recovery season, while 2 test conditions are continuous heating mode and continuous cooling mode. In the heat/cold load dominant area, the results show that the aquifer can’t be restored to its original state during the natural recovery period. In continuous heating conditions of 6 cycles, the decreasing amplitude of accumulative heat absorption quantities of 6 cycles reaches 23.0%. Compared to the cooling condition, the decreasing amplitude of accumulative heat rejection quantities in 6 cycles is only 6.0%. These data show that the PRW is more sensitive in heating mode, while the heat absorption is more difficult than heat rejection. Additionally, in continuous heating condition, the aquifer is more obvious in the initial disturbance. The reduced amplitude of cumulative heat in the second operating cycle is 57.1% of all reduced amount in 6 cycles. Thus, in the heat/cold load dominant area, it is necessary to carry on the energy recharge to the aquifer in time according to the building load, in order to ensure the system in a long-term reliable operation.

    wells; groundwater; heat pump systems; pumping and recharging well; experimental sandbox; aquifer; continuous operation

    10.11975/j.issn.1002-6819.2017.11.032

    TK529

    A

    1002-6819(2017)-11-0248-06

    宋 偉,倪 龍,姚 楊. 熱源井抽灌同井連續(xù)取/放熱特性試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(11):248-253.

    10.11975/j.issn.1002-6819.2017.11.032 http://www.tcsae.org

    Song Wei, Ni Long, Yao Yang. Experiment on characteristics of continuous heat absorption/release for pumping and recharging in same thermal well[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(11): 248-253. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.11.032 http://www.tcsae.org

    2017-01-03

    2017-02-27

    國(guó)家自然科學(xué)基金資助項(xiàng)目(41002085, 41602278);中國(guó)博士后科學(xué)基金資助項(xiàng)目(2016M601129);供熱供燃?xì)馔L(fēng)及空調(diào)工程北京市重點(diǎn)實(shí)驗(yàn)室研究基金資助課題;北方工業(yè)大學(xué)青年拔尖人才培育計(jì)劃資助項(xiàng)目(XN018032)

    宋 偉,男,講師,博士,主要從事淺層地?zé)崮艿拈_發(fā)與利用。北京 北方工業(yè)大學(xué)土木工程學(xué)院,100144。Email:stillwater2013@163.com※通信作者:倪 龍,男,副教授,博士生導(dǎo)師,主要從事熱泵空調(diào)的應(yīng)用研究。哈爾濱 哈爾濱工業(yè)大學(xué)市政環(huán)境工程學(xué)院,150090。

    Email:nilonggn@163.com

    猜你喜歡
    砂箱熱源含水層
    全球多個(gè)含水層里的水正快速流失
    淺談砂箱斷面尺寸對(duì)砂箱剛性的影響
    基于Ansys workbench 的單壁砂箱有限元分析
    橫流熱源塔換熱性能研究
    煤氣與熱力(2021年3期)2021-06-09 06:16:20
    一種用于熔鑄磚的新型水玻璃砂型
    玻璃(2020年2期)2020-12-11 22:20:04
    一種嵌裝式砂型
    玻璃(2020年2期)2020-12-11 22:20:04
    基于啟發(fā)式動(dòng)態(tài)規(guī)劃的冷熱源優(yōu)化控制
    電子制作(2017年19期)2017-02-02 07:08:31
    美國(guó)西部奧加拉拉含水層水位下降原因初探
    中部槽激光-MAG復(fù)合熱源打底焊焊接工藝研究
    焊接(2015年8期)2015-07-18 10:59:13
    全球地下含水層下降驚人:要被抽干了
    长顺县| 绥中县| 海淀区| 东港市| 布尔津县| 开化县| 勃利县| 固原市| 镶黄旗| 吴川市| 昌都县| 榆树市| 苍溪县| 苏州市| 榕江县| 西乌珠穆沁旗| 顺平县| 绥宁县| 望都县| 察雅县| 隆化县| 昌邑市| 灵山县| 手游| 扬州市| 泰兴市| 浙江省| 漯河市| 武鸣县| 潼关县| 石河子市| 镇巴县| 陆丰市| 彭州市| 商河县| 密山市| 赞皇县| 灵山县| 南溪县| 辉南县| 青龙|