• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于改進(jìn)雜交粒子群算法的農(nóng)村微能網(wǎng)多能流優(yōu)化調(diào)度

    2017-07-12 18:45:38王維洲楊建華井天軍
    關(guān)鍵詞:雜交粒子調(diào)度

    張 新,張 漫,王維洲,楊建華,井天軍

    (1. 中國(guó)農(nóng)業(yè)大學(xué)信息與電氣工程學(xué)院,北京 100083;2. 內(nèi)蒙古科技大學(xué)信息工程學(xué)院,包頭 014010;3. 國(guó)網(wǎng)甘肅省電力公司電力科學(xué)研究院,蘭州 730050)

    基于改進(jìn)雜交粒子群算法的農(nóng)村微能網(wǎng)多能流優(yōu)化調(diào)度

    張 新1,2,張 漫1※,王維洲3,楊建華1,井天軍1

    (1. 中國(guó)農(nóng)業(yè)大學(xué)信息與電氣工程學(xué)院,北京 100083;2. 內(nèi)蒙古科技大學(xué)信息工程學(xué)院,包頭 014010;3. 國(guó)網(wǎng)甘肅省電力公司電力科學(xué)研究院,蘭州 730050)

    西部農(nóng)村地區(qū)電網(wǎng)薄弱,光伏和風(fēng)電扶貧投資未考慮配套輸配電設(shè)施,用以處理生物質(zhì)廢棄物的沼氣受季節(jié)性溫度變化影響運(yùn)行經(jīng)濟(jì)性不佳,為解決上述問(wèn)題,該文提出利用沼氣作為氣源含可再生能源的冷-熱-電-氣多能流農(nóng)村微能網(wǎng)供能架構(gòu),建立相應(yīng)的多能流微能網(wǎng)調(diào)度模型,針對(duì)粒子群算法早熟、容易陷入局部最優(yōu)的問(wèn)題,提出采用動(dòng)態(tài)調(diào)整慣性權(quán)重的雜交粒子群算法進(jìn)行求解,算例結(jié)果表明,通過(guò)對(duì)系統(tǒng)內(nèi)各設(shè)備的調(diào)度,有效降低系統(tǒng)日運(yùn)行成本,在冬季,采用改進(jìn)型雜交粒子群算法所得日運(yùn)行費(fèi)用相比采用基本型粒子群算法降低7.6%,其相比系統(tǒng)未優(yōu)化所得日運(yùn)行費(fèi)用降低79.1%;在夏季,相比基本型粒子群算法與未優(yōu)化分別降低17.0%、71.2%,實(shí)現(xiàn)微能網(wǎng)的經(jīng)濟(jì)運(yùn)行,證明了本模型和算法的正確性。

    優(yōu)化;算法;電;農(nóng)村微能網(wǎng);能源互聯(lián)網(wǎng);雜交粒子群算法;冷熱電氣多能流

    0 引 言

    隨著煤炭、石油等傳統(tǒng)能源日益枯竭,全球環(huán)境的不斷惡化,可再生能源得到了世界各國(guó)前所未有的重視,其相關(guān)技術(shù)得到快速發(fā)展[1-2]。美國(guó)未來(lái)學(xué)家杰里米?里夫金提出能源互聯(lián)網(wǎng)的概念[3],國(guó)內(nèi)外學(xué)者著力推動(dòng)智能電網(wǎng)向能源互聯(lián)網(wǎng)轉(zhuǎn)變[4-7],不僅關(guān)注電能的清潔利用,更加關(guān)注冷-熱-電-氣的能源綜合利用[8-11]。隨之微能網(wǎng)的概念被提出[12],其作為能源互聯(lián)網(wǎng)的子系統(tǒng),主要由電力網(wǎng)、冷熱能網(wǎng)、燃?xì)饩W(wǎng)絡(luò)等組成,應(yīng)用于城市社區(qū)、工業(yè)園區(qū)、農(nóng)村聚集地等方面,用戶(hù)側(cè)負(fù)荷可以根據(jù)實(shí)時(shí)電價(jià)進(jìn)行需求響應(yīng),廣泛應(yīng)用蓄冷蓄熱等分散儲(chǔ)能裝置,進(jìn)行冷-熱-電-氣多能源互相轉(zhuǎn)換,是消納可再生能源的主要方式[13-14]。中國(guó)農(nóng)村地區(qū)生物質(zhì)能源豐富,但是利用效率低下,環(huán)境污染嚴(yán)重,可再生能源十分豐富,但現(xiàn)有農(nóng)村電網(wǎng)薄弱,光伏和風(fēng)電扶貧配套不足,因此進(jìn)行農(nóng)村微能網(wǎng)的研究可以實(shí)現(xiàn)生物質(zhì)能、可再生能源的就地綜合利用,改善農(nóng)村環(huán)境,對(duì)新農(nóng)村建設(shè)發(fā)展具有十分重要的意義[15]。

    目前國(guó)內(nèi)外對(duì)微能網(wǎng)已有一定研究。文獻(xiàn)[16-18]對(duì)電-熱、電-氣進(jìn)行聯(lián)合分析,構(gòu)建初步的多能流微能網(wǎng)架構(gòu)。文獻(xiàn)[19]利用內(nèi)點(diǎn)法求解微型能源網(wǎng)日前優(yōu)化調(diào)度模型,并利用中新生態(tài)城為例進(jìn)行分析,文獻(xiàn)[20-22]利用混合整數(shù)規(guī)劃方法建立冷熱電聯(lián)供微網(wǎng)優(yōu)化調(diào)度模型,運(yùn)用分枝定界法進(jìn)行求解,得到微網(wǎng)低成本運(yùn)行方案,上述求解方法均為確定性算法,當(dāng)計(jì)算量較大時(shí),計(jì)算時(shí)間過(guò)長(zhǎng),可能無(wú)法得到最終解。文獻(xiàn)[23]提出改進(jìn)多目標(biāo)交叉熵算法對(duì)冷熱電聯(lián)供微網(wǎng)進(jìn)行求解,文獻(xiàn)[24]提出多組粒子群優(yōu)化算法求解熱電聯(lián)供微網(wǎng)調(diào)度模型,上述文獻(xiàn)雖然運(yùn)用了人工智能算法,但微網(wǎng)模型不夠全面,算法在廣泛適用性和收斂速度方面仍存在一些問(wèn)題。

    綜上所述,目前文獻(xiàn)無(wú)具體針對(duì)農(nóng)村地區(qū)進(jìn)行微能網(wǎng)優(yōu)化設(shè)計(jì),未能實(shí)現(xiàn)多能聯(lián)合穩(wěn)定供能的控制,針對(duì)此問(wèn)題,本文建立冷-熱-電-氣多能流農(nóng)村微能網(wǎng)優(yōu)化調(diào)度模型,其中包含沼氣、光伏、風(fēng)電、空氣源熱泵等適合農(nóng)村地區(qū)推廣的裝置,考慮了爬坡約束等其他文獻(xiàn)較少考慮的實(shí)際約束問(wèn)題,針對(duì)優(yōu)化調(diào)度常用的粒子群求解算法早熟、容易陷入局部最優(yōu)的問(wèn)題,提出利用動(dòng)態(tài)調(diào)整慣性權(quán)重的雜交粒子群算法進(jìn)行求解,通過(guò)調(diào)度微能網(wǎng)內(nèi)部各運(yùn)行設(shè)備出力,以期實(shí)現(xiàn)微能網(wǎng)的經(jīng)濟(jì)優(yōu)化運(yùn)行。

    1 農(nóng)村微能網(wǎng)的供能架構(gòu)

    本文建立的冷-熱-電-氣多能流微能網(wǎng)主要包括風(fēng)力發(fā)電系統(tǒng)、光伏發(fā)電系統(tǒng)、微型燃?xì)廨啓C(jī)、燃?xì)忮仩t、余熱鍋爐,溴化鋰吸收式制冷機(jī)、冷熱電儲(chǔ)能裝置、空氣源熱泵換冷裝置、空氣源熱泵換熱裝置,系統(tǒng)供能架構(gòu)如圖1所示。

    微能網(wǎng)與外部配電網(wǎng)相連接,當(dāng)微型燃?xì)廨啓C(jī)、風(fēng)力發(fā)電系統(tǒng)、光伏發(fā)電系統(tǒng)的電力供應(yīng)大于內(nèi)部電負(fù)荷時(shí),向外部配電網(wǎng)售電,反之向外部配電網(wǎng)購(gòu)電。蓄電池在微能網(wǎng)自身電能供應(yīng)大于內(nèi)部電負(fù)荷時(shí),進(jìn)行充電,反之進(jìn)行放電,主要起削峰填谷的作用。熱負(fù)荷由余熱鍋爐、燃?xì)忮仩t、空氣源熱泵換熱裝置提供,供熱設(shè)備的原料由生物質(zhì)廢物產(chǎn)生的沼氣和空氣提供,儲(chǔ)熱裝置在微能網(wǎng)自身熱能供應(yīng)大于內(nèi)部熱負(fù)荷時(shí),進(jìn)行蓄熱,反之放熱,主要起削峰填谷的作用。冷負(fù)荷由溴化鋰吸收式制冷機(jī)、空氣源換冷裝置提供,儲(chǔ)冷裝置在微能網(wǎng)自身冷能供應(yīng)大于內(nèi)部冷負(fù)荷時(shí),進(jìn)行蓄冷,反之放冷,也起削峰填谷的作用。

    圖1 冷-熱-電-氣多能流農(nóng)村微能網(wǎng)供能架構(gòu)Fig.1 Energy supply structure of rural micro energy grid combined cooling, heating, power and gas

    1.1 微型燃?xì)廨啓C(jī)冷熱電聯(lián)供系統(tǒng)經(jīng)濟(jì)數(shù)學(xué)模型

    冷熱電聯(lián)供系統(tǒng)主要由微型燃?xì)廨啓C(jī)、余熱鍋爐、燃?xì)忮仩t、溴化鋰吸收式制冷機(jī)組成,其利用沼氣燃燒推動(dòng)微型燃?xì)廨啓C(jī)發(fā)電,燃燒后產(chǎn)生的高溫?zé)煔馔ㄟ^(guò)余熱鍋爐制取熱能與燃?xì)忮仩t制取的熱能共同滿(mǎn)足村民熱負(fù)荷需求,余熱鍋爐產(chǎn)生的高溫蒸汽通過(guò)溴化鋰吸收式制冷機(jī)產(chǎn)生冷能滿(mǎn)足微能網(wǎng)冷負(fù)荷需求。其經(jīng)濟(jì)數(shù)學(xué)模型[25]如下所示:

    1.2 空氣源熱泵冷熱聯(lián)供系統(tǒng)經(jīng)濟(jì)數(shù)學(xué)模型

    空氣源熱泵冷熱聯(lián)供系統(tǒng)主要由壓縮機(jī)、換熱裝置和換冷裝置組成,它以農(nóng)村室外天然空氣作為冷熱原料,通過(guò)電能帶動(dòng)壓縮機(jī)工作驅(qū)動(dòng)冷熱工質(zhì)進(jìn)行循環(huán),產(chǎn)生所需要的冷熱能源,其經(jīng)濟(jì)數(shù)學(xué)模型如式(4)、(5)所示。

    1.3 儲(chǔ)冷熱電裝置經(jīng)濟(jì)數(shù)學(xué)模型

    儲(chǔ)能裝置在微能網(wǎng)中主要起削峰填谷的作用,當(dāng)系統(tǒng)供應(yīng)冷熱電能力大于冷熱電負(fù)荷需求時(shí),儲(chǔ)能裝置進(jìn)行儲(chǔ)能運(yùn)行,當(dāng)系統(tǒng)供應(yīng)冷熱電能力小于冷熱電負(fù)荷需求時(shí),儲(chǔ)能裝置放出能量滿(mǎn)足負(fù)荷需求,其統(tǒng)一數(shù)學(xué)模型[26]如下

    式中E(t)為儲(chǔ)能裝置在t時(shí)段的總能量,kW·h;δ為儲(chǔ)能裝置自放能效率,數(shù)值很?。粸閮?chǔ)能裝置在t時(shí)段充能和放能功率,kW;ηch和ηdis為儲(chǔ)能裝置充能和放能效率;ΔT為單位時(shí)段,h。

    2 農(nóng)村微能網(wǎng)經(jīng)濟(jì)調(diào)度模型

    上節(jié)建立了農(nóng)村微能網(wǎng)各運(yùn)行設(shè)備的經(jīng)濟(jì)數(shù)學(xué)模型,本節(jié)在其基礎(chǔ)上建立微能網(wǎng)經(jīng)濟(jì)調(diào)度模型,以微能網(wǎng)單日運(yùn)行費(fèi)用最低為目標(biāo)函數(shù),綜合考慮各種相關(guān)約束,通過(guò)動(dòng)態(tài)調(diào)整慣性權(quán)重的雜交粒子群算法進(jìn)行求解,根據(jù)求解結(jié)果制定調(diào)度運(yùn)行策略。

    2.1 目標(biāo)函數(shù)

    沼氣是微能網(wǎng)內(nèi)部生物質(zhì)廢棄物發(fā)酵后提供,根據(jù)沼氣的特性,增加沼氣加熱系統(tǒng),利用可再生能源給加熱系統(tǒng)供能,保證沼氣的穩(wěn)定供應(yīng),不存在傳統(tǒng)微能網(wǎng)外購(gòu)天然氣的費(fèi)用,同時(shí)空氣源熱泵所用的空氣為免費(fèi)供給,降低了微能網(wǎng)的運(yùn)行成本,因此本文所提農(nóng)村微能網(wǎng)運(yùn)行費(fèi)用主要包括從配電網(wǎng)購(gòu)電和向配電網(wǎng)售電的費(fèi)用、系統(tǒng)的運(yùn)行維護(hù)費(fèi)用,目標(biāo)函數(shù)如下:

    式中Celectri為微能網(wǎng)與配電網(wǎng)之間購(gòu)電費(fèi)用和售電費(fèi)用的差值;Cmaintain為微能網(wǎng)運(yùn)行維護(hù)費(fèi)用,其主要包括設(shè)備定期檢修人工成本、光伏組件清掃費(fèi)用、沼氣發(fā)電管路維護(hù)費(fèi)用、低壓線(xiàn)路及配電設(shè)施維護(hù)費(fèi)用等,以上參數(shù)單位為元。

    2.2 約束條件

    1)電功率平衡約束條件

    2)熱功率平衡約束條件

    3)冷功率平衡約束條件

    4)微型燃?xì)廨啓C(jī)約束

    5)余熱鍋爐約束

    6)燃?xì)忮仩t約束

    8)儲(chǔ)冷、儲(chǔ)熱、儲(chǔ)電裝置模型約束

    由于蓄電池、儲(chǔ)熱裝置和儲(chǔ)冷裝置在微能網(wǎng)中的作用類(lèi)似,原理類(lèi)似,故可以用通用模型約束處理

    式中E(t)為t時(shí)段儲(chǔ)冷儲(chǔ)熱儲(chǔ)電裝置的容量,kW·h;Emin、Emax為儲(chǔ)冷、儲(chǔ)熱、儲(chǔ)電裝置的容量最大值、最小值,kW/h-1;為儲(chǔ)冷、儲(chǔ)熱、儲(chǔ)電裝置功率,kW;Pcmax、Pdmax為儲(chǔ)冷儲(chǔ)熱儲(chǔ)電裝置充電最大功率和放電最大功率,kW。

    9)空氣源熱泵換熱裝置約束

    3 基于動(dòng)態(tài)調(diào)整慣性權(quán)重的雜交粒子群算法

    粒子群優(yōu)化算法(particle swarm optimization,PSO算法)是一種進(jìn)化計(jì)算方法,主要思路為首先初始化一群隨機(jī)粒子(隨機(jī)解),然后粒子們就追隨當(dāng)前最優(yōu)粒子在解空間中搜索,即通過(guò)迭代找到最優(yōu)解。假設(shè)d維搜索空間中的第i個(gè)粒子的位置和速度分別為Xi=(xi,1xi,2…xi,d)和Vi=(vi,1vi,2…vi,d),在每一次迭代中,粒子通過(guò)跟蹤2個(gè)最優(yōu)解來(lái)更新自己,第1個(gè)就是粒子本身所找到的最優(yōu)解,即個(gè)體最優(yōu)解pbest,記為Pi=(pi,1pi,2…pi,d);另一個(gè)是整個(gè)種群目前找到的最優(yōu)解,即全局最優(yōu)解gbest,記為Pg=(pg,1pg,2…pg,d)。在找到這2個(gè)最優(yōu)值時(shí),粒子根據(jù)如下的公式來(lái)更新自己的速度和新的位置[27]。

    式中c1、c2為正的學(xué)習(xí)因子;r1、r2為0~1之間均勻分布的隨機(jī)數(shù);w為慣性權(quán)重。

    針對(duì)PSO算法易早熟,容易陷入局部最優(yōu)的問(wèn)題,本文采用基于動(dòng)態(tài)調(diào)整慣性權(quán)重的雜交粒子群算法求解農(nóng)村微能網(wǎng)經(jīng)濟(jì)調(diào)度模型,動(dòng)態(tài)調(diào)整慣性權(quán)重公式如下

    式中wmax、wmin為w的最大值和最小值,u為當(dāng)前迭代步數(shù),umax為最大迭代步數(shù),通常取wmax=0.9,wmin=0.4。

    圖2 基于動(dòng)態(tài)調(diào)整慣性權(quán)重的雜交粒子群算法流程圖Fig.2 Flowchart of crossbreeding particle swarm optimization algorithm based on dynamic inertia weight

    雜交粒子群算法是將遺傳算法中的雜交概念引入PSO算法中,在每次迭代中,根據(jù)雜交概率選取指定數(shù)量的粒子放入雜交池內(nèi),池中的粒子隨機(jī)兩兩雜交,產(chǎn)生同樣數(shù)目的子代粒子,并用子代粒子代替親代粒子,子代粒子的位置由父代粒子位置進(jìn)行交叉得到

    式中p是0~1之間的隨機(jī)數(shù);child(x)為子代粒子位置;parent1(x)和parent2(x)為父代粒子位置。

    子代粒子速度公式為

    式中child(v)為子代粒子速度;parent1(v)和parent2(v)為父代粒子速度。

    算法流程圖如圖2所示。

    4 算例分析

    本文選取西部某村莊為例,根據(jù)地區(qū)實(shí)際情況,冬天進(jìn)行電能和熱能的供應(yīng),夏天進(jìn)行電能和冷能的供應(yīng),電網(wǎng)供電電價(jià)采用甘肅發(fā)改委發(fā)布的分時(shí)電價(jià),向電網(wǎng)售電電價(jià)為0.65元/(kW·h),算例中的供能設(shè)備[19,28]參數(shù)如表1所示,電網(wǎng)供電分時(shí)電價(jià)[29]如表2所示,各設(shè)備單位功率維護(hù)費(fèi)用[30]如表3所示,儲(chǔ)能設(shè)備參數(shù)[19]如表4所示。

    表1 供能設(shè)備參數(shù)Table 1 Parameters of energy supply equipment

    表2 分時(shí)電價(jià)Table 2 Time-of-use electricity price

    表3 各設(shè)備單位功率維護(hù)費(fèi)用Table 3 Equipment maintenance cost of unit power

    蒙特卡羅模擬是一種隨機(jī)模擬方法,它通過(guò)已知的概率函數(shù)模型得到隨機(jī)變量,能對(duì)現(xiàn)實(shí)中的物理過(guò)程進(jìn)行較精確模擬,本文通過(guò)該方法參考文獻(xiàn)[31]所建風(fēng)機(jī)、光伏和負(fù)荷出力模型得到西部某村莊冬季典型日電負(fù)荷、熱負(fù)荷、風(fēng)電、光伏預(yù)測(cè)曲線(xiàn)和夏季典型日電負(fù)荷、冷負(fù)荷、風(fēng)電、光伏預(yù)測(cè)曲線(xiàn)如圖3a和圖3b所示。將表1-表4和圖3的數(shù)據(jù)代入微能網(wǎng)經(jīng)濟(jì)優(yōu)化調(diào)度模型中,運(yùn)用基于動(dòng)態(tài)調(diào)整慣性權(quán)重的雜交粒子群算法進(jìn)行求解得到該村典型日的優(yōu)化調(diào)度結(jié)果如圖4所示。其中求解算法設(shè)置如下:粒子數(shù)80,最大迭代數(shù)200,學(xué)習(xí)因子2,初始慣性權(quán)重0.9,終止慣性權(quán)重0.4,雜交池大小比率0.1,雜交概率0.9。

    表4 儲(chǔ)能設(shè)備參數(shù)Table 4 Parameters of energy storage equipment

    圖3 典型日光伏、風(fēng)電和冷熱電負(fù)荷預(yù)測(cè)曲線(xiàn)Fig.3 Forecasted photovoltaic, wind power outputs and electric,cooling and heat loads for a typical day

    圖4 a為冬季典型日農(nóng)村微能網(wǎng)電負(fù)荷平衡曲線(xiàn)。從圖4a得到,當(dāng)光伏和風(fēng)電可以發(fā)電的時(shí)間段,光伏和風(fēng)電按照預(yù)測(cè)出力滿(mǎn)發(fā),滿(mǎn)足微能網(wǎng)部分用能需求,由于沼氣免費(fèi)且供應(yīng)充足,電負(fù)荷主要由微型燃?xì)廨啓C(jī)發(fā)電供應(yīng),在谷時(shí)段 00:00-04:00時(shí),微型燃?xì)廨啓C(jī)發(fā)電和風(fēng)電可以滿(mǎn)足負(fù)荷要求,同時(shí)給蓄電池充電,在谷時(shí)段05:00-07:00時(shí),電價(jià)低廉,微型燃?xì)廨啓C(jī)發(fā)電和風(fēng)電不能滿(mǎn)足負(fù)荷要求的部分由外購(gòu)電網(wǎng)電功率補(bǔ)充,同時(shí)繼續(xù)給蓄電池進(jìn)行充電,在平時(shí)段和峰時(shí)段07:00-23:00時(shí),由于電價(jià)較高,微能網(wǎng)用電負(fù)荷主要由微型燃?xì)廨啓C(jī)發(fā)電、蓄電池放電、光伏、風(fēng)電滿(mǎn)足,在20:00時(shí),由于蓄電池電能不足、光伏發(fā)電量趨于0,此時(shí)部分用電負(fù)荷由外購(gòu)電網(wǎng)電功率滿(mǎn)足。整個(gè)運(yùn)行周期中蓄電池在谷時(shí)段充電,峰時(shí)段放電,承擔(dān)削峰填谷的作用,降低了微能網(wǎng)的運(yùn)行費(fèi)用。

    圖4b為冬季典型日農(nóng)村微能網(wǎng)熱負(fù)荷平衡曲線(xiàn)。從圖4b得到,余熱鍋爐、燃?xì)忮仩t、熱儲(chǔ)存器和空氣源熱泵換熱裝置共同承擔(dān)熱負(fù)荷的供應(yīng),在谷時(shí)段23:00-07:00時(shí),電價(jià)低廉,空氣源熱泵換熱裝置工作,同時(shí)給熱儲(chǔ)存器蓄熱,在平時(shí)段和峰時(shí)段 07:00-23:00時(shí),電價(jià)較高,熱負(fù)荷主要由余熱鍋爐、燃?xì)忮仩t、熱儲(chǔ)存器供應(yīng),不足的部分再由空氣源熱泵換熱裝置滿(mǎn)足。熱儲(chǔ)存器在電低谷時(shí)期蓄熱,電高峰期放熱,滿(mǎn)足了系統(tǒng)的需求。

    圖4c為夏季典型日農(nóng)村微能網(wǎng)電負(fù)荷平衡曲線(xiàn)。由于農(nóng)村地廣人稀,夏季負(fù)荷比冬季負(fù)荷小,因此夏季使用4臺(tái)微型燃?xì)廨啓C(jī),對(duì)剩余2臺(tái)微型燃?xì)廨啓C(jī)進(jìn)行檢修,故夏季微型燃?xì)廨啓C(jī)發(fā)電最大功率為400 kW。從圖4c得到,與圖4a類(lèi)似,當(dāng)光伏和風(fēng)電可以發(fā)電的時(shí)間段,光伏和風(fēng)電按照預(yù)測(cè)出力滿(mǎn)發(fā),微型燃?xì)廨啓C(jī)基本處于最大發(fā)電狀態(tài),在谷時(shí)段 23:00-07:00,電價(jià)低廉,微型燃?xì)廨啓C(jī)和風(fēng)電不能滿(mǎn)足的用電負(fù)荷由外購(gòu)電網(wǎng)電功率滿(mǎn)足并給蓄電池充電,在平時(shí)段和峰時(shí)段 07:00-23:00,電負(fù)荷主要求微型燃?xì)廨啓C(jī)發(fā)電、蓄電池放電、光伏和風(fēng)電滿(mǎn)足,在整個(gè)運(yùn)行周期,蓄電池仍然起到了削峰填谷的作用。

    圖4 典型日冷熱電負(fù)荷平衡曲線(xiàn)Fig.4 Electric, heat and cooling balance curves of a typical day

    圖4 d為夏季典型日農(nóng)村微能網(wǎng)冷負(fù)荷平衡曲線(xiàn)。從圖4d得到,溴化鋰吸收式制冷機(jī)、冷儲(chǔ)存器和空氣源熱泵換冷裝置共同承擔(dān)冷負(fù)荷的供應(yīng),在谷時(shí)段23:00-07:00時(shí),電價(jià)低廉,空氣源熱泵換冷裝置工作,同時(shí)給冷儲(chǔ)存器蓄冷,在平時(shí)段和峰時(shí)段07:00-23:00時(shí),電價(jià)較高,冷負(fù)荷主要由溴化鋰吸收式制冷機(jī)、冷儲(chǔ)存器供應(yīng),不足的部分在由空氣源熱泵換冷裝置滿(mǎn)足。冷儲(chǔ)存器在電低谷時(shí)期蓄冷,電高峰時(shí)期放冷,滿(mǎn)足了系統(tǒng)的需求。

    圖5a和圖5b為冬季典型日和夏季典型日算法改進(jìn)前后運(yùn)行費(fèi)用對(duì)比。通過(guò)圖5a和圖5b得到,基本粒子群算法尋優(yōu)慢,容易陷入局部最優(yōu)解,采用基于動(dòng)態(tài)調(diào)整慣性權(quán)重的雜交粒子群算法可以加快尋優(yōu)速度,找到更合理全局最優(yōu)解,證明了本算法的先進(jìn)性和可行性。

    假設(shè)系統(tǒng)未優(yōu)化,根據(jù)本文圖3a和b所示冬季與夏季典型日光伏、風(fēng)電、電負(fù)荷、熱負(fù)荷、冷負(fù)荷預(yù)測(cè)曲線(xiàn),按照表1所描述的各供能設(shè)備參數(shù)、表2所描述的分時(shí)電價(jià)、表3所描述的各設(shè)備維護(hù)費(fèi)用,系統(tǒng)供能方案采用電負(fù)荷優(yōu)先由風(fēng)電、光伏滿(mǎn)足,不足的部分由外部配電網(wǎng)按分時(shí)電價(jià)滿(mǎn)足,熱負(fù)荷由余熱鍋爐、燃?xì)忮仩t滿(mǎn)足,冷負(fù)荷由溴化鋰吸收式制冷機(jī)滿(mǎn)足,則計(jì)算得到系統(tǒng)未優(yōu)化日運(yùn)行費(fèi)用冬季為8 504.5元、夏季為6 339.2元,根據(jù)圖5a和圖5b得,采用基本型粒子群算法優(yōu)化后得到日運(yùn)行費(fèi)用冬季為1 921元、夏季為2 201元,采用改進(jìn)型雜交粒子群算法對(duì)系統(tǒng)進(jìn)行優(yōu)化后得到日運(yùn)行費(fèi)用冬季為1 774元、夏季為1 826元,各算法系統(tǒng)日運(yùn)行費(fèi)用如表5所示。

    圖5 典型日利用改進(jìn)型粒子群算法和基本型粒子群算法運(yùn)行費(fèi)用比較Fig.5 Running cost comparison of a typical day based improved and basic particle swarm algorithms

    表5結(jié)果表明,采用改進(jìn)型雜交粒子群算法對(duì)微能網(wǎng)進(jìn)行優(yōu)化調(diào)度,降低系統(tǒng)購(gòu)電成本,運(yùn)行維護(hù)費(fèi)用少量增加,其優(yōu)化所得系統(tǒng)日運(yùn)行費(fèi)用優(yōu)于采用基本型粒子群算法優(yōu)化和系統(tǒng)未優(yōu)化所得系統(tǒng)日運(yùn)行費(fèi)用,較后2種運(yùn)行方式冬季費(fèi)用分別降低了7.6%和79.1%、夏季費(fèi)用分別降低了17.0%和71.2%,因此采用本文所提算法對(duì)微能網(wǎng)各供能設(shè)備進(jìn)行調(diào)度,可以顯著降低系統(tǒng)日運(yùn)行費(fèi)用,實(shí)現(xiàn)微能網(wǎng)經(jīng)濟(jì)運(yùn)行。

    5 結(jié) 論

    本文構(gòu)建包含冷-熱-電-氣多能流微能網(wǎng)架構(gòu),建立農(nóng)村微能網(wǎng)優(yōu)化調(diào)度模型,利用基于動(dòng)態(tài)調(diào)整慣性權(quán)重的雜交粒子群算法求解,得到微能網(wǎng)優(yōu)化調(diào)度運(yùn)行方案,算例結(jié)果表明,本算法可以快速穩(wěn)定的找到合理全局最優(yōu)解。

    本算法還可顯著降低系統(tǒng)日運(yùn)行費(fèi)用,在冬季,采用改進(jìn)型雜交粒子群算法所得日運(yùn)行費(fèi)用相比采用基本型粒子群算法降低7.6%,其相比系統(tǒng)未優(yōu)化所得日運(yùn)行費(fèi)用降低79.1%;在夏季,采用改進(jìn)型雜交粒子群算法所得日運(yùn)行費(fèi)用相比采用基本型粒子群算法降低17.0%,其相比系統(tǒng)未優(yōu)化所得日運(yùn)行費(fèi)用降低71.2%。

    本文結(jié)果可為有效解決農(nóng)村生物質(zhì)廢棄物污染問(wèn)題和實(shí)現(xiàn)光伏和風(fēng)電扶貧政策提供一種方法。

    [1] Derakhshandeh S Y, Masoum A S, Deilami S, et al. Coordination of generation scheduling with PEVs charging in industrial microgrids[J]. IEEE Transactions on Power Systems, 2013, 28(3): 3451-3461.

    [2] Brandoni C, Renzi M. Optimal sizing of hybrid solar micro-CHP systems for the household sector[J]. Applied Thermal Engineering, 2015, 75: 896-907.

    [3] Jeremy R. Third Industrial Revolution: How Lateral Power is Transforming Energy, the Economy, and the World[M]. New York: Palgrave Macmillan Trade, 2011: 33-72.

    [4] 董朝陽(yáng),趙俊華,文福拴,等. 從智能電網(wǎng)到能源互聯(lián)網(wǎng):基本概念與研究框架[J]. 電力系統(tǒng)自動(dòng)化,2014,38(15):1-11. Dong Zhaoyang, Zhao Junhua, Wen Fushuan, et al. From smart grid to energy internet: basic concept and research framework[J]. Automation of Electric Power Systems, 2014, 38(15): 1-11. (in Chinese with English abstract)

    [5] 孫宏斌,郭慶來(lái),潘昭光. 能源互聯(lián)網(wǎng):理念、架構(gòu)與前沿展望[J]. 電力系統(tǒng)自動(dòng)化,2015,39(19):1-8. Sun Xiongbin, Guo Qinglai, Pan Shaoguang. Energy internet: Concept, architecture and frontier outlook[J]. Automation of Electric Power Systems, 2015, 39(19): 1-8. (in Chinese with English abstract)

    [6] 孫宏斌,郭慶來(lái),潘昭光,等. 能源互聯(lián)網(wǎng):驅(qū)動(dòng)力、評(píng)述與展望[J]. 電網(wǎng)技術(shù),2015,39(11):3005-3013. Sun Xiongbin, Guo Qinglai, Pan Shaoguang, et al. Energy internet: driving force, review and outlook[J]. Power System Technology, 2015, 39(11): 3005-3013. (in Chinese with English abstract)

    [7] 周孝信,魯宗相,劉應(yīng)梅,等. 中國(guó)未來(lái)電網(wǎng)的發(fā)展模式和關(guān)鍵技術(shù)[J]. 中國(guó)電機(jī)工程學(xué)報(bào),2014,34(29):4999-5008. Zhou Xiaoxin, Lu Zongxiang, Liu Yingmei, et al. Development models and key technologies of future grid in China[J]. Proceedings of the CSEE, 2014, 34(29): 4999-5008. (in Chinese with English abstract)

    [8] 李洋,吳鳴,周海明,等. 基于全能流模型的區(qū)域多能源系統(tǒng)若干問(wèn)題探討[J]. 電網(wǎng)技術(shù),2015,39(8):2230-2237. Li Yang, Wu Ming, Zhou Haiming, et al. Study on some key problems related to regional multi energy system based on universal flow model[J]. Power System Technology, 2015, 39(8): 2230-2237. (in Chinese with English abstract )

    [9] 王偉亮,王丹,賈宏杰,等. 能源互聯(lián)網(wǎng)背景下的典型區(qū)域綜合能源系統(tǒng)穩(wěn)態(tài)分析研究綜述[J]. 中國(guó)電機(jī)工程學(xué)報(bào),2016(12):3292-3306. Wang Weiliang, Wang Dan, Jia Hongjie, et al. Review of steady-state analysis of typical regional integrated energy system under the background of energy internet[J]. Proceedings of the CSEE, 2016(12): 3292-3306. (in Chinese with English abstract)

    [10] Keirstead J, Jennings M, Sivakumar A. A review of urban energy system models: Approaches, challenges and opportunities[J]. Renewable and Sustainable Energy Reviews, 2012, 16(6): 3847-3866.

    [11] Jin X, Mu Y, Jia H, et al. Optimal day-ahead scheduling of integrated urban energy systems[J]. Applied Energy, 2016, 180: 1-13.

    [12] 田世明,欒文鵬,張東霞,等. 能源互聯(lián)網(wǎng)技術(shù)形態(tài)與關(guān)鍵技術(shù)[J]. 中國(guó)電機(jī)工程學(xué)報(bào),2015,35(14):3482-3494. Tian Shiming, Luan Wenpeng, Zhang Dongxia, et al. Technical forms and key technologies on energy internet[J]. Proceedings of the CSEE, 2015, 35(14): 3482-3494. (in Chinese with English abstract)

    [13] 徐飛,閔勇,陳磊,等. 包含大容量?jī)?chǔ)熱的電–熱聯(lián)合系統(tǒng)[J].中國(guó)電機(jī)工程學(xué)報(bào),2014,34(29):5063-5072. Xu Fei, Min Yong, Chen Lei, et al. Combined electricity-heat operation system containing large capacity thermal energy storage[J]. Proceedings of the CSEE, 2014, 34(29): 5063-5072. (in Chinese with English abstract)

    [14] 薛小代,梅生偉,林其友,等. 面向能源互聯(lián)網(wǎng)的非補(bǔ)燃?jí)嚎s空氣儲(chǔ)能及應(yīng)用前景初探[J]. 電網(wǎng)技術(shù),2016,40(1):164-171. Xue Xiaodai, Mei Shengwei, Lin Qiyou, et al. Energy internet oriented non-supplementary fired compressed air energy storage and prospective of application[J]. Power System Technology, 2016, 40(1): 164-171. (in Chinese with English abstract)

    [15] 井天軍,譚元?jiǎng)?,楊明? 農(nóng)村微電網(wǎng)優(yōu)化調(diào)度模型的建立[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(14):127-132. Jing Tianjun, Tan Yuangang, Yang Minghao. Optimal operation model for microgrid in rural areas[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(14): 127-132. (in Chinese with English abstract)

    [16] 薛小代,劉彬卉,汪雨辰,等. 基于壓縮空氣儲(chǔ)能的社區(qū)微能源網(wǎng)設(shè)計(jì)[J]. 中國(guó)電機(jī)工程學(xué)報(bào),2016,36(12):3306-3314. Xue Xiaodai, Liu Binhui, Wang Yuchen, et al. Micro energy network design for community based on compressed air energy storage[J]. Proceedings of the CSEE, 2016, 36(12): 3306-3314. (in Chinese with English abstract)

    [17] Liu X Z, Wu J Z, Nick J, et al. Combined analysis of electricity and heat networks[J]. Applied Energy, 2015, 162: 1238-1250.

    [18] Qadrdan M, Wu J Z, Jenkins N, et al. Operating strategies for a GB integrated gas and electricity network considering the uncertainty in wind power forecasts[J]. IEEE Transactions on Sustainable Energy, 2014, 5(1): 128-138.

    [19] 徐青山,曾艾東,王凱,等. 基于Hessian內(nèi)點(diǎn)法的微型能源網(wǎng)日前冷熱電聯(lián)供經(jīng)濟(jì)優(yōu)化調(diào)度[J]. 電網(wǎng)技術(shù),2016,40(6):1657-1665. Xu Qingshan, Zeng Aidong, Wang Kai, et al. Day-ahead optimized economic dispatching for combined cooling, heating and power in micro energy-grid based on Hessian Interior Point Method[J]. Power System Technology, 2016, 40(6): 1657-1665. (in Chinese with English abstract)

    [20] Elsied M, Oukaour A, Gualous H, et al. Energy management and optimization in microgrid system based on green energy[J]. Energy, 2015, 84: 139-151.

    [21] 吳雄,王秀麗,別朝紅,等. 含熱電聯(lián)供系統(tǒng)的微網(wǎng)經(jīng)濟(jì)運(yùn)行[J]. 電力自動(dòng)化設(shè)備,2013,33(8):1-6. Wu Xiong, Wang Xiuli, Bie Chaohong, et al. Economic operation of microgrid with combined heat and power system[J]. Electric Power Automation Equipment, 2013, 33(8): 1-6. (in Chinese with English abstract)

    [22] 段紹輝,汪偉,劉中勝,等. 含光伏的冷熱電聯(lián)供微網(wǎng)系統(tǒng)優(yōu)化調(diào)度方案[J]. 電力系統(tǒng)及其自動(dòng)化學(xué)報(bào),2013,25(4):150-155. Duan Shaohui, Wang Wei, Liu Zhongsheng, et al. Research on optimal scheduling of combined cooling heating and power with photovoltaic power generation[J]. Proceedings of the CSU-EPSA, 2013, 25(4): 150-155. (in Chinese with English abstract)

    [23] 王魯浩,李歧強(qiáng),王桂榮,等. 多可再生能源冷熱電聯(lián)供微網(wǎng)系統(tǒng)環(huán)境經(jīng)濟(jì)優(yōu)化調(diào)度[J]. 控制與決策,2016,31(5):913-918. Wang Luhao, Li Qiqiang, Wang Guirong, et al. Optimal environmental economic scheduling of combined cooling heating and power microgrid system with multi-renewable energy[J]. Control and Decision, 2016, 31(5): 913-918. (in Chinese with English abstract)

    [24] Liu Z, Chen C, Yuan J. Hybrid energy scheduling in a renewable micro grid[J]. Applied Sciences, 2015, 5(3): 516-531.

    [25] 魏兵,王志偉,李莉,等. 微型燃?xì)廨啓C(jī)冷熱電聯(lián)產(chǎn)系統(tǒng)經(jīng)濟(jì)性分析[J]. 熱力發(fā)電,2007,36(9):1-5. Wei Bing, Wang Zhiwei, Li Li, et al. Analysis of economic efficiency for cold, heat, and electricity triple co-generation system with miniature gas turbine[J]. Thermal Power Generation, 2007, 36(9): 1-5. (in Chinese with English abstract)

    [26] Mohamed F A, Koivo H N. Online management of microgrids with battery storage using multiobjective optimization[C]∥Proceedings of 2007 International Conference on Power Engineering, Energy and Electrical Drives. Setubal, Portugal: IEEE, 2007: 231-236.

    [27] 龔純,王正林. 精通MATLAB最優(yōu)化計(jì)算[M]. 第3版. 北京:電子工業(yè)出版社,2014:306-308.

    [28] 趙靜,楊洪海,葉大法,等. 冷熱電聯(lián)供與水蓄能耦合利用系統(tǒng)研究[J]. 節(jié)能技術(shù),2016,34(2):120-124. Zhao Jing, Yang Honghai, Ye Dafa, et al. Research on energy system based on CCHP coupled with energy storage[J]. Energy Conservation Technology, 2016, 34(2): 120-124. (in Chinese with English abstract)

    [29] 甘肅發(fā)展和改革委員會(huì). 甘肅省電網(wǎng)銷(xiāo)售電價(jià)[EB/OL].(2014-08-08)http://www.gsdrc.gov.cn/content/2016-06-24/35777.html.

    [30] 王銳,顧偉,吳志. 含可再生能源的熱電聯(lián)供型微網(wǎng)經(jīng)濟(jì)運(yùn)行優(yōu)化[J]. 電力系統(tǒng)自動(dòng)化,2011,35(8):22-27. Wang Rui, Gu Wei, Wu Zhi. Economic and optimal operation of a combined heat and power micro grid with renewable energy resources[J]. Automation of Electric Power Systems, 2011, 35(8): 22-27. (in Chinese with English abstract)

    [31] 鮮杏,范傳光,文閃閃,等. 考慮可再生能源隨機(jī)性的孤島微網(wǎng)容量?jī)?yōu)化配置方法[J].武漢大學(xué)學(xué)報(bào):工學(xué)版,2016,49(1):100-104. Xian Xing, Fan Chuanguang, Wen Shanshan, et al. Optimal deployment for island microgrid considering probabilistic factors of renewable energy generations[J]. Engineering Journal of Wuhan University, 2016, 49(1): 100-104. (in Chinese with English abstract)

    Scheduling optimization for rural micro energy grid multi-energy flow based on improved crossbreeding particle swarm algorithm

    Zhang Xin1,2, Zhang Man1※, Wang Weizhou3, Yang Jianhua1, Jing Tianjun1
    (1. College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China; 2. College of Information Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China; 3. State Grid Gansu Provincial Electric Power Research Institute, Lanzhou 730050, China)

    There is poor infrastructure and weak power grid in Chinese western rural areas. Photovoltaic (PV) and wind power pro-poor investments do not consider supporting transmission and distribution facilities. The economy of biogas from biomass waste is not good, due to that it is affected by seasonal variations in temperature. Utilizing PV and wind power to supply energy for biogas can improve biomass energy utilization and solve the problem of environmental pollution, while the absorptive capacity of the PV and wind power is increased, and the comprehensive utilization of biomass and renewable energy in place can be achieved. It has important significance for development of new countryside. Based on national PV and wind power poverty relief policy, this paper proposed rural micro energy grid architecture that combines PV system, wind power system, micro turbine, biogas fired boilers, heat recovery boiler, lithium-bromide absorption-type refrigerator, battery storage, heat and cooling storage, air-source heat pumps for cooling exchange, air-source heat pumps for heating exchange, and so on. Mathematical models of micro turbine CCHP (combined cooling heating and power) system, air-source heat pumps system, heat and cooling storage system and battery storage system were built up. With micro energy grid cost in a single day as an objective function, considering electric power balance, heating power balance, cooling power balance, power exchange with electricity grid and the other constraints, the micro energy grid optimal model was established. Because of premature and local optimization problem for particle swarm algorithm, this paper uses dynamic inertia weight crossbreeding particle swarm optimization algorithm for solving.Taking Chinese west village as an example, according to the actual situation, electric and heating power were supplied in the winter, but electric and cooling power were supplied in the summer. Electricity price applied the time of use price issued by the National Development and Reform Commission. Parameters of energy supply equipment and energy storage equipment, time of use price, and equipment maintenance cost per unit power were determined. Forecasted data were given, which combine PV and wind power outputs, electricity heating and cooling load for typical day. Simulation platform was built in MATLAB 2014a. Electric heating and cooling balance curve of typical day was acquired. System running cost comparison of typical day based on improved and basic algorithm was performed. In addition, according to forecasted curve referred to above, parameters of various devices, time of use price and equipment maintenance cost, the un-optimized system running cost was calculated. Results showed that, through the dispatch of each device in the system, the outputs of energy supplying devices were more reasonable, and energy storage devices played a role of load shifting. The daily running cost based on dynamic inertia weight crossbreeding particle swarm optimization algorithm was less than that based on basic particle swarm and un-optimized cost. To sum up, the proposed algorithm is adopted to dispatch various devices in micro energy grid, it can reduce system running cost effectively, and micro energy grid can be operated economically; the correctness of the models and algorithms can be proved.

    optimization; algorithms; power; rural micro energy grid; energy internet; crossbreeding particle swarm algorithm; cooling heating power and gas multi-energy flow

    10.11975/j.issn.1002-6819.2017.11.020

    TM 926

    A

    1002-6819(2017)-11-0157-08

    張 新,張 漫,王維洲,楊建華,井天軍. 基于改進(jìn)雜交粒子群算法的農(nóng)村微能網(wǎng)多能流優(yōu)化調(diào)度[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(11):157-164.

    10.11975/j.issn.1002-6819.2017.11.020 http://www.tcsae.org

    Zhang Xin, Zhang Man, Wang Weizhou, Yang Jianhua, Jing Tianjun. Scheduling optimization for rural micro energy grid multi-energy flow based on improved crossbreeding particle swarm algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(11): 157-164. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.11.020 http://www.tcsae.org

    2016-11-27

    2017-04-26

    國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目課題(2016YFB0900101);內(nèi)蒙古自然科學(xué)基金項(xiàng)目(2016MS0515)

    張 新,男,內(nèi)蒙古包頭人,博士生,講師,研究方向?yàn)榉植际桨l(fā)電和能源綜合利用技術(shù)。北京 中國(guó)農(nóng)業(yè)大學(xué)信息與電氣工程學(xué)院,100083。Email:zhangxin19861986@126.com

    ※通信作者:張 漫,女,北京人,教授,博士,博士生導(dǎo)師,研究方向?yàn)檗r(nóng)業(yè)電氣化與自動(dòng)化。北京 中國(guó)農(nóng)業(yè)大學(xué)信息與電氣工程學(xué)院,100083。Email:cauzm@cau.edu.cn

    猜你喜歡
    雜交粒子調(diào)度
    《調(diào)度集中系統(tǒng)(CTC)/列車(chē)調(diào)度指揮系統(tǒng)(TDCS)維護(hù)手冊(cè)》正式出版
    一種基于負(fù)載均衡的Kubernetes調(diào)度改進(jìn)算法
    虛擬機(jī)實(shí)時(shí)遷移調(diào)度算法
    基于粒子群優(yōu)化的橋式起重機(jī)模糊PID控制
    基于粒子群優(yōu)化極點(diǎn)配置的空燃比輸出反饋控制
    高等植物雜交染色體及其雜交基因表達(dá)的性狀——三論高等植物染色體雜交
    6年生雜交桉無(wú)性系對(duì)比試驗(yàn)
    再論高等植物染色體雜交
    雜交牛
    基于Matlab的α粒子的散射實(shí)驗(yàn)?zāi)M
    物理與工程(2014年4期)2014-02-27 11:23:08
    多伦县| 安塞县| 齐河县| 常熟市| 防城港市| 新疆| 民勤县| 汉沽区| 华宁县| 陆河县| 衡水市| 沙坪坝区| 上虞市| 阿坝| 江安县| 临猗县| 长寿区| 泸西县| 时尚| 施秉县| 阳原县| 远安县| 河北区| 南开区| 河东区| 乡宁县| 翼城县| 泸溪县| 武城县| 朝阳市| 读书| 闸北区| 涟源市| 墨玉县| 修文县| 波密县| 雅安市| 时尚| 都昌县| 轮台县| 泉州市|