張建偉,江 琦,劉軒然,馬曉君
(華北水利水電大學(xué)水利學(xué)院,鄭州 450011)
基于PSO-SVM算法的梯級泵站管道振動響應(yīng)預(yù)測
張建偉,江 琦,劉軒然,馬曉君
(華北水利水電大學(xué)水利學(xué)院,鄭州 450011)
泵站管道振動響應(yīng)信號實測比較困難,為實現(xiàn)利用較少機(jī)組數(shù)據(jù)預(yù)測管道振動狀況,提出基于粒子群(particle swarm optimization, PSO)的支持向量機(jī)(support vector machine, SVM)預(yù)測方法。利用粒子群全局跟蹤搜索算法優(yōu)化SVM核函數(shù)和懲罰因子,弱化SVM參數(shù)優(yōu)化不足導(dǎo)致預(yù)測精度低的問題。以景電梯級二期3泵站2號管道為研究對象,基于機(jī)組和管道的振動實測數(shù)據(jù),首先利用頻譜分析和數(shù)理統(tǒng)計方法確定管道振動的振源貢獻(xiàn)率,并計算機(jī)組和管道振動相關(guān)系數(shù),確定機(jī)組和管道之間的強(qiáng)耦合關(guān)系。然后建立泵站管道振動的PSO-SVM預(yù)測模型,選取機(jī)組不同時段振動實測數(shù)據(jù)作為輸入因子,相應(yīng)時段管道振動數(shù)據(jù)作為輸出因子進(jìn)行訓(xùn)練和振動預(yù)測,并將管道振動預(yù)測結(jié)果與BP神經(jīng)網(wǎng)絡(luò)預(yù)測結(jié)果進(jìn)行對比。與BP網(wǎng)絡(luò)神經(jīng)預(yù)測結(jié)果相比,該方法預(yù)測結(jié)果與實測值吻合度高,其平均相對誤差最大為6.8%,根均方誤差最大為0.261,預(yù)測精度更高。能夠有效實現(xiàn)管道的振動響應(yīng)預(yù)測,從而達(dá)到管道實時在線安全運(yùn)行監(jiān)測的目的。
泵;振動;優(yōu)化;管道;粒子群;支持向量機(jī);預(yù)測
管道結(jié)構(gòu)不僅在水利工程上廣泛應(yīng)用,在軍事、化工、石油、消防工程等諸多領(lǐng)域也廣泛應(yīng)用。管道使用壽命有限、制造技術(shù)落后、管理不當(dāng)以及外界環(huán)境等影響,導(dǎo)致管道缺陷愈加嚴(yán)重,且管道失效事故時有發(fā)生。管道作為各種輸送物體的載體,管道長期強(qiáng)烈振動會使管道、管道與附屬物之間的連接處等部位發(fā)生松動或磨損,振動附加在管道上的交變動荷載引起管道和支吊架材料的結(jié)構(gòu)損傷,甚至發(fā)生斷裂等嚴(yán)重后果[1-5]。
泵站管道通過廠房與機(jī)組直接連接,機(jī)組運(yùn)行過程中,前池高速水流直接進(jìn)入機(jī)組,導(dǎo)致水流沖擊轉(zhuǎn)輪葉片,包括蝸殼的復(fù)雜結(jié)構(gòu)和水體-蝸殼結(jié)構(gòu)耦合作用進(jìn)而引起一系列復(fù)雜脈沖振動,比如葉片汽蝕、渦流振動、導(dǎo)葉水流不均勻、水體-管道耦合等復(fù)雜的水力因素;機(jī)械因素包括轉(zhuǎn)頻倍頻、高次諧波、軸不對稱等[6-9]。在多種振動因素共同作用下導(dǎo)致管道振動復(fù)雜,其振動屬于泵體-管道耦合非線性振動,振動機(jī)理也一直是工程界和學(xué)術(shù)界的研究熱點和難點。
鑒于管道結(jié)構(gòu)的復(fù)雜性和多樣性,目前在水利行業(yè)實現(xiàn)管道振動監(jiān)測比較麻煩。管道振動激勵源復(fù)雜,且各種激勵源大小也無法確定,通過建立精確的數(shù)值模擬仿真模型分析管道激勵和響應(yīng)也十分困難,考慮泵站與管道之間的耦合作用和相關(guān)關(guān)系,為實現(xiàn)利用較少的監(jiān)測數(shù)據(jù)整體把握和控制管道振動的目的,基于泵站管道原型觀測數(shù)據(jù),建立一種預(yù)測管道振動響應(yīng)的基于粒子群算法(particle swarm optimization,PSO)的支持向量機(jī)(support vector machine,SVM)模型,針對支持向量機(jī)預(yù)測的不足,引入粒子群優(yōu)化算法,保證模型預(yù)測中的參數(shù)更加準(zhǔn)確,降低誤差、提高預(yù)測精度。
1.1 支持向量機(jī)
支持向量機(jī)[10]是建立在統(tǒng)計學(xué)VC維理論和結(jié)構(gòu)風(fēng)險最小化基礎(chǔ)上的機(jī)器學(xué)習(xí)方法,在解決小樣本、非線性和高維模式識別中表現(xiàn)出許多特有的優(yōu)勢,并在很大程度上克服了“維數(shù)災(zāi)難”和“過學(xué)習(xí)”等問題。此外,在模式識別、回歸分析、函數(shù)估計和時間序列預(yù)測等領(lǐng)域都得到很好的發(fā)展。SVM目的是尋找一個滿足分類要求的最優(yōu)分類超平面,使得該超平面兩側(cè)的空白區(qū)域最大化,理論上支持向量機(jī)能夠?qū)崿F(xiàn)對線性可分?jǐn)?shù)據(jù)的最優(yōu)分類[11]。
以兩類數(shù)據(jù)分類為例,給定訓(xùn)練樣本集(xi,yi, i=1,2,…l, x∈Rn, y∈{±1}),超平面記作(ω,x)+b=0,為使分類面對所有樣本正確分類且具備分類間隔,要求它滿足以下約束條件:
為解決約束最優(yōu)化問題,引入Lagrange函數(shù):
式中ai>0為Lagrange乘數(shù)。約束最優(yōu)化問題的解由Lagrange函數(shù)的鞍點決定,并且最優(yōu)化問題的解在鞍點處滿足對ω和b的偏導(dǎo)數(shù)為0,將該問題轉(zhuǎn)化為相應(yīng)的對偶問題,即:
式中j=1,2,…l, aj>0。
計算最優(yōu)權(quán)值向量ω*和最優(yōu)偏置b*,分別為:
式中j∈{j a*>0}。
j
因此得到最優(yōu)分類超平面(ω*·x)+b*=0,最優(yōu)分類函數(shù)為:
1.2 粒子群算法
粒子群算法(particle swarm optimization,PSO)是一種基于群智能與適應(yīng)度的全局優(yōu)化算法。其基本思想源于對鳥群覓食過程中群聚和遷徙行為的研究,并對這種社會行為進(jìn)行建模和仿真[12-15]。
PSO初始狀態(tài)為一群粒子,每一個粒子代表一解,粒子通過不斷的環(huán)境適應(yīng)和學(xué)習(xí),不斷更新粒子的位置速度,從而逼近最優(yōu)解。PSO本質(zhì)是利用群體中每個粒子之間的相互競爭和協(xié)作進(jìn)而進(jìn)行每一步迭代搜索,它特有的記憶功能使粒子動態(tài)追蹤搜索狀態(tài),從而達(dá)到最優(yōu)值?;诹W尤旱膶?yōu)特點,其在多種領(lǐng)域都有廣泛應(yīng)用[16-21]。
工程實踐應(yīng)用中為解決SVM非線性以及維數(shù)災(zāi)難問題,常使用核函數(shù)代替最優(yōu)分類中的內(nèi)積運(yùn)算提高其運(yùn)算精度[22]。但以往核函數(shù)選取常常人為確定,主觀因素干擾過多會引起過擬合或者欠學(xué)習(xí)現(xiàn)象[23]。為提高SVM運(yùn)算精度,需要合理選取優(yōu)化算法對其內(nèi)部運(yùn)算參數(shù)進(jìn)行調(diào)整,進(jìn)而獲取高精度的分類器。結(jié)合PSO獨(dú)特的記憶功能和動態(tài)跟蹤全局搜索尋優(yōu)的特點,在建立SVM模型過程中,利用PSO算法對核函數(shù)和懲罰因子進(jìn)行全局優(yōu)化。從而建立基于粒子群的支持向量機(jī)識別算法,步驟如下所示:
1)根據(jù)原型觀測數(shù)據(jù),依據(jù)SVM算法篩選出支持向量組成的樣本訓(xùn)練集;
2)依據(jù)訓(xùn)練集中的每個支持向量,獲得一組SVM分類器的參數(shù)組成一個粒子,從而獲得粒子群;
3)對粒子群進(jìn)行初始化設(shè)置,即設(shè)定粒子群的初始參數(shù)C1、C2,初始速度矩陣V和每一個初始粒子個體最優(yōu)位置Pi和全局最優(yōu)位置Pg;
5)由計算得到的適應(yīng)度函數(shù)值來調(diào)整粒子個體的最優(yōu)位置Pi和全局最優(yōu)位置Pg;
6)利用調(diào)整后的位置更新粒子的狀態(tài),從而得到一組新的SVM分類器的參數(shù);
7)重復(fù)步驟4)-6)直至獲得滿足要求的粒子適應(yīng)度函數(shù)值,或者達(dá)到所設(shè)定的最大迭代次數(shù)時終止迭代,輸出結(jié)果。
3.1 景泰工程簡介
甘肅景泰電力提灌二期工程(簡稱景電工程)是一項高揚(yáng)程、大流量、多梯級電力提水灌溉工程。選取3泵站2號管道作為原型觀測試驗對象,與2號管道連接的4機(jī)組和5機(jī)組均為1200S-56型臥式離心泵,設(shè)計流量3 m3/s,額定轉(zhuǎn)速為600 r/min,設(shè)計揚(yáng)程56 m。4、5機(jī)組各布置3個測點,分別位于機(jī)組蝸殼頂部和蝸殼尾部兩側(cè),每個測點均放置水平方向和垂直方向2個拾振器,拾振器編號依次為#1、#2…#12,機(jī)組拾振器現(xiàn)場測試圖和平面布置圖如圖1、2所示。
圖1 機(jī)組拾振器現(xiàn)場測試圖Fig.1 Field test diagram of vibration sensor of units
圖2 機(jī)組拾振器平面布置圖Fig.2 Layout of vibration sensor of units
管道共布置6個測點,各測點均放置3個拾振器(x、y、z 共3個方向,#1、#2、#3拾振器為測點1,#4、#5、#6拾振器為測點2,以此類推,共6個測點18個拾振器),6個測點分別位于2號主管端部和A、B支管的端部和中部,2號管道平面布置圖如圖3所示。試驗采用中國地震局工程力學(xué)研究所研制的891-2型拾振器,根據(jù)泵站管道工作振動特點,選用中速度檔位。該檔位下水平方向拾振器的靈敏度范圍在7.394~7.543 V·s/m之間,垂直方向拾振器的靈敏度范圍在6.729~6.920 V·s/m之間。
圖3 2號管道拾振器布置平面圖Fig.3 Vibration sensors layout of No.2 pipeline
3.2 機(jī)組和管道振動響應(yīng)關(guān)系
根據(jù)景電泵站管道現(xiàn)場實測數(shù)據(jù)進(jìn)行振源分析,確定機(jī)組運(yùn)行對管道振動的影響貢獻(xiàn)率。原型觀測試驗測試工況為4機(jī)組穩(wěn)定運(yùn)行、5機(jī)組關(guān)閉,測試時間為900 s,采樣頻率為512 Hz。
選取位于4機(jī)組頂部的#5、#6拾振器采樣數(shù)據(jù)進(jìn)行頻譜分析,機(jī)組振動信號頻譜分析見圖4所示。由圖4分析機(jī)組振動信號頻譜可知,其主要振動頻率為60、40、50、10、0.5 Hz,主要為機(jī)組葉頻和轉(zhuǎn)頻倍頻引起的振動,以及水流脈動的影響,其中50 Hz為電信號頻率,不予考慮。選取靠近4機(jī)組的支管A上#1、#2和#3拾振器數(shù)據(jù)進(jìn)行頻譜分析,頻譜圖見圖5,由圖5可知,管道3個方向振動主要頻率為60、40、30、20、0.5 Hz,主要是機(jī)組葉頻和轉(zhuǎn)頻倍頻引起的頻率以及低頻水流脈動引起的振動。
圖4 機(jī)組#5、#6拾振器振動信號頻譜圖Fig.4 Spectrum graph of No.5 and No.6 vibration sensor signal of unit
圖5 管道#1、#2和#3拾振器振信號頻譜圖Fig.5 Spectrum graph of No.1, No.2 and No.3 vibration sensor signal of pipeline
依據(jù)頻譜圖計算各主頻引起振動的能量百分比,從而確定振源分布,振源分析結(jié)果見表1,由表1可知,管道水平x、y向振動,葉頻引起的振動所占總能量的比例在50%左右,其次是轉(zhuǎn)頻倍頻引起的振動,占比例達(dá)22%;管道垂直方向振動葉頻所占比例較水平方向有所降低,接近40%,轉(zhuǎn)頻倍頻所占比例與水平方向一致;管道3個方向振動中葉頻和轉(zhuǎn)頻倍頻占比例在70%左右,說明機(jī)組運(yùn)行是引起管道振動的主要原因。
由于機(jī)組水平方向只布置一個方向拾振器,管道水平方向布置2個拾振器,由表1中3個方向分頻比例數(shù)據(jù)可知,管道水平x、y方向各主頻所占比例接近,說明機(jī)組振動對管道水平x、y方向振動影響基本一致。管道水平x向振動數(shù)據(jù)可反映管道水平向振動趨勢,故選取管道x向振動數(shù)據(jù)代表水平振動響應(yīng),與機(jī)組水平單方向?qū)?yīng)。
機(jī)組運(yùn)行是引起管道振動的主要原因,機(jī)組和管道振動的相關(guān)系數(shù)在一定程度上也可以反映兩者之間的耦聯(lián)振動特性。表2列出了機(jī)組與管道在水平方向和垂直方向不同測點的相關(guān)性系數(shù)。
表2 機(jī)組與管道振動相關(guān)性系數(shù)Table 2 Related coefficient of vibration of unit and pipeline
由表2可知,針對4機(jī)組運(yùn)行、5機(jī)組關(guān)閉工況,機(jī)組與管道振動相關(guān)系數(shù)在1、2、4、5、6測點相關(guān)系數(shù)均在0.57以上,最大相關(guān)系數(shù)為0.74。3號測點位于支管A與主管相連接的支管中部,受兩端支墩作用,在一定程度上限制了振動能量的傳遞,且管道系統(tǒng)結(jié)構(gòu)復(fù)雜,從而造成3號測點處相關(guān)系數(shù)較小,尤其在垂直方向。其他5個測點相關(guān)性大小不一,且水平方向相關(guān)系數(shù)普遍大于垂直方向,說明機(jī)組和管道之間有一定的耦聯(lián)關(guān)系,且兩者耦聯(lián)振動特性比較復(fù)雜,機(jī)組與管道之間的振動有較強(qiáng)的耦合關(guān)系,利用在線監(jiān)測的機(jī)組數(shù)據(jù)預(yù)測管道振動是比較合理的。
3.3 模型建立與訓(xùn)練
選取4機(jī)組#1至#6拾振器振動幅值作為輸入因子,同一測點不同時間振動幅值雖不同,但統(tǒng)計意義上的測點振動幅值是反映了信號振動的平均能量。為反映數(shù)據(jù)全面性,機(jī)組振動信號每隔100個數(shù)據(jù)取30個數(shù)據(jù)作為樣本,共抽取機(jī)組振動樣本900個。根據(jù)上述機(jī)組和管道相關(guān)系數(shù)分析,管道1號測點和6號測點與機(jī)組振動相關(guān)性較大,相關(guān)系數(shù)最小為0.67,因此選取2號管道上#1、#2、#16、#17拾振器振動數(shù)據(jù)作為輸出因子,分別代表2號管道支管和主管振動情況。同樣振動數(shù)據(jù)每隔100個取30個,共抽取900個數(shù)據(jù)作為樣本輸出。將900個樣本數(shù)據(jù)隨機(jī)選取870個作為訓(xùn)練數(shù)據(jù),剩余30個作為測試數(shù)據(jù)。訓(xùn)練數(shù)據(jù)用來進(jìn)行預(yù)測和對比分析。
根據(jù)PSO-SVM流程圖,在MATLAB平臺上建立機(jī)組管道模型。粒子群參數(shù)選取決定粒子自身尋優(yōu)信息和其他粒子對尋優(yōu)軌跡的影響,根據(jù)大量理論研究和試驗對比,設(shè)置初始學(xué)習(xí)因子C1=1.5,C2=1.7,各測點最優(yōu)位置和全局最優(yōu)位置參數(shù)見表3,將表3中得到的最優(yōu)參數(shù)作為SVM算法中核函數(shù)參數(shù)和懲罰因子,內(nèi)部運(yùn)算參數(shù)的終止代數(shù)為200,種群數(shù)量為20。將870個訓(xùn)練樣本數(shù)據(jù)代數(shù)模型進(jìn)行訓(xùn)練。
表3 PSO最優(yōu)化參數(shù)Table 3 Optimization parameters of PSO
3.4 預(yù)測結(jié)果及對比分析
根據(jù)訓(xùn)練好的機(jī)組管道模型,將30個測試樣本代入預(yù)測模型進(jìn)行振動響應(yīng)仿真并得到預(yù)測結(jié)果。BP神經(jīng)網(wǎng)絡(luò)作為一種精度較高的預(yù)測方法,在農(nóng)業(yè)、機(jī)械、橋梁結(jié)構(gòu)等領(lǐng)域應(yīng)用較廣[24-29]。為說明本方法的正確性和優(yōu)越性,將BP網(wǎng)絡(luò)神經(jīng)預(yù)測作為對比方法。建立泵站管道BP神經(jīng)網(wǎng)絡(luò)模型,870個樣本數(shù)據(jù)代入BP神經(jīng)網(wǎng)絡(luò)進(jìn)行訓(xùn)練,剩余30個預(yù)測樣本進(jìn)行模型預(yù)測獲得預(yù)測結(jié)果。兩種方法預(yù)測結(jié)果與實際值對比如圖6所示。
圖6 各拾振器PSO-SVM預(yù)測結(jié)果和BP神經(jīng)網(wǎng)絡(luò)預(yù)測結(jié)果、實際值對比Fig.6 Comparison of predicted results of PSO-SVM, BP neural network and actual for each sensor
由圖6中各拾振器PSO-SVM預(yù)測結(jié)果與BP神經(jīng)網(wǎng)絡(luò)預(yù)測結(jié)果和真實值對比可知,2種預(yù)測方法計算結(jié)果與實際值都比較接近,但PSO-SVM預(yù)測結(jié)果相對BP神經(jīng)網(wǎng)絡(luò)結(jié)果與實際值更接近,基本吻合,BP神經(jīng)網(wǎng)絡(luò)預(yù)測結(jié)果可以反映結(jié)構(gòu)振動趨勢,但峰值處與實際值相差較多,導(dǎo)致誤差較大,不能準(zhǔn)確預(yù)測結(jié)構(gòu)振動響應(yīng)。而本文方法得到的結(jié)果不僅能反映管道振動趨勢,并且振動峰值與實際值非常接近,保證了預(yù)測精度。PSO-SVM方法通過粒子群法優(yōu)化支持向量機(jī)參數(shù),保證了SVM核函數(shù)選取的客觀性和科學(xué)性,提高了計算精度。
圖6中2種模型預(yù)測結(jié)果對比,從橫向?qū)Ρ戎性u價了PSO-SVM預(yù)測效果,突出本文方法的優(yōu)越性。其次可通過評價指標(biāo),直觀反映2種方法預(yù)測結(jié)果與真實值誤差。常用的評價指標(biāo)有平均相對誤差(mean relative error, MRE)和根均方誤差(root mean square error,RMSE)[30]。MRE是指樣本中預(yù)測值與實際值之間相對誤差的平均值,反映了預(yù)測值與真實值之間的總體差異。RMSE是指真實值與預(yù)測值偏差與真實值比值的平方和樣本總數(shù)n比值的平方根,根均方誤差對一組數(shù)據(jù)中的特大或者特小誤差反映非常敏感,可以很好反映出實際值與預(yù)測值之間的差異精密度。MRE和RMSE越接近0,說明模型預(yù)測效果越好,預(yù)測精度越高。式中k表示樣本次序,k=1,2,3…n;n表示預(yù)測樣本量;Tk表示實際值;?KT表示預(yù)測值。
表4根據(jù)式(9)和式(10)分別計算了BP神經(jīng)網(wǎng)絡(luò)和PSO-SVM模型預(yù)測值與實際值的平均相對誤差和根均方誤差。
表4 各預(yù)測方法評價指標(biāo)計算結(jié)果Table 4 Evaluation index calculation results of each predicted method
由表4可知,利用粒子群優(yōu)化的支持向量機(jī)管道預(yù)測值與實際值基本一致,平均相對誤差最大值為6.8%,其他3個測點平均相對誤差均控制在4%以內(nèi),根均方誤差接近于0,最大為0.261。BP神經(jīng)網(wǎng)絡(luò)預(yù)測值與實際值誤差相對較大,相對誤差在20%左右。就該測試工況而言,當(dāng)機(jī)組與管道相關(guān)系數(shù)在0.67以上時,基于粒子群優(yōu)化的支持向量機(jī)預(yù)測方法有效,泛化能力更強(qiáng),可以得到較好的預(yù)測結(jié)果。
1)提出一種基于粒子群的支持向量機(jī)預(yù)測方法,SVM核函數(shù)選取主觀因素干擾過多導(dǎo)致預(yù)測不準(zhǔn)確,利用粒子群算法特有的記憶功能和動態(tài)跟蹤全局優(yōu)化特點,優(yōu)化SVM核函數(shù)和懲罰因子,從而提高其預(yù)測準(zhǔn)確度和精度。結(jié)合景電二期工程2號管道機(jī)組和管道現(xiàn)場實測數(shù)據(jù),驗證該方法的準(zhǔn)確性和可行性。
2)根據(jù)原型觀測數(shù)據(jù),對振動信號進(jìn)行頻譜分析,計算各振源引起管道振動所占比重。由振源組成知,機(jī)組運(yùn)行引起的管道振動所占比例在70%左右,表明機(jī)組運(yùn)行是管道振動的主要原因。除管道3號測點外,管道其余5個測點振動信號與機(jī)組振動信號相關(guān)系數(shù)0.57以上,說明兩者之間的振動響應(yīng)有強(qiáng)耦合性。
3)針對該工程泵站測試工況,當(dāng)機(jī)組與管道相關(guān)系數(shù)在0.67以上時,基于粒子群優(yōu)化的支持向量機(jī)預(yù)測方法有效,對比PSO-SVM和BP神經(jīng)網(wǎng)絡(luò)預(yù)測結(jié)果和評價指標(biāo),PSO-SVM計算結(jié)果與真實值基本一致,平均相對誤差最大為6.8%,根均方誤差相對BP神經(jīng)網(wǎng)絡(luò)小一個數(shù)量級,更逼近于0,大大降低了預(yù)測誤差。說明該方法克服了SVM計算缺陷,提高了模型計算精度。本文研究可為大型梯級泵站管道振動預(yù)測提供參考。
[1] 周邵萍,郝占峰,韓紅飛,等. 基于應(yīng)變模態(tài)差和神經(jīng)網(wǎng)絡(luò)的管道損傷識別[J]. 振動、測試與診斷,2015,35(2):334-338. Zhou Shaoping, Hao Zhanfeng, Han Hongfei, et al. Damage identification in straight pipeline using strain modal difference and neural network[J]. Journal of Vibration, Measurement and Diagnosis, 2015, 35(2): 334-338. (in Chinese with English abstract)
[2] 張建偉,江琦,朱良?xì)g,等. 基于改進(jìn)HHT的泵站管道工作模態(tài)辨識[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(2):71-76. Zhang Jianwei, Jiang Qi, Zhu Lianghuan, et al. Modal parameter identification for pipeline of pumping station based on improved Hilbert-Huang transform[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(2): 71-76. (in Chinese with English abstract)
[3] 張東山,張志忠,劉瑜,等. 基于壓電阻抗方法的油氣管道裂紋損傷定量研究[J]. 工程力學(xué),2016,33(1):232-237. Zhang Dongshan, Zhang Zhizhong, Liu Yu, et al. Piezoelectric impedance-based quantitative study on oil and gas pipeline crack damage[J]. Engineering Mechanics, 2016, 33(1): 232-237. (in Chinese with English abstract)
[4] 杜國鋒,吳方紅,周博,等. 基于壓電阻抗方法的鋼管裂紋損傷識別試驗[J]. 武漢大學(xué)學(xué)報:工學(xué)版,2014,47(2):226―229. Du Guofeng, Wu Fanghong, Zhou Bo, et al. Experiment on crack damage identification of steel pipeline based on piezoelectric impedance method[J]. Engineering Journal of Wuhan University, 2014, 47(2): 226―229. (in Chinese with English abstract)
[5] 劉曉霞. 基于有限元分析雙層海底管道斷裂失效問題[J].管道技術(shù)與設(shè)備,2016(7):14-16. Liu Xiaoxia. Subsea pipe-in-pipe fracture failure problem based on finite element method[J]. Pipeline Technique and Equipment, 2016(7): 14-16. (in Chinese with English abstract)
[6] 馬震岳,董毓新. 水輪發(fā)電機(jī)組動力學(xué)[M]. 大連:大連理工大學(xué)出版社,2003.
[7] 練繼建,張輝東,王海軍. 水電站廠房接哦故振動響應(yīng)的神經(jīng)網(wǎng)絡(luò)預(yù)測[J]. 水力學(xué)報,2007,38(3):361-364. Lian Jijian, Zhang Huidong, Wang Haijun. Predication of vibration response of powerhouse structures by means of artificial neural network method[J]. Journal of Hydraulic Engineering, 2007, 38(3): 361-364. (in Chinese with English abstract)
[8] 張龑,練繼建,劉昉,等. 基于原型觀測的廠頂溢流式水電站廠房結(jié)構(gòu)振動特性研究[J]. 天津大學(xué)學(xué)報:自然科學(xué)與工程技術(shù)版,2015,48(7):584-590. Zhang Yan, Lian Jijian, Liu Fang, et al. Vibration characteristics of powerhouse structure of roof overflow hydropower station based on prototype observation[J]. Journal of Tianjin University: Science and Technology, 2015, 48(7): 584-590. (in Chinese with English abstract)
[9] 王海軍,毛柳丹,練繼建. 基于RVM方法的水電站廠房結(jié)構(gòu)振動預(yù)測研究[J]. 振動與沖擊,2015,34(3):23-27. Wang Haijun, Mao Liudan, Lian Jijian. Structural vibration prediction for a hydropower house based on RVM method[J]. Journal of Vibration and Shock, 2015, 34(3): 23-27. (in Chinese with English abstract)
[10] 張松蘭. 支持向量機(jī)的算法及應(yīng)用綜述[J]. 江蘇理工學(xué)院學(xué)報,2016,22(2):14-17. Zhang Songlan. A survey of improved algorithm and application on support vector machine[J]. Journal of Jiangsu University of Technology, 2016, 22(2): 14-17. (in Chinese with English abstract)
[11] 戴衛(wèi)國,李海濤,顏恒平,等. 基于支持向量機(jī)改進(jìn)算法的船舶類型識別研究[J]. 聲學(xué)技術(shù),2015,34(3):203-208. Dai Weiguo, Li Haitao, Yan Hengping, et al. Application of an improved support vector machine classification algorithmto underwater targets recognition[J]. Technical Acoustics, 2015, 34(3): 203-208. (in Chinese with English abstract)
[12] 辛斌,陳杰. 粒子群優(yōu)化與差分進(jìn)化混合算法的綜述和分類[J]. 系統(tǒng)科學(xué)與數(shù)學(xué),2011,31(9):1130-1150. Xin Bin, Chen Jie. A survey and taxonomy on hybrid algorithms based on particle swarm optimization and differential evolution[J]. Journal of Systems Science and Mathematical Sciences, 2011, 31(9): 1130-1150. (in Chinese with English abstract)
[13] 李鋒,吳華瑞,朱華吉,等. 基于改進(jìn)粒子群算法的農(nóng)產(chǎn)品召回優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報,2013,29(7):238-245. Li Feng, Wu Huarui, Zhu Huaji, et al. Optimization of agricultural products recall based on modified particle swarm algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(7): 238-245. (in Chinese with English abstract)
[14] 郭澎濤,蘇藝,茶正早,等. 基于BP 神經(jīng)網(wǎng)絡(luò)的橡膠苗葉片磷含量高光譜預(yù)測[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(增刊1):177-183. Guo Pengtao, Su Yi, Cha Zhengzao, et al. Prediction of leaf phosphorus contents for rubber seedlings based on hyperspectral sensitive bands and back propagation artificial neural network[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(Supp.1): 177-183. (in Chinese with English abstract)
[15] 陳嘯,王紅英,孔丹丹,等. 基于粒子群參數(shù)優(yōu)化和BP 神經(jīng)網(wǎng)絡(luò)的顆粒飼料質(zhì)量預(yù)測模型[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(14):306-314. Chen Xiao, Wang Hongying, Kong Dandan, et al. Quality prediction model of pellet feed basing on BP network using PSO parameters optimization method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(14): 306-314. (in Chinese with English abstract)
[16] 陳黎卿,張棟,陳無畏,等. 基于微粒子群優(yōu)化算法的 差速器殼體輕量化設(shè)計[J]. 農(nóng)業(yè)工程學(xué)報,2013,29(9):24-31. Chen Liqing, Zhang Dong, Chen Wuwei, et al. Lightweight design of differential case based on particle swarm optimization algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(9): 24-31. (in Chinese with English abstract)
[17] 李繼猛,陳雪峰,何正嘉,等. 采用粒子群算法的沖擊信號自適應(yīng)單穩(wěn)態(tài)隨機(jī)共振檢測方法[J]. 機(jī)械工程學(xué)報,2011,47(21):58-63. Li Jimeng, Chen Xuefeng, He Zhengjia, et al. Adaptive monostable stochastic resonance based on PSO with application in impact signal detection[J]. Journal of Mechanical Engineering, 2011, 47(21): 58-63. (in Chinese with English abstract)
[18] 王華,劉耀林,姬盈利. 基于多目標(biāo)微粒群優(yōu)化算法的土地利用分區(qū)模型[J]. 農(nóng)業(yè)工程學(xué)報,2012,28(12):237-244. Wang Hua, Liu Yaolin, Ji Yingli. Land use zoning model based on multi-objective particle swami optimization algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(12): 237-244. (in Chinese with English abstract)
[19] 陳教料,陳教選,楊將新,等. 基于自加速遺傳粒子群算法的半封閉式溫室能耗預(yù)測[J]. 農(nóng)業(yè)工程學(xué)報,2015,31(24):186-193. Chen Jiaoliao, Chen Jiaoxuan, Yang Jiangxin, et al. Prediction on energy consumption of semi-closed greenhouses based on self-accelerating PSO-GA[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(24): 186-193. (in Chinese with English abstract)
[20] 馮曉莉,仇寶云. 考慮河道輸水損失的大型泵站系統(tǒng)運(yùn)行優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報,2015,31(17):35-41. Feng Xiaoli, Qiu Baoyun. Optimal operation for large pumping station system based on water transferring losses of river[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(17): 35-41. (in Chinese with English abstract)
[21] 肖艷,姜琦剛,王斌,等. 基于Relief F 和PSO 混合特征選擇的面向?qū)ο笸恋乩梅诸怺J]. 農(nóng)業(yè)工程學(xué)報,2016,32(4):211-216. Xiao Yan, Jiang Qigang, Wang Bin, et al. Object based land-use classification based on hybrid feature selection method of combining Relief F and PSO[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(4): 211-216. (in Chinese with English abstract)
[22] 梁威,景博,焦曉璇,等. 基于進(jìn)化支持向量機(jī)的機(jī)載燃油泵故障診斷及試驗研究[J]. 機(jī)械強(qiáng)度,2016,38(5):933-939. Liang Wei, Jing Bo, Jiao Xiaoxuan, et al. Onboard fuel pump fault diagnosis based on improved support vector machine and experimental research[J]. Journal of Mechanical Strength, 2016, 38(5): 933-939. (in Chinese with English abstract)
[23] 楊望燦,張培林,任國全,等. 基于模糊熵與LS-SVM 的軸承故障診斷[J]. 機(jī)械強(qiáng)度,2014,36(5):666-670. Yang Wangcan, Zhang Peilin, Ren Guoquan, et al. Bearing fault diagnosis based on fuzzy entropy and LS-SVM[J]. Journal of Mechanical Strength, 2014, 36(5): 666-670. (in Chinese with English abstract)
[24] 杜福銀. 基于神經(jīng)網(wǎng)絡(luò)的風(fēng)力輔助提水系統(tǒng)自適應(yīng)PID解耦控制[J]. 農(nóng)業(yè)工程學(xué)報,2012,28(4):165-168. Du Fuyin. Adaptive PID decouple control strategy for wind power aided pumping water system based on neural network[J]. Transactions of the Chinese Society for Agricultural Engineering (Transactions of the CSAE), 2012, 28(4): 165-168. (in Chinese with English abstract)
[25] 李震,洪添勝,Ning Wang,等. 基于神經(jīng)網(wǎng)絡(luò)預(yù)測的無線傳感器網(wǎng)絡(luò)田間射頻信號路徑損耗[J]. 農(nóng)業(yè)工程學(xué)報,2010,26(12):178-181. Li Zhen, Hong Tiansheng, Ning Wang, et al. Path-loss prediction for radio frequency signal of wireless sensor network in field based on artificial neural network[J]. Transactions of the Chinese Society for Agricultural Engineering (Transactions of the CSAE), 2010, 26(12): 178-181. (in Chinese with English abstract)
[26] Tumenbayar Badrakh-Yeruul,夏安雄,張建華,等. 基于遺傳算法的神經(jīng)網(wǎng)絡(luò)在爆破振動預(yù)測中的應(yīng)用[J]. 爆破,2014,31(3):140-144. Tumenbayar Badrakh-Yeruul, Xia Anxiong, Zhang Jianhua, et al. Application of neural network based on genetic algorithm in prediction of blasting vibration[J]. Blasting, 2014, 31(3): 140-144. (in Chinese with English abstract)
[27] 黎明,何玉林,金鑫. 基于神經(jīng)網(wǎng)絡(luò)的風(fēng)力機(jī)結(jié)構(gòu)耦合振動預(yù)測模型[J]. 系統(tǒng)仿真學(xué)報,2009,21(2):413-417. Li Ming, He Yulin, Jin Xin. Coupled vibration forecasting of wind turbine based on artificial neural network[J]. Journal of System Simulation, 2009, 21(2): 413-417. (in Chinese with English abstract)
[28] 馮國勝,賈素梅,周瑋. 基于BP神經(jīng)網(wǎng)絡(luò)的電控單體泵柴油機(jī)標(biāo)定方法[J]. 農(nóng)業(yè)工程學(xué)報,2012,28(15):21-26. Feng Guosheng, Jia Sumei, Zhou Wei. Calibration method for EUP diesel engine based on BP neural network[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(15): 21-26. (in Chinese with English abstract)
[29] 孫宗光,高贊明,倪一清. 基于神經(jīng)網(wǎng)絡(luò)的橋梁損傷位置識別[J]. 工程力學(xué),2004,21(1):42-47. Sun Zongming, Ko Jianming, Ni Yiqing. Identification of damage location in bridge deck by neural network[J]. Engineering Mechanics, 2004, 21(1): 42-47. (in Chinese with English abstract)
[30] 劉鵬,范立云,白云,等. 高速電磁閥電磁力近似模型的構(gòu)建與分析[J]. 農(nóng)業(yè)工程學(xué)報,2015,31(16):96-101. Liu Peng, Fan Liyun, Bai Yun, et al. Modeling analysis of electromagnetic force approximate model of high-speed solenoid valve[J]. Transactions of the Chinese Society for Agricultural Engineering (Transactions of the CSAE), 2015, 31(16): 96-101. (in Chinese with English abstract)
Prediction of vibration response for pipeline of cascade pumping station based on PSO-SVM algorithm
Zhang Jianwei, Jiang Qi, Liu Xuanran, Ma Xiaojun
(College of Water Conservancy, North China University of Water Conservancy and Electric Power, Zhengzhou 450011, China)
Pipeline is a carrier of cascade pumping station with long distance water conveyance. Therefore, it is particularly important to keep the stable operation of pipeline structure. Because of the complexity and diversity of pipeline structure, it is difficult to measure vibration response signal of pipeline of pumping station. In order to minimize risks and ensure safe operation of pipeline, it is significant to search for some methods that use fewer unit monitoring data to forecast pipeline vibration state. Support vector machine (SVM) was designed as the core for the proposed prediction model considering its advantages in solving the small sample size, nonlinear and high dimensional pattern recognition, and so on. For the purpose of the improvement of data utilization efficiency, particle swarm optimization (PSO) algorithm was applied because of its advantage of special memory function. Combining advantages of PSO algorithm and SVM, a PSO-SVM prediction model was proposed in this paper. Global search tracking algorithm of PSO was used to optimize the kernel functions and penalty factors of SVM, which weakened the problem of low accuracy of prediction caused by SVM parameters optimization deficiency. The No.2 pipeline of Pumping Station 3 in Jindian River pumping irrigation was selected as the research object, which was connected with No.4 and No.5 units, and 3 points were set up at the top of the volute of the unit and on both sides of the tail of the volute respectively for these 2 units. First of all, based on the vibration monitoring data of units and pipeline, with the mathematical statistics theory and spectrum analysis, the dominant frequencies of pipeline structure were counted and the contribution rates of vibration sources were determined for pipeline vibration. At the same time, correlation coefficients of vibration between unit and pipeline were calculated. Except No.3 measuring point, the correlation coefficients of the other 5 measuring points were greater than 0.57, of which the correlation coefficients of No.1 and No.6 measuring points were relatively large. Strong coupling relationship between units and pipeline was determined. Selecting the unit monitoring vibration data in the different periods as input factors, and the pipeline vibration response data of vibration sensors #1, #2, #16 and #17 during corresponding periods as output factors, the PSO-SVM prediction model of pump station was established. In order to compare prediction accuracy, back propagation (BP) neural network was established with the same data for training and test. The results showed that the PSO-SVM prediction result coincided highly with actually measured data, and BP neural network only reflected the trend of pipeline vibration response. PSO-SVM prediction model had a fairly high promotion in prediction compared to BP neural network. Aiming to quantitatively compare 2 methods, mean relative error (MRE) and root mean square error (RMSE) were introduced as the evaluation indices. The maximum values of MRE and RMSE for PSO-SVM were 6.8% and 0.261, respectively, much lower than BP neural network. The research shows that, in this test condition, when the correlation coefficient between unit and pipeline is above 0.67, this proposed method can realize effectively vibration prediction of pipeline, which has stronger generalization ability so as to achieve the purpose of pipeline safe operation and online monitoring.
pumps; vibrations; optimization; pipeline; particle swarm; support vector machine; prediction
10.11975/j.issn.1002-6819.2017.11.010
TV93; TB53
A
1002-6819(2017)-11-0075-07
張建偉,江 琦,劉軒然,馬曉君. 基于PSO-SVM算法的梯級泵站管道振動響應(yīng)預(yù)測[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(11):75-81.
10.11975/j.issn.1002-6819.2017.11.010 http://www.tcsae.org
Zhang Jianwei, Jiang Qi, Liu Xuanran, Ma Xiaojun. Prediction of vibration response for pipeline of cascade pumping station based on PSO-SVM algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(11): 75-81. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.11.010 http://www.tcsae.org
2016-12-11
2017-05-14
國家自然科學(xué)基金(51679091);華北水利水電大學(xué)研究生教育創(chuàng)新計劃基金(YK2015-02)
張建偉,男,河南洛陽,副教授,博士,主要從事水利水電工程的研究與教學(xué)工作。鄭州 華北水利水電大學(xué)水利學(xué)院,450011。
Email:zjwcivil@126.com