• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    枸杞振動采收機理分析與試驗

    2017-07-12 18:45:37李成松王麗紅楊蘭濤
    農(nóng)業(yè)工程學報 2017年11期
    關(guān)鍵詞:頻數(shù)結(jié)果枝枸杞

    何 苗,坎 雜,李成松,王麗紅,楊蘭濤,王 哲

    (石河子大學機械電氣工程學院,石河子 832003)

    枸杞振動采收機理分析與試驗

    何 苗,坎 雜,李成松※,王麗紅,楊蘭濤,王 哲

    (石河子大學機械電氣工程學院,石河子 832003)

    為深入研究枸杞振動采收機理,該文基于果-蒂分離條件及枸杞枝條間的動態(tài)傳遞特性進行試驗研究分析,獲得枸杞振動采收條件。利用振動分離試驗臺進行結(jié)果枝果-蒂振動分離試驗,探尋最優(yōu)采摘效果的振動參數(shù)組合,即激振頻率18.22 Hz、激振振幅7.87 mm和枝條通過裝置的行進速度20.93 mm/s,分析該組合參數(shù)下結(jié)果枝的加速度響應(yīng),獲得枸杞果-蒂分離條件。在田間采用高速攝像系統(tǒng)對枸杞枝條間的振動傳遞情況進行跟蹤拍攝,并用高速運動分析軟件ProAnalyst對枸杞枝條的動態(tài)響應(yīng)進行分析,獲得枸杞三級枝和結(jié)果枝(四級枝)的加速度響應(yīng)關(guān)系。對試驗結(jié)果進行分析,獲得了不同激振情況下枸杞振動采收所需加速度,即當所有結(jié)果枝被直接激振時,被激振處的加速度需要達到518.38~551.06 m/s2,結(jié)果枝末端加速度需要達到347.64~390.56 m/s2;當存在結(jié)果枝未被直接激振,而三級枝全部被直接激振時,三級枝被激振處加速度需要達到1 738.20~1 952.80 m/s2。該文研究結(jié)果可為枸杞機械化采收提供參考。

    農(nóng)作物;機械化;振動;枸杞;動態(tài)響應(yīng)

    0 引 言

    枸杞作為一種食藥同源食品,具有預(yù)防癌癥、降低血糖血壓、延緩衰老等多種保健功效[1-2],在中國的種植面積也逐年增加[3]。枸杞屬于無限花序植物,每年需采摘多次[4],人工采收存在勞動強度大、效率低、費用高等問題[5-7]?,F(xiàn)有研究表明,振動式裝置在果品采收上具有明顯優(yōu)勢[8],因此研究果-蒂分離條件及枸杞植株的振動傳遞特性,尋求振動采收機理具有重要意義。

    So[9]選取枸杞枝條進行枸杞振動分離室內(nèi)試驗,確定了成熟果實分離率最高時主要因素的參數(shù);張最等[10]對枸杞結(jié)果枝進行仿真分析確定了合理的迫振載荷施加位置和振動角頻率,但上述文獻并未對枸杞三級枝與四級枝之間的振動動態(tài)響應(yīng)進行研究。

    國內(nèi)外對果品采收機理開展了大量研究,Bentaher等[11]通過仿真分析得到測試點加速度并判斷橄欖果枝分離慣性力的大小;Chen等[12-17]通過加速度傳感器測試樹枝上各測試點的振動加速度分析了櫻桃、銀杏等果樹的振動動態(tài)響應(yīng);瞿維等[18]采用高速攝像儀對杏樹樹枝的能量傳遞進行了研究;王長勤等[19-26]通過振動試驗研究了影響黑加侖、核桃等果品果-蒂分離率的主要影響因素;李成松[27]采用理論和試驗相結(jié)合的方法研究了葡萄果-蒂分離的條件和主要影響因素。

    本文擬將加速度作為動態(tài)響應(yīng)的主要指標[28],研究分析枸杞果-蒂分離條件和枸杞枝條間動態(tài)響應(yīng)關(guān)系,確定不同激振情況下激振處所需加速度范圍,以期為枸杞機械化采收提供參考。

    1 枸杞結(jié)果枝的果-蒂振動分離試驗

    前期調(diào)研統(tǒng)計分析,枸杞植株主要由一個主枝及四級分枝組成,樹形示意圖如圖1所示。枸杞果實均集中在結(jié)果枝(四級枝)上,結(jié)果枝相對其他分枝較為纖細,且呈下垂狀。枸杞振動采收原理是激振源激振枝條,枝條上的果實獲得加速度響應(yīng)從而形成慣性力,當果實獲得的加速度大于果-蒂分離所需加速度時果實脫落[8]。

    圖1 枸杞植株樹形示意圖Fig.1 Diagram of wolfberry tree structure

    影響果-蒂分離的主要因素為慣性力、激振時間、成熟度等[29]。慣性力的主要影響因素為激振頻率和振幅[30]。將激振頻率、激振振幅和激振時間作為影響枸杞結(jié)果枝果-蒂振動分離率的主要因素,由于試驗裝置固定不動,激振時間由枝條通過裝置的行進速度決定(以下簡稱行進速度)。通過顏色判別,將全果鮮紅或黃紅的果實稱為成熟果實,將全果青綠和半青綠的果實稱為未成熟果實。統(tǒng)計每次振動試驗結(jié)果枝上落果數(shù)和未落果數(shù),按式(1)計算分離率。

    式中P為分離率,%;N1為落果數(shù);N2為未落果數(shù)。因采摘期成熟果實和未成熟果實同時掛枝,需進行選擇性采摘,所以試驗時將成熟果實果-蒂分離率和未成熟果實果-蒂分離率作為響應(yīng)指標。

    本文擬通過試驗獲得最優(yōu)采摘效果下的振動組合參數(shù),最優(yōu)采摘效果定義為成熟果實分離率達到最大及未成熟果實分離率達到最小。

    1.1 材料與方法

    本振動分離試驗臺包括:DC-300-3/SV-0505 電動振動試驗系統(tǒng)(蘇州蘇試試驗儀器股份有限公司)、TC55運動控制系統(tǒng)(北京多普康自動化技術(shù)有限公司)、57BYGHT直線步進電機(上海漢霞自動化科技有限公司)、振動分離試驗機架及振動桿,如圖2所示。結(jié)果枝振動分離過程采用FASTEC-TS4型高速攝像儀(美國,F(xiàn)astec Imaging公司)進行跟蹤拍攝。試驗時間為2016月8月28日,結(jié)果枝采摘地點為新疆生產(chǎn)建設(shè)兵團第七師一二四團一連,采用隨機抽樣的方法得到60枝結(jié)果枝,試驗在采樣后當天完成。試驗過程:由電動振動試驗系統(tǒng)帶動振動桿提供激勵,枸杞結(jié)果枝枝條裝夾在振動分離試驗機架上,結(jié)果枝由直線步進電機驅(qū)動開始做勻速直線運動,離開振動區(qū)域后停止,速度由運動控制系統(tǒng)控制,結(jié)果枝在勻速直線運動過程中受到振動激勵,實現(xiàn)果-蒂分離。

    圖2 振動分離試驗臺結(jié)構(gòu)示意圖Fig.2 Stracture diagram of vibration separation test bench

    根據(jù)試驗條件及預(yù)試驗分析,確定了振動試驗臺的激振頻率、激振振幅以及行進速度3個因素的主要水平。試驗采用二次回歸通用旋轉(zhuǎn)組合設(shè)計方法,試驗因素水平及編碼表如表1,共進行20組試驗,每組重復(fù)3次,試驗結(jié)果取平均值,采用Design—Expert 8.0.5軟件進行試驗方案設(shè)計,試驗數(shù)據(jù)如表2。

    表1 試驗因素水平及編碼表Table 1 Test factor level and coding table

    表2 試驗方案及結(jié)果Table 2 Test protocol and results

    1.2 試驗結(jié)果與分析

    1.2.1 試驗結(jié)果

    通過Design-Expert 8.0.5 軟件對試驗數(shù)據(jù)進行方差分析,如表3所示。成熟果實分離率M和未成熟果實分離率I所對應(yīng)的回歸方程為式(2)和式(3)。

    式中A、B、C為頻率、振幅和速度的編碼值。

    表3 回歸模型的方差分析Table 3 Variance analysis of regression models

    由回歸方程中系數(shù)絕對值大小可知各因素對成熟果實分離率和未成熟果實分離率的影響,對成熟果實分離率各因素的影響大小關(guān)系為:A>B>C,對未成熟果實分離率各因素的影響大小關(guān)系為:A>B>C。

    1.2.2 參數(shù)優(yōu)化

    1.2.3 試驗驗證

    為驗證最終優(yōu)化參數(shù),從新疆生產(chǎn)建設(shè)兵團第七師一二四團一連采摘結(jié)果枝條30枝,在振動分離試驗臺上進行驗證試驗,并用高速攝像系統(tǒng)跟蹤拍攝。試驗結(jié)果為:成熟果實分離率為95.18%,未成熟果實分離率為6.43%,與優(yōu)化參數(shù)對應(yīng)結(jié)果基本相符。

    1.2.4 枸杞果-蒂分離條件

    通過1.2.3驗證試驗發(fā)現(xiàn),每次果-蒂分離過程至少需要振動桿激勵枝條10次以上,從驗證試驗的30段視頻中任選10段,每段中選取10次振動桿激勵結(jié)果枝時結(jié)果枝的運動過程。利用ProAnalyst軟件分析結(jié)果枝的振動動態(tài)響應(yīng),分析可知結(jié)果枝每受到振動桿一次激勵都會產(chǎn)生一系列加速度波動,從而使得結(jié)果枝產(chǎn)生擺動,這一系列加速度中會存在一個最大值,由此獲得結(jié)果枝被激振處的最大加速度值(共計100個)和結(jié)果枝末端的最大加速度值(共計100個),根據(jù)數(shù)據(jù)總量和極差大小確定組數(shù)與組距,分別做出頻數(shù)分布圖如圖3所示。

    分析數(shù)據(jù)可知,結(jié)果枝被激振處頻數(shù)最大的最大加速度均值為534.73 m/s2,95%的置信區(qū)間為[518.38,551.06];結(jié)果枝末端頻數(shù)最大的最大加速度均值為369.10 m/s2,95%置信區(qū)間[347.64,390.56]。由此獲得枸杞果-蒂分離條件:當結(jié)果枝被直接激振時,被激振處加速度需要達到518.38~551.06 m/s2,結(jié)果枝末端加速度需要達到347.64~390.56 m/s2;當結(jié)果枝未被直接激振時,需要通過直接激振三級枝將振動能量傳遞到結(jié)果枝末端,保證結(jié)果枝末端加速度達到347.64~390.56 m/s2。

    圖3 結(jié)果枝被激振處與末端最大加速度頻數(shù)分布Fig.3 Frequency number distribution of maximum acceleration for vibrated position and end of fruit branch

    2 枸杞枝條振動響應(yīng)試驗

    振動采收時通常利用振動源直接激振結(jié)果枝實現(xiàn)果蒂分離,但當結(jié)果枝未被直接激振時,需依靠三級枝的振動能量傳遞來實現(xiàn)結(jié)果枝上果-蒂分離。現(xiàn)已獲得枸杞果-蒂分離條件,需要對三級枝與結(jié)果枝的振動傳遞響應(yīng)進行研究。

    本流域?qū)賮啛釒夂?,高溫濕潤多雨,具有明顯的干濕季節(jié)。東江流域多年平均降水量在1 500 mm~2 400 mm之間,其中4月—9月占全年降雨的80%以上。東江洪水具有水情復(fù)雜、洪水遭遇種類繁多等特點。由鋒面雨造成的洪水峰型較肥碩,漲水緩慢。由臺風雨造成的洪水峰型尖瘦,漲落變化快,一次洪水過程一般為6 d~8 d。東江三角洲的潮汐屬不規(guī)則半日潮,日潮不等現(xiàn)象顯著。由于受徑流和臺風的影響,年最高潮位一般出現(xiàn)于汛期。

    2.1 試驗材料與方法

    試驗儀器為FASTEC-TS4型高速攝像儀,分辨率1 280×1 024像素,幀速率250幀/s,采用高速運動分析軟件ProAnalyst進行后期處理。激振源采用尼龍桿,長度為530 mm、直徑為15 mm。試驗時間為2016年9月23日,試驗地點在新疆生產(chǎn)建設(shè)兵團第七師一二四團一連,枸杞品種為精杞一號,4 a生植株,選取樣本100組。

    試驗時,對枸杞植株三級枝施加單次隨機激勵,該激勵方向以地面為參考系,與地面平行且垂直于高速攝像儀拍攝平面。高速攝像標記點位置如圖4所示,取兩個三級枝B1、B2的中點為標記點1和標記點2,因結(jié)果枝末端離激振源較遠,果實脫落所需能量較大、時間較長[18],為保證所有果實獲得足夠的激振能量,所以將結(jié)果枝B3末端處節(jié)點作為標記點3。

    試驗分為2個內(nèi)容:1)為尋求結(jié)果枝與父級三級枝的動態(tài)響應(yīng)關(guān)系,對標記點2施加單次隨機激勵,獲取標記點2和標記點3的加速度響應(yīng),選取100組樣本分別進行試驗。2)為尋求結(jié)果枝與相鄰三級枝的動態(tài)響應(yīng)關(guān)系,對標記點1施加單次隨機激勵,獲取標記點1和標記點3的加速度響應(yīng),選取100組樣本分別進行試驗。

    圖4 高速攝像標記點位置示意圖Fig.4 Schematic diagram of high-speed camera marking point position

    激勵過大會對植株造成損傷,激勵過小結(jié)果枝末端加速度無法滿足果-蒂分離條件,根據(jù)預(yù)試驗結(jié)果本試驗在2種激勵條件下進行:1)在盡量不對植株造成損傷的情況下對植株施加激勵,按照試驗內(nèi)容分別選取100組樣本進行試驗;2)在保證結(jié)果枝末端能滿足果-蒂分離條件情況下對植株施加激勵,為減少對植株的損傷,按照試驗內(nèi)容分別選取20組樣本進行試驗。

    2.2 結(jié)果與分析

    2.2.1 結(jié)果枝與父級三級枝動態(tài)響應(yīng)關(guān)系

    以單次隨機激勵為例,標記點2與標記點3的加速度響應(yīng)如圖5所示。由圖5可知,標記點3的最大加速度產(chǎn)生時間相對于標記點2存在滯后現(xiàn)象,分別獲取每組試驗標記點2和標記點3的加速度響應(yīng),對每組試驗標記點2和標記點3產(chǎn)生最大加速度的時間差進行統(tǒng)計分析,得到時間差平均值為0.032 s,標準差為0.008 s,即對標記點2進行激勵后,振動能量需要0.032 s才能傳遞到標記點3。

    圖5 單次激勵時標記點2與標記點3加速度響應(yīng)Fig.5 Point 2 and point 3 acceleration response for single excitation

    對100組試驗數(shù)據(jù)標記點2和標記點3的最大加速度值進行統(tǒng)計分析,得到標記點2和標記點3最大加速度值的頻數(shù)分布如圖6。用SPSS軟件對標記點2和標記點3最大加速度值進行統(tǒng)計分析,經(jīng) Shapiro-Wilk[31]正態(tài)性檢驗,其Sig.值均大于0.05,因此數(shù)據(jù)呈近似正態(tài)分布。分析數(shù)據(jù)得到標記點2頻數(shù)最大的最大加速度的95%置信區(qū)間為[785.61,853.58],標記點3頻數(shù)最大的最大加速度的95%置信區(qū)間為[154.37,175.41]。將兩個標記點頻數(shù)最大的最大加速度數(shù)據(jù)用SPSS軟件做相關(guān)性分析,其顯著性于0.05,表明數(shù)據(jù)顯著相關(guān)。分析可知,若想結(jié)果枝末端加速度達到果-蒂分離條件下所需加速度347.64~390.56 m/s2,需使標記點2的加速度超過其5倍,即父級三級枝被激振處加速度需要達到1 738.20~1 952.80 m/s2。

    圖6 標記點2和標記點3最大加速度頻數(shù)分布圖Fig.6 Maximum acceleration frequency number distribution for point 2 and point 3

    2.2.2 結(jié)果枝與相鄰三級枝動態(tài)響應(yīng)關(guān)系

    標記點3的最大加速度產(chǎn)生時間相對于標記點1也存在滯后現(xiàn)象,時間差的平均值為0.048 s,標準差為0.019 s,即對標記點1進行單次隨機激勵后,振動能量需要0.048 s才能傳遞到標記點3。

    標記點1與標記點3最大加速度響應(yīng)頻數(shù)分布如圖7所示。用SPSS軟件對標記點1和標記點3最大加速度值進行統(tǒng)計分析,經(jīng) Shapiro-Wilk正態(tài)性檢驗,其Sig.值均大于0.05,因此數(shù)據(jù)呈近似正態(tài)分布。分析數(shù)據(jù)得到標記點1頻數(shù)最大的最大加速度的95%置信區(qū)間為[728.22,797.03],標記點3頻數(shù)最大的最大加速度的95%置信區(qū)間為[117.58,131.42]。將2個標記點最大加速度數(shù)據(jù)用SPSS軟件做相關(guān)性分析,其顯著性小于0.05,表明數(shù)據(jù)顯著相關(guān)。分析可知,若想結(jié)果枝末端加速度達到果-蒂分離條件下的加速度,需使標記點1的加速度超過其6倍,即相鄰三級枝被激振處加速度需要達到2 085.84~2 343.36 m/s2。

    考慮到激振加速度過大會對枸杞枝條造成損傷,建議在設(shè)計枸杞采收裝置時,結(jié)構(gòu)上盡量保證結(jié)果枝均被直接激振,至少保證三級枝均被直接激振;選材上振動桿可選用尼龍等柔韌性較好的材料,減少對枝條的損傷。

    圖7 標記點1和標記點3最大加速度頻數(shù)分布Fig.7 Maximum acceleration frequency number distribution for point1 and point 3

    2.2.3 枸杞枝條振動響應(yīng)關(guān)系驗證

    在保證結(jié)果枝末端能滿足果-蒂分離條件情況下對植株施加隨機激勵,獲得結(jié)果枝與父級三級枝最大加速度值和結(jié)果枝與相鄰三級枝最大加速度值各20組。對數(shù)據(jù)進行統(tǒng)計分析,如圖8所示,虛線為各標記點最大加速度數(shù)值的平均值。

    由圖8可知,對于結(jié)果枝和父級三級枝的動態(tài)響應(yīng)關(guān)系分析如下:標記點2最大加速度均值為1 788.25 m/s2,標記點3最大加速度均值為365.26 m/s2,標記點2與標記點3的最大加速度響應(yīng)關(guān)系為4.9倍;對于結(jié)果枝和相鄰三級枝的動態(tài)響應(yīng)關(guān)系分析如下:標記點1最大加速度均值為2 119.71 m/s2,標記點3最大加速度均值為368.27 m/s2,標記點1與標記點3的最大加速度響應(yīng)關(guān)系為5.76倍。結(jié)果枝末端加速度值均在枸杞果-蒂分離條件所需范圍內(nèi),枝條間加速度響應(yīng)關(guān)系也與2.2.1和2.2.2枝條間加速度響應(yīng)關(guān)系一致。

    圖8 各標記點最大加速度統(tǒng)計Fig.8 Maximum acceleration statistics for each point

    3 結(jié) 論

    通過枸杞結(jié)果枝果-蒂振動分離試驗,得到最優(yōu)采摘效果的振動組合參數(shù),即激振頻率18.22 Hz、振幅7.87 mm和枝條通過裝置的行進速度20.93 mm/s,經(jīng)試驗驗證,可使成熟果實分離率達到最大95.18 %,未成熟果實分離率達到最小6.43%。枸杞果蒂分離條件為:為使枸杞果-蒂分離效果達到最優(yōu),需保證結(jié)果枝末端加速度達到347.64~390.56 m/s2。

    1)振動能量從三級枝到結(jié)果枝的傳遞具有明顯的衰減,父級三級枝到結(jié)果枝最大加速度值衰減5倍,相鄰三級枝到結(jié)果枝最大加速度值衰減6倍。

    2)枸杞振動采收條件:當所有結(jié)果枝均被直接激振時,被激振處的加速度需要達到518.38~551.06 m/s2;當所有三級枝均被直接激振,存在結(jié)果枝不能被直接激振時,三級枝被激振處的加速度需要達到1 738.20~1 952.80 m/s2。

    [1] Harunobu A, Farnsworth N R. A review of botanical characteristics, phytochemistry, clinical relevance in efficacy and safety of Lycium barbarum fruit (Goji)[J]. Food Research International, 2011, 44(7): 1702-1717.

    [2] Patrick H W, Li Hongying, Chin Manpan, et al. Effect of Lycium Barbarum(wolfberry) polysaccharides on preserving retinal function after partial optic nerve transection[J]. PLoS One, 2013, 12(8): 1-12.

    [3] 曹林,張愛玲. 我國枸杞產(chǎn)業(yè)發(fā)展的現(xiàn)狀階段與趨勢分析[J].林業(yè)資源管理,2015(2):4-8.

    [4] 李強,葉力勤,安巍. 枸杞采摘機的適采條件[J].農(nóng)機化研究,2009,31(6):126-128. Li Qiang, Ye Liqin, An Wei. The suitable working of wolfberry harvest machine[J]. Journal of Agricultural Mechanization Research, 2009, 31(6): 126-128. (in Chinese with English abstract)

    [5] 趙鳳勇. 枸杞機械化生產(chǎn)裝備與技術(shù)需求分析[J]. 中國農(nóng)機化,2012(2):44-45.

    [6] 馮美,張寧,宋長冰. 枸杞不同成熟期果實品質(zhì)研究[J]. 農(nóng)業(yè)科學研究,2005,26(1):31-33. Feng Mei, Zhang Ning, Song Changbing. Study on fruits quality in different mature period of Lycium barbarum[J]. Journal of Agricultural Sciences, 2005, 26(1): 31-33. (in Chinese with English abstract)

    [7] 程敬春,郭輝,韓長杰,等. 枸杞機械采摘技術(shù)研究現(xiàn)狀及發(fā)展趨勢[J]. 農(nóng)業(yè)科技與裝備,2012(3):12-13. Cheng Jingchun, Guo Hui, Han Changjie, et al. Present situation and analysis of Lycium barbarum mechanical picking technology research in China[J]. Agricultural Science & Technology and Equipment, 2012(3): 12-13. (in Chinese with English abstract)

    [8] 陳度,杜小強,王書茂,等. 振動式果品收獲技術(shù)機理分析及研究進展[J]. 農(nóng)業(yè)工程學報,2011,27(8):195-200. Chen Du, Du Xiaoqiang, Wang Shumao, et al. Mechanism of vibratory fruit harvest and review of current advance[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(8): 195-200. (in Chinese with English abstract)

    [9] So J D. Vibratory harvesting machine for boxthorn (Lycium Chinese mill) berries[J]. Transactions of the ASAE, 2003, 46(2): 211-221.

    [10] 張最,肖宏儒,丁文芹,等. 振動式枸杞采摘機理仿真分析與樣機試驗[J]. 農(nóng)業(yè)工程學報,2015,31(10):20-28. Zhang Zui, Xiao Hongru, Ding Wenqin, et al. Mechanism simulation analysis and prototype experiment of Lycium barbarum harvest by vibration mode[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(10): 20-28. (in Chinese with English abstract)

    [11] Bentaher H, Haddar M, Fakhfakh T, et al. Finite elements modeling of olive tree mechanical harvesting using different shakers[J]. Trees, 2013, 27(6): 1537-1545.

    [12] Chen Du, Du Xiaoqiang, Zhang Qin, et al. Performance evaluation of two mechanical harvesters in removing cherry fruits for fresh market[C]//ASABE. American Society of Agricultural and Biological Engineers Annual International Meeting, 2011: 2473-2484.

    [13] 翁凌云. 林果采收振動系統(tǒng)動態(tài)特性傳遞研究[D]. 南京:南京林業(yè)大學,2013. Weng Linyun. Research on Dynamic Properties Transmitted of Forest-Fruit Vibratory Harvester System[D]. Nanjing: Nanjing Forestry University, 2013. (in Chinese with English abstract)

    [14] Du Xiaoqiang, Chen Du, Zhang Qin, et al. Dynamic responses of sweet cherry trees under vibratory excitation[J]. Biosystems Engineering, 2012, 111(3): 305-314.

    [15] 林歡,許林云,宣言,等. 林果振動加速度度響應(yīng)振型試驗[J]. 林業(yè)工程學報,2016,1(1):100-104. Lin Huan, Xu Linyun, Xu Xuan, et al. Experimental research on the vibration mode of fruit vibration acceleration response[J]. Journal of Forestry Engineering, 2016, 1(1): 100-104. (in Chinese with English abstract)

    [16] 鮑玉東. 機械采收藍莓振動特性及數(shù)值模擬研究[D]. 哈爾濱:東北林業(yè)大學,2015. Bao Yudong. Research on Vibration Characteristics and Numerical Simulation of Blueberry Mechanization Harvesting[D]. Harbin: Northeast Forestry University, 2015. (in Chinese with English abstract)

    [17] 杜小強,倪柯楠,武傳宇. 基于外旋輪線軌跡的果品振動采收機構(gòu)研究[J]. 農(nóng)業(yè)機械學報,2016,47(3):59-66. Du Xiaoqiang, Ni Kenan, Wu Chuanyu. Vibratory harvesting mechanism for tree fruit based on epitrochoid[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(3): 59-66. (in Chinese with English abstract)

    [18] 瞿維,王春耀,王學農(nóng),等. 受迫振動下杏果實樹枝能量傳遞初探[J]. 西北農(nóng)林科技大學學報:自然科學版,2014,42(7):223-227. Qu Wei, Wang Cunyao, Wang Xuenong, et al. Energy transfer of apricot fruit branch under forced vibration [J]. Journal of Northwest A&F University: Natural Science Edition, 2014, 42(7): 223-227. (in Chinese with English abstract)

    [19] 王長勤,許林云,周宏平,等. 偏心式林果振動采收機的研制與試驗[J]. 農(nóng)業(yè)工程學報,2012,28(16):10-16. Wang Changqin, Xu Linyun, Zhou Hongping, et al. Development and experiment of eccentric-type vibratory harvester for forest-fruits[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(16): 10-16. (in Chinese with English abstract)

    [20] 王業(yè)成,陳海濤,林青.黑加侖采收裝置參數(shù)的優(yōu)化[J]. 農(nóng)業(yè)工程學報,2009,25(3):79-83. Wang Yecheng, Chen Haitao, Lin Qing. Optimization of parameters of blackcurrant harvesting mechanism[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(3): 79-83. (in Chinese with English abstract)

    [21] Loghavi M, Mohseni S. The effects of shaking frequency and amplitude on detachment of lime fruit[J]. Iran Agricultural Research, 2005, 24(2): 27-38.

    [22] Sessiz A, Ozcan M. Olive removal with pneumatic branch shaker and abscission chemical[J]. Journal of Food Engineering, 2006, 76(2): 148-153.

    [23] Polat R, Gezer I, Guner M, et al. Mechanical harvesting of pistachio nuts[J]. Journal of Food Engineering, 2007, 79(4): 1131-1135.

    [24] 劉魏. 振動式藍毒采摘裝置工作參數(shù)的試驗研究[D]. 哈爾濱:東北農(nóng)業(yè)大學,2014. Liu Wei. Experimental Study on Working Parameters of Vibratory Blueberry Picking Devices[D]. Harbin: Northeast Forestry University, 2014. (in Chinese with English abstract)

    [25] 王敏,曹肆林,何義川,等.機械振動式沙棘采收機的試驗研究[J].農(nóng)機化研究,2013,35(9):202-204. Wang Min, Cao Silin, He Yichuan, et al. Experimental Research on sea buckthorn picker of mechanical vibration type[J]. Journal of Agricultural Mechanization Research, 2013, 35(9): 202-204. (in Chinese with English abstract)

    [26] 散鑒龍. 杏振動采收關(guān)鍵因素研究與試驗分析[D]. 烏魯木齊:新疆農(nóng)業(yè)大學,2014. San Jinlong. Study on the Key Factors of Vibration Harvesting Apricots and Its Experimental Analysis[D]. Urumqi: Xinjiang Agricultural University, 2014. (in Chinese with English abstract)

    [27] 李成松. 釀酒葡萄振動分離機理及裝置的研究[D]. 北京:中國農(nóng)業(yè)大學,2015. Li Chengsong. Study on Vibration Seperation Mechanism and Equipment of Wine Grape[D]. Beijing: China Agricultural University, 2015. (in Chinese with English abstract)

    [28] 賀磊盈. 面向振動采收的果樹枝干三維重建方法及其動力學特性研究[D]. 杭州:浙江理工大學,2014. He Leiying. Researches on 3D Reconstruction of Fruit Tree’s Trunk and its Dynamic Characteristics for Vibratory Harvesting[D]. Hangzhou: Zhejiang Sci-Tech University, 2014. (in Chinese with English abstract)

    [29] Kepner R A, Bainer R, Barger E L. 農(nóng)業(yè)機械原理[M]. 崔安,張德駿譯. 北京:機械工業(yè)出版社,1978.

    [30] 李成松,高振江,坎雜,等. 釀酒葡萄果-蒂振動分離試驗[J].農(nóng)業(yè)工程學報,2015,31(9):39-44.

    Li Chengsong, Gao Zhenjiang, Kan Za, et al. Experiment of fruit-pedicle vibration separation of wine grape[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(9): 39-44. (in Chinese with English abstract)

    [31] 楊維忠,張?zhí)? SPSS統(tǒng)計分析與行業(yè)應(yīng)用案列詳解[M]. 北京:清華大學出版社,2013.

    Mechanism analysis and experiment on vibration harvesting of wolfberry

    He Miao, Kan Za, Li Chengsong※, Wang Lihong, Yang Lantao, Wang Zhe
    (College of Mechanical and Electrical Engineering, Shihezi University, Shihezi 832003, China)

    Wolfberry acreage is growing increasingly year by year in China. However, artificial harvesting is labor intensive and inefficient, so harvest problem has become a bottleneck in the development of Chinese wolfberry industry. Literature shows that vibration device in fruit harvest has obvious advantages. In order to further study the mechanism of wolfberry vibration harvesting, fruit-pedicle separation conditions and dynamic transfer characteristics of wolfberry branch were analyzed, and then harvest conditions of wolfberry were obtained. Vibration harvesting usually uses vibration source to directly vibrate fruit branch (fourth branch) to achieve fruit separation, but when fruit branch is not directly vibrated, it needs to rely on vibration energy of third branch to achieve fruit-pedicle separation. Vibration separation test bench was set up, which included electric vibration test system, motion control system, vibration separation test rack, and so on. Vibratory separation test device was used to carry out fruit-pedicle vibration separation test of fruit branch, which was designed by quadratic regression universal rotary combination design method. The main factors affecting fruit-pedicle separation rate were as follows: excitation frequency, excitation amplitude and vibration time (replaced by branches travelling speed), with mature fruit separation rate and immature fruit separation rate as response index. Searching for the optimum vibration parameter combination of fruit-pedicle separation, high-speed camera system was used to analyze acceleration response of vibrated part and end part, and as a result vibration separation conditions of wolfberry were obtained. The experimental results showed that the optimal combination parameters were the excitation frequency of 18.22 Hz, the excitation amplitude of 7.87 mm and the branches traveling speed of 20.93 mm/s. And the results showed that the separation rate of mature fruit was 95.18% and the separation rate of immature fruit was 6.43%. Dynamic responses of the optimal vibration combination parameters were analyzed, and the results showed that the acceleration of vibration was 518.38-551.06 m/s2when fruit branch was directly vibrated; the vibration energy was transferred to end of fruit branch by direct excitation of third branch when fruit branch was not vibrated, and fruit branch acceleration was required to reach 347.64-390.56 m/s2. In this experiment, a single random stimulus was used to wolfberry third branch, vibration transfer of third and fruit branch was tracked by high-speed camera system, and wolfberry branch dynamic response was analyzed by a high speed motion analysis software ProAnalyst. The Shapiro-Wilk’s normal test was performed with acceleration data of third branch and fruit branch of wolfberry, corresponding confidence intervals were calculated, and then acceleration response relationship of third branch and fruit branch was obtained. The acceleration required for wolfberry vibration harvesting under different excitation conditions was obtained. Firstly, when all the fruit branches were directly vibrated, acceleration of vibration was required to reach 518.38-551.06 m/s2; secondly, when all third branches (parent third branch and adjacent third branch) were directly vibrated and part of fruit branches could not be vibrated, only the dynamic response of parent third branch and fruit branch needed to be considered, and the maximum acceleration from parent third branch to fruit branch was reduced by 5 times, with the lag time of 0.032 s, and the acceleration of parent third branches vibration needed to reach 1 738.20-1 952.80 m/s2; thirdly, when partial fruit branch and third branch (adjacent third branch) were not vibrated, the maximal acceleration value from adjacent third branch to fruit branch was attenuated by 6 times and the lag time was 0.048 s. Acceleration of adjacent third branch vibration needed to reach 2 085.84-2 343.36 m/s2. As large vibration acceleration can cause wolfberry branch injury, in the design of wolfberry harvesting device, the structure should ensure that all fruit branches are directly vibrated as far as possibly, and at least ensure that all third branches are directly vibrated; vibrating rods can use nylon and other flexible material with less damage to branches. The results of this study can provide theoretical basis for the mechanized harvest of wolfberry.

    crops; mechanization; vibrations; wolfberry; dynamic response

    10.11975/j.issn.1002-6819.2017.11.006

    S225.99

    A

    1002-6819(2017)-11-0047-07

    何 苗,坎 雜,李成松,王麗紅,楊蘭濤,王 哲. 枸杞振動采收機理分析與試驗[J]. 農(nóng)業(yè)工程學報,2017,33(11):47-53.

    10.11975/j.issn.1002-6819.2017.11.006 http://www.tcsae.org

    He Miao, Kan Za, Li Chengsong, Wang Lihong, Yang Lantao, Wang Zhe. Mechanism analysis and experiment on vibration harvesting of wolfberry[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(11): 47-53. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.11.006 http://www.tcsae.org

    2016-11-15

    2017-05-16

    國家自然科學基金資助項目(51541509)

    何 苗,女,重慶巫山人,研究方向為機械設(shè)計及理論。石河子石河子大學機械電氣工程學院,832003。Email:hm_8311@163.com

    ※通信作者:李成松,男,四川西充人,教授,博士,博士生導(dǎo)師,主要研究方向為農(nóng)業(yè)機械化工程。石河子 石河子大學機械電氣工程學院,832003。Email:lcs_shz@163.com

    猜你喜歡
    頻數(shù)結(jié)果枝枸杞
    枸杞
    桃樹不同粗度結(jié)果枝的生長結(jié)果習性初探
    是酸是堿?黑枸杞知道
    學與玩(2022年2期)2022-05-03 09:46:45
    桃樹結(jié)果枝組的培養(yǎng)和修剪
    采枸杞
    結(jié)果枝葉片數(shù)影響早熟柑桔果實品質(zhì)
    枸杞到底是怎么養(yǎng)生的?
    中考頻數(shù)分布直方圖題型展示
    學習制作頻數(shù)分布直方圖三部曲
    頻數(shù)和頻率
    吉隆县| 琼海市| 张家川| 都匀市| 辽源市| 华阴市| 历史| 汤原县| 邵武市| 布拖县| 饶平县| 静安区| 焦作市| 正安县| 天全县| 景宁| 星子县| 瑞昌市| 合肥市| 湄潭县| 三明市| 且末县| 山东省| 海晏县| 胶州市| 礼泉县| 华阴市| 桑植县| 荔波县| 本溪| 西贡区| 柳林县| 洪湖市| 南乐县| 清苑县| 鹰潭市| 环江| 岱山县| 鄂伦春自治旗| 崇礼县| 嫩江县|