• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    DFT+U Analysis on Stability of Low-Index Facets in Hexagonal LaCoO3Perovskite:Eff ect of Co3+Spin States

    2017-07-05 13:06:21DanWuGongongChenChaoyiGeZhenpengHubcXuehaoHeXingangLi
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2017年3期

    Dan WuGong-ong ChenChao-yiGeZhen-peng HubcXue-hao HeXin-gang Li

    a.Tianjin Key Laboratory ofApplied Catalysis Science&Technology(Tianjin),Tianjin 300072,China

    b.Collaborative Innovation CenterforChem ical Science&Engineering(Tianjin),Tianjin 300072,China

    c.School of Physics,NankaiUniversity,Tianjin 300071,China

    d.Department ofChem istry,School of Science,Tianjin University,Tianjin 300072,China

    DFT+U Analysis on Stability of Low-Index Facets in Hexagonal LaCoO3Perovskite:Eff ect of Co3+Spin States

    Dan Wua,b,Gong-dong Chena,b,Chao-yiGea,b,Zhen-peng Hub,c?,Xue-hao Hed,Xin-gang Lia,b?

    a.Tianjin Key Laboratory ofApplied Catalysis Science&Technology(Tianjin),Tianjin 300072,China

    b.Collaborative Innovation CenterforChem ical Science&Engineering(Tianjin),Tianjin 300072,China

    c.School of Physics,NankaiUniversity,Tianjin 300071,China

    d.Department ofChem istry,School of Science,Tianjin University,Tianjin 300072,China

    By the fi rst-princip les calculations,m ost studies indicated that the(1ˉ102)-CoO2term ination of LaCoO3cannot be stabilized,which disagreesw ith the experimentalobservation.Besides the crystalstructure,we found that the spin statesof Co3+ions could affect surface stability, which previously were not well considered.By exam ining the diff erent states of Co3+ions in hexagonal-phase LaCoO3,including low spin,intermediate spin,and high spin states,the surface grand potentials of these facets are calculated and compared.The results show that the spin states of Co3+ions have an im portant influence on stability of the LaCoO3faˉcets. Diff erent from the previous results,the stability diagram s dem onstrate that the(1102)-CoO2term ination can stably exist under O-rich condition,which can get an agreementw ith the experimental ones.Furthermore,the surface oxygen vacancy formation energies(EOv) of stable facets are com puted in diff erent spin states.TheEOvof these possible exposed term inations strongly depend on the spin state of Co3+ions:in particular,theEOvof the HS states is lower than that of other spin states.This indicates that one can tune the pro perties of LaCoO3by directly tuning the spin states of Co3+ions.

    DFT+U,Spin state,Surface,Perovskite

    I.INTRODUCTION

    In recent decades,perovskite oxides(ABO3)have aroused considerable interests as the cathodematerials in solid oxide fuel cells for use in many energy storage and conversion technologies,such as the oxygen evolution reaction(OER)and oxygen reduction reaction(ORR)[1?5].These oxides are also catalyticallyactive and cost-effective catalysts for many im portant chem ical reactions,such as NOx(including NO and NO2)storage reduction[6,7],CO oxidation[8],and m ethane combustion[9].Since those catalytic reactions are surface processes,studies on the surface properties of thosematerials play an im portant role in deep ly understanding the catalytic reactions.Usually,the experim ental observations believed that(001)facets,particularly(001)B-term inated surface,in perovskite oxides(ABO3)are stable and play a pivotal role in these catalytic chem ical reactions[10?14].However,to the best of our know ledge,the surface stabilities of perovskite oxides,especially for LaCoO3,are still under debate from theoretical calculations.For examp le,us-ing the cubic-phase structure of LaCoO3in the calculations,Kahnet al.[15]predicted the Co-term inated (111)surface and LaCoO-term inated(110)surface to be the most stable;Chenet al.[16]reported that the ground term ination was the(001)-LaO surface,transitioning to the(111)-LaO3facet in oxygen-rich condition;while Zhanget al.[17]found that the LaO-and CoO2-term inated(001)surfaceswere stable.

    It is noticed that LaCoO3has a rhombohedral primitive cellw ithsymmetry[18?23],which belongs to the hexagonal phase,but the cubic phase was used in the previous calculations[15?17].As well known,results from the fi rst-princip les calculations are very sensitive to the geometric structure ofmaterials.Therefore,the com p lexity of p revious studiesmay com e from the difference on crystal structures of LaCoO3.Recently,Liuet al.exp lored the stability of low-index facets on the hexagonal-phase LaCoO3by using the fi rˉst-p rincip lesˉ analysis[24],and they found that the (1102)-LaO,(1104)-O2and(0001)-LaO3term inations were thermodynam ically stable w ith a non-spin(NS) state.Though a more accurate crystal structure was em p loyed in their calculations,the results were still in confl ict w ith the common sense from the experimentalists that the(001)-CoO2was stable and active in the reactions[11?14].Therem ight be som e key factors ig-noredin previous calculations,which can reconcile the disagreement between com putational result and experim ental observation.

    Besides the crystal structure,the spin state of Co3+ion is another im portant factor which can aff ect the resultsof calculations,butwasnotwell considered before. As reported in Ref.[25?29],LaCoO3exhibits nonmagnetic behavior at low tem perature(below 90 K)where the Co3+ions are in the low spin(LS)states,and undergoes a transition from sem iconductor to metal over 500 K,coincident to the spin state transition from intermediate spin(IS)to high spin(HS).It has also been reported that the spin states of Co3+ions in LaCoO3can greatly affect oxygen vacancy formation on the surface[30]and theirm igration in the bulk[31].However, there is a lack of report on surface stability of LaCoO3w ith consideration of the effects of spin states of Co3+ions.To this point,the reason for the above disagreem ent may arise from the spin states of the Co3+ions in LaCoO3.It is necessary to perform calcu lationsw ith appropriate Co3+spin states to clarify the propertiesof LaCoO3surface system s for the in-depth researches.

    In this work,we com pared the surface grand potentials(?)of low-index facets of hexagonal-phase LaCoO3,where the Co3+ions’spin states are in LS,IS (ferromagnetic(FM),and anti-ferromagnetic(AFM)) and HS(FM,and AFM)states,to get a com prehensive understanding of LaCoO3surface system s.We determ ined the stable surfaces of LaCoO3in special chemical conditions by com paring the surface grand potentials(?).As the spin states of Co3+ions change,the region of stability diagram undergoes a significant variation.In addition,theEOvof stable facets of LaCoO3were com puted in different spin states.It indicates that the energy of surface oxygen vacancy links strongly to the spin mom ent of Co3+ions.Our simulations indicate that the(1ˉ102)-CoO2-term inated facet in hexagonal LaCoO3can be stabilized in most spin stateswhen the Co3+ions’spin states are taken into consideration. And this agreeswellw ith the experim entalobservation.

    II.COM PUTATIONAL DETAILS

    A.M odels of bulk and slab

    The space group of crystalline LaCoO3is(No.167),which can be constructed w ith either a rhombohed ral or a hexagonal m odel(FIG.1).The Jahn-Teller effect causes a slight distortion of CoO6octahedron in LaCoO3,resulting in a prim itive cell of rhombohedral structure[18]w ith lattice param eters ofa=b=c=5.344?A,α=β=γ=61.01?(FIG.1(a)).As shown in FIG.1(b),theexperimental latticeparameters of hexagonalm odel[18]area=b=5.426?A,c=12.991?A,α=β=90?,andγ=120?.

    FIG.1(a)Rhombohedral p rim itive cell and(b)hexagonal unit cells of LaCoO3.G reen,blue,and red balls represent La,Co and O atom s,respectively.

    FIG.2 The top and side view s of optim ized(a)(1ˉ102)-LaO,(b)(1ˉ102)-CoO2,(c)(0001)-LaO3,(d)(0001)-Co,(e) (ˉ1104)-LaCoO,and(f)(ˉ1104)-O2.G reen,blue,and red balls represent La,Co,and O atom s,respectively.

    In order to discuss the thermodynam ic stability of the low-index surfaces,we constructed six slab models.Adapted from the m odels in Ref.[24],a sevenlayer nonstoichiometric slab of LaO(FIG.2(a))or CoO2(FIG.2(b))term ination was used to simulate the facet along the(1ˉ102)direction,a thirteen-layer nonstoichiometric slab of LaO3(FIG.2(c))or Co(FIG.2(d))term ination wasused to simulate the facet along the(0001) direction;and an eleven-layer nonstoichiometric slab of LaCoO(FIG.2(e))or O2(FIG.2(f))term ination was used to simulate the facet along the(ˉ1104)direction. The(1ˉ102),(0001)and(ˉ1104)directions in the hexagonal phase correspond to the(001),(111)and(110) directions in a pseudo cubic phase.The black fram es in FIG.2 represent the periodic boundaries.

    B.General setup for com putation

    Density functional theory(DFT)calculations were performed w ith the Viennaab initioSimulation Package(VASP)[32,33].Thenucleiand core electronswere treated w ith the projector augmented wave(PAW)[34] m ethod.Generalized gradient approxim ation(GGA) w ith the Perdew-Burke-Ernzerhof(PBE)[35]form was em ployed to describe the electron exchange and correlation.For relaxation of bulk LaCoO3(hexagonal phase),a p lane wave basis set w ith cut-off of 400 eV and a 7×7×3 Monkhorst-Pack[36]k-point mesh were used to get the optimal lattice parameters.The optim al parameters of hexagonal phase area=b=5.485?A andc=13.031?A.For the slab calculations,the p lane wave energy cutoff of 400 eV and a 3×3×1 ofk-point mesh were used to get the properties of different surfaces.A ll the atom s in the bulk and slab were allowed to relax until the maximum force on each atom was smaller than 0.05 eV/?A.In each slab model,a separation over 15?A in vacuum was introduced to m inim ize interactions between periodic im ages.

    The oxygen vacancy formation energy(EOv)is calculated using the follow ing equation:

    whereE(defect)is the totalenergy of the slab w ith one surface oxygen vacancy,E(perfect)is the energy of the ideal slab andE(O2)is the energy of the O2molecule in the gas phase,respectively.

    The different Co-3d occupations result in three spin states of Co3+ions in LaCoO3,including LS of t2g6eg0(S=0),IS of t2g5eg1(S=1)and HS of t2g4eg2(S=2). Each spin statewas constructed by changing the initial m agnetic mom ent of Co3+ion,i.e.LS=0,IS=±2 and HS=±4,where thequantity is the diff erencebetween alpha and beta electrons in a certain Co3+ion.The initial configurations of all Co3+ionswere set by MAGMOM, and then NUPDOWN was chosen to control the total spin of the slab.The selection rule of spin was also app lied to get a reasonable energy when oxygen vacancy was generated.For exam ple,two total spin numbers of the defect slab(+2 or?2 from the total spin number of initial slab)were calculated and the lower energy wasaccepted.The spin state of calculated O2molecule is always triplet.The partially fi lled d states in the Co3+ions are not well described by the standard DFT calculations,where the norm al GGA m ethods give a zero band gap of LaCoO3on the contrast to the experimental value of about 0.6 eV[37].We thus performed the DFT+Uapproach,where the on-siteUandJwere treated asa singleeff ective parameter among the d electrons on the Co3+ions,Ueff=U?J[38?40].We fixedJ=0.49 eV[41]in allour GGA+Ucalculations,and varied the value ofUin determ ining an optimal param eterU(3.4 eV),which w ill be discussed later.

    C.The surface grand potential

    To com pare the stability ofdiff erent term inations,the surface grand potential(?)is imp lemented in the calculations,as defined in Ref.[42]

    whereNLa,NCo,andNOare the numbers of La,Co, and O atom s in the slab,respectively,andμrepresents the chem ical potential of La,Co,and O atoms species. Since the surface is in thermodynam ic equilibrium w ith the bu lk LaCoO3(μLaCoO3=EbulkLaCoO3)and the chem ical potentials of each species are related to the chem ical potentialof the bulk crystal,we thushave the follow ing constraint:

    W henμLaiselim inated by Eq.(2)and(3),we introduce:

    Subsequently,the surface grand potential can be determ ined as:

    The surface La,Co,and O atoms are assumed to form no condensate on the surface,and the chem ical potential of each speciesmust be lower than the energy of an atom in the stable phase.We thus obtain the follow ing upper lim its of the chem ical potentials:

    By combining Eq.(3)and(9),the lower lim its can be determ ined as follows,

    whereis the formation energy of LaCoO3bulk crystal w ith respect to the La and Co atom s in their bulk phases,and the O atom in the gas phase.Once?μCoand?μOare determ ined in the eff ective ranges, the accessible values of?are thus obtained.

    III.RESULTS AND DISCUSSION

    A.Determ ining the optim izedUparam eter

    It iswellknown thatUparameter playsan im portant role in the determ ination of the valence structure and the crystal structure.Since the band gap is generally related to the electronic structure of the bulk LaCoO3, it is essential to determ ine an appropriateUvalue for Co element to correct them istake.Previous studies indicate that the ground state LaCoO3is a nonm agnetic sem iconductor w ith Co3+ions in the LS state[28,29]. Therefore,band gap scan calculations were performed w ith the param eterUvarying from 2.9 eV to 3.9 eV w ith an interval of 0.1 eV on the LS ground state.The band gap as a function of the exchange parameterUis shown in FIG.3.W ith the increase of parameterU,the value of the band gap linearly increases.W henU=3.4 eV is em ployed,a band gap of 0.61 eV is obtained,which well agrees w ith the experimental value [37].TheUparameter of 3.4 eV was thus used for the GGA+Ucalculations to investigate surface stability of LaCoO3perovskite.

    B.Therm odynam ic stability in diff erent spin states w ith GGA+U

    To exam ine the influence of spin states of Co3+ions on surface stability,the surface grand potentials(?)of low-index facets have been calculated(Table S1?S3 in supp lementary materials),where the Co3+ions’spin states are in LS,IS(FM,AFM)and HS(FM,AFM) states,respectively.The FM and AFM configurations can be considered as two lim its in energy w ith respect to the spin state of LaCoO3.To determ ine the accessible values of?,we should calculate the eff ective intervals of?μCoand?μOaccording to the formation energy of LaCoO3bulk crystal,as defined in Ref.[42].The obtained formation energy of hexagonal LaCoO3is?9.31 eV.On the basis of Eq.(11),?μCoand?μOare thus restricted w ithin the ranges of(?9.31 eV

    The stability diagram of the surface grand potential?of diff erent term inations w ithin the allowed area is displayed in FIG.4(a)when the Co3+ions are in LS state.Only three term inations out of six low-index facets are found to be stable:(1ˉ102)-LaO,(0001)-LaO3and(1ˉ102)-CoO2.The calculated results indicate that the(1ˉ102)-LaO term ination is stable in low O chemical potential and low Co chem ical potential,while its com p lem entary,the(1ˉ102)-CoO2term ination is in rich O chem ical potential and rich Co chem ical potential.Additionally,the(0001)-LaO3facet shows a stability dom ain in moderate Co and rich O environment. FIG.4(b)reveals the?of diff erent facets of the low spin Co3+ions as a function of?μCow ith?μO=0 eV. It can be noted that the(1ˉ102)-LaO term ination is favored in a large interval(?9.31 eV

    FIG.3 Band gap of hexagonal phase LaCoO3as a function of exchange param eterU.

    FIG.4(a)Stability diagram of the low-index surfaces of hexagonal LaCoO3in LS state.The surface grand potential (?)is represented as functions of?μCoand?μO.(b)The surface grand potentials of diff erent term inations in condition of?μO=0 eV.

    FIG.5(a)and(c)Stability diagram of the low-index surfaces of hexagonal LaCoO3in IS state w ith a FM and an AFM con figurations.The surface grand potential(?)is represented as functions of?μCoand?μO.(b)and(d)The surface grand potentials of diff erent term inations in condition of?μO=0 eV in IS state w ith a FM and an AFM con figurations.

    FIG.5(a)shows the?of different term inations as functions of?μCoand?μOin IS statew ith a FM configuration.Our calcu lations suggest that(1ˉ102)-CoO2, (0001)-Co and(ˉ1104)-LaCoO areunstablebecause their surface grand potentials are always larger than that of at least one stable facet w ithin the allowed region.According to FIG.5(a),the(1ˉ102)-LaO term ination is the most stable one in O-and Co-poor conditions.The (0001)-LaO3and(ˉ1104)-O2term inationsare favored in a small region corresponding to O-and Co-rich environm ents,respectively.FIG.5(b)shows the?of different facets as a function of?μCoin O-rich condition (?μO=0 eV)in IS state w ith a FM configuration.It appears that the(0001)-LaO3and(ˉ1104)-O2term inations can be stabilized in a very lim ited area(?2.15 eV

    As disp layed in FIG.5(c),the(1ˉ102)-LaO,(0001)-LaO3,(ˉ1104)-O2and(1ˉ102)-CoO2are thermodynamically most favorable when the IS state is in an AFM configuration.Com pared to the stability diagram of the ISstatew ith a FM con figuration,thearea of the(1ˉ102)-LaO and(0001)-LaO3facets hardly change,while the region of(ˉ1104)-O2term ination only exists in a very sm all domain.The(1ˉ102)-CoO2term ination em erges and becom esm ost stable in rich O and Co environment. FIG.5(d)plots the surface grand potential?of different facets as a function of?μCow ith?μO=0 eV in IS state w ith an AFM configuration.The(1ˉ102)-LaO term ination is favorable in a large interval(?9.31 eV

    FIG.6(a)p lots the surface grand potential?of different term inations as functions of?μCoand?μOin HS state w ith a FM configuration.The calculated results indicate that only four term inationsare thermodynam ically stable:(1ˉ102)-LaO,(0001)-LaO3,(ˉ1104)-O2and(1ˉ102)-CoO2as shown in FIG.6(a).The(1ˉ102)-LaO term ination is stable at low O chem ical potential(O-poor lim it)and low Co chem ical potential(Copoor lim it),as the(0001)-LaO3facet shows a stability domain in moderate Co and rich O environment. In general,the(ˉ1104)-O2and(1ˉ102)-CoO2term inations become the stable facets in a sm all domain corresponding to Co-and O-rich conditions.FIG.6(b) p lots the?of different facets of the high spin Co3+ions w ith a FM configuration as a function of?μCow ith?μO=0 eV(O-rich condition).The results indicate that when?μCoranges from?9.31 eV to?4.60 eV,the(1ˉ102)-LaO term ination is favored.W hen?μCois restricted to(?4.60 eV

    FIG.6(a)and(c)Stability diagram of the low-index surfaces of hexagonal LaCoO3in HS state w ith a FM and an AFM con figurations.The surface grand potential(?)is represented as functions of?μCoand?μO.(b)and(d)The surface grand potentials of diff erent term inations in condition of?μO=0 eV in HS state w ith a FM and an AFM con figurations.

    As shown in FIG.6(c),when the HS state is in the AFM configuration,the(1ˉ102)-LaO,(0001)-LaO3and(1ˉ102)-CoO2term inations are the most favorable facets.The stable region of(1ˉ102)-LaO term ination of the AFM configuration is larger than that of the FM configuration.However,the area of(0001)-LaO3becomes smaller.And the(1ˉ102)-CoO2facet alm ost does not change.FIG.6(d)reveals the?of the lowest-energy facets of the high spin Co3+ions w ith an AFM configuration as a function of?μCoin O-rich condition(?μO=0 eV).According to FIG.6(d), the(ˉ1104)-LaCoO,(0001)-Co and(ˉ1104)-O2facets cannot beobtained;however,the(1ˉ102)-LaO,(0001)-LaO3and(1ˉ102)-CoO2term inations can be stabilized in som e specialCo environm ent,as?9.31 eV

    According to the above calculations,as the Co3+ions’spin states change,the stability diagram of lowindex facets in hexagonal-phase LaCoO3undergoes a significant variation.Considering diff erent spin states of Co3+ionsand diff erentmagnetic configurations,one can find that(1ˉ102)-LaO term ination is stable in a large region w ith oxygen poor condition.M oreover,the (0001)-LaO3and(1ˉ102)-CoO2term inations can be stabilized in an oxygen rich condition,which is a typical experimentalenvironment for LaCoO3.And tuning the chem ical potential of Co can tune the final surface exposition of LaCoO3nanoparticle.The(1ˉ102)-CoO2term ination is favorable under suitable chem ical potential regions,which can reach an agreement on theoretical resultsand experimentalobservation.This corresponds to the spin states of Co3+ions in perovskite LaCoO3. The Co3+ions occupying octahedral sites surrounded by oxygen ions can introduce comp lex magnetic property in LaCoO3,which has influence on the Co?O and O?O bond strength on the surface.

    C.Oxygen vacancy form ation energy of the stable facets

    Surface oxygen vacancy p lays a key role in the catalytic oxidation reactions in perovskite LaCoO3.We therefore analyze how the spin states of Co3+ions change the fundamental properties of oxygen vacancy formation.In order to exp lore the properties of these possible exposed facets,theEOvof the surfaces have been calculated.As shown in Table I,it can be found that higher Co3+magneticmoments lead to lower oxygen vacancy formation energies,in good agreem entw ith the previouswork[30].They attribute the tendencies in the surface oxygen vacancy formation energies to varia-tions in the O p-band center,which can be described as the Co?O bond strength.This trend suggests that oxygen vacancy energetics link strongly to the spinmom ent of Co3+ions.Furthermore,whether the Co3+ions are in a LS,an IS-FM,an IS-AFM,a HS-FM or a HS-AFM configuration,the(1ˉ102)-LaO term ination has thehighestEOvam ong these surfaces.It indicates that the (1ˉ102)-LaO facetmay be not active,since O atom s are strongly bound.In the HS-FM configuration,theEOvof(1ˉ102)-CoO2term ination is close to zero(0.08 eV), which is lower than that of(0001)-LaO3term ination (0.20 eV).W hen the spin state of Co3+ions is in a HS-AFM configuration,theEOvof(1ˉ102)-CoO2facet is 1.05 eV,which ismore than the(0001)-LaO3term ination(0.69 eV).As a result,it can be predicted that the(1ˉ102)-CoO2-and(0001)-LaO3-term inated surfaces m ight have good activity of O atoms,which can p lay a critical role in the surface reaction processes.

    TABLE I Oxygen vacancy formation energy(EOv)for possible exposed surfaces w ith diff erent spin configurations.

    For com parison,we also calculated surface oxygen vacancy formation energies w ith NS polarized m ethod as used in Ref.[24].The NS oxygen vacancy form ation energy of the(1ˉ102)-LaO term ination is still themaximum.Moreover,theEOvof(1ˉ102)-CoO2term ination is greater than that of the(0001)-LaO3surface.Comparing theEOvin NS state of(1ˉ102)-LaO and(0001)-LaO3facets w ith previous work[24],it can be found that there is a certain degree of error even ifwe use the sam em ethod andm odel.It isbecause that therew illbe a variety of uncertain spin configurations in the calculation processwhen we ignore the spin states,since there are a lot of localm inimums on the energy surfacew ith diff erent spin configurations.In fact,the above resu lt also represents that the spin statesextrem ely aff ect surface oxygen vacancies.Therefore,considering the spin states of Co3+ions is an essential role in exp loring the surface properties of LaCoO3.

    IV.CONCLUSION

    We performed DFT+Ucalculations to study the effect of Co3+spin states on surface stabilities of several low-index term inations of the perovskite LaCoO3.And theEOvof possibleexposed facets iscalculated in different spin states.The parameterUisem p loyed to correct the on-site Coulomb and theelectron interactions for local d orbitals.It is found that the spin states of Co3+ions in hexagonal-phase LaCoO3have an im portant effect on the region of stability diagram s.For themost cases w ith diff erent spin states and spin configurations of Co3+ions,the(1ˉ102)-CoO2term ination can be stabilized in oxygen rich environment,which agrees well w ith the experimental observation.Moreover,the spin states of Co3+ions can aff ect surface oxygen vacancy. The higher Co3+spin states give out the lower oxygen vacancy formation energies.Our results reveal that the spin states of Co3+ions should be well considered for studying the properties of LaCoO3facets.

    Supp lem entary m aterials:The surfacegrand potential(?)of different term inations in LS,IS(FM,AFM) and HS(FM,AFM)states are disp layed,which is expressed as functions of the excess O and Co chem ical potentials(?μCoand?μO).

    V.ACKNOW LEDGM ENTS

    This work was supported by the National Natural Science Foundation of China(No.U1232118, No.21203099),the National Basic Research Program (No.2014CB932403),the Program of Introducing Talents of Discip lines to China Universities(No.B06006), Research Program for Advanced and App lied Technology of Tianjin(No.13JCYBJC36800),Doctoral Fund of M inistry of Education of China(No.20120031120033), Fok Ying Tung Education Foundation(No.151008), and Special Program for App lied Research on Super Com putation of the NSFC-Guangdong Joint Fund (the second phase).We appreciate the supports from the National Super-Com puting Center at Tianjin and Guangzhou.

    [1]E.P.M urray,T.Tsai,and S.A.Barnett,Nature 400, 649(1999).

    [2]J.Suntivich,K.J.M ay,H.A.Gasteiger,J.B.Goodenough,and Y.Shao-Horn,Science 334,1383(2011).

    [3]J.Suntivich,H.A.Gasteiger,N.Yabuuchi,H.Nakanishi,J.B.Goodenough,and Y.Shao-Horn,Nat.Chem. 3,546(2011).

    [4]J.W.Desm ond Ng,Y.Gorlin,T.Hatsukade,and T. F.Jaram illo,Adv.Energy Mater.3,1545(2013).

    [5]J.Jung,M.Risch,S.Park,M.G.K im,G.Nam,H.Y. Jeong,Y.Shao-Horn,and J.Cho,Energy Environ.Sci. 9,176(2016).

    [6]C.H.K im,G.S.Qi,K.Dahlberg,and W.Li,Science 327,1624(2010).

    [7]X.G.Li,Y.H.Dong,H.X ian,W.Y.Hern′andez,M. M eng,H.H.Zou,A.J.M a,T.Y.Zhang,Z.Jiang,N.Tsubaki,and P.Vernoux,Energy Environ.Sci.4,3351 (2011).

    [8]K.S.Song,S.K.Kang,and S.D.K im,Catal.Lett. 49,65(1997).

    [9]G.Saracco,G.Scibilia,A.Iannibello,and G.Baldi, App l.Catal.B 8,229(1996).

    [10]Y.M.Choi,D.S.M ebane,M.C.Lin,and M.L.Liu, Chem.M ater.19,1690(2007).

    [11]Y.L.Lee,J.K leis,J.Rossmeisl,and D.M organ,Phys. Rev.B 80,224101(2009).

    [12]Y.L.Lee,J.K leis,J.Rossmeisl,Y.Shao-Horn,and D. M organ,Energy Environ.Sci.4,3966(2011).

    [13]S.O.Choi,M.Penninger,C.H.K im,W.F.Schneider, and L.T.Thom pson,ACSCatal.3,2719(2013).

    [14]M.W.Penninger,C.H.K im,L.T.Thom pson,and W. F.Schneider,J.Phys.Chem.C 119,20488(2015).

    [15]S.Khan,R.J.O ldm an,F.Cor`a,C.R.A.Catlow,S. A.French,and S.A.Axon,Phys.Chem.Chem.Phys. 8,5207(2006).

    [16]Z.Z.Chen,C.H.K im,L.T.Thom pson,and W.F. Schneider,Surf.Sci.619,71(2014).

    [17]S.G.Zhang,N.Han,and X.Y.Tan,RSC Adv.5,760 (2015).

    [18]P.G.Radaelli and S.W.Cheong,Phys.Rev.B 66, 094408(2002).

    [19]S.M.Zhou,L.F.He,S.Y.Zhao,Y.Q.Guo,J.Y. Zhao,and L.Shi,J.Phys.Chem.C 113,13522(2009).

    [20]M.Risch,A.Grimaud,K.J.May,K.A.Stoerzinger, T.J.Chen,A.N.M ansour,and Y.Shao-Horn,J.Phys. Chem.C 117,8628(2013).

    [21]S.M ukhopadhyay,M.W.Finnis,and N.M.Harrison, Phys.Rev.B 87,125132(2013).

    [22]P.Ravindran,P.A.Korzhavyi,H.Fjellv?ag,and A. K jekshus,Phys.Rev.B 60,16423(1999).

    [23]A.M ineshige,M.Inaba,T.Yao,Z.Ogum i,K.K ikuchi, and M.Kawase,J.Solid State Chem.121,423(1996).

    [24]X.Liu,Z.Z.Chen,Y.W.Wen,R.Chen,and B.Shan, Catal.Sci.Technol.4,3687(2014).

    [25]G.Thornton,B.C.Tofield,and A.W.Hewat,J.Solid State Chem.61,301(1986).

    [26]K.Asai,P.Gehring,H.Chou,and G.Shirane,Phys. Rev.B 40,10982(1989).

    [27]S.Yam aguchi,Y.Okim oto,and Y.Tokura,Phys.Rev. B 55,R8666(1997).

    [28]I.A.Nekrasov,S.V.Streltsov,M.A.Korotin,and V. I.Anisim ov,Phys.Rev.B 68,235113(2003).

    [29]D.P.Kozlenko,N.O.Golosova,Z.Jirk,L.S.Dubrovinsky,B.N.Savenko,M.G.Tucker,Y.Le Godec,and V. P.G lazkov,Phys.Rev.B 75,064422(2007).

    [30]W.T.Hong,M.Gad re,Y.L.Lee,M.D.Biegalski,H. M.Christen,D.M organ,and Y.Shao-Horn,J.Phys. Chem.Lett.4,2493(2013).

    [31]A.M.Ritzm ann,M.Pavone,A.B.M u?noz-Garc′?a,J. A.Keith,and E.A.Carter,J.Mater.Chem.A 2,8060 (2014).

    [32]G.K resse and J.Hafner,Phys.Rev.B 47,558(1993).

    [33]W.Kohn and L.J.Sham,Phys.Rev.140,A 1133 (1965).

    [34]P.E.Bl¨och l,Phys.Rev.B 50,17953(1994).

    [35]J.P.Perdew,K.Burke,and M.Ernzerhof,Phys.Rev. Lett.77,3865(1996).

    [36]H.J.M onkhorst and J.D.Pack,Phys.Rev.B 13,5188 (1976).

    [37]A.Chainani,M.M athew,and D.D.Sarma,Phys.Rev. B 46,9976(1992).

    [38]V.I.Anisimov,J.Zaanen,and O.K.Andersen,Phys. Rev.B 44,943(1991).

    [39]H.Hsu,K.Um em oto,M.Cococcioni,and R.Wentzcovitch,Phys.Rev.B 79,125124(2009).

    [40]L.Wang,T.M axisch,and G.Ceder,Phys.Rev.B 73, 195107(2006).

    [41]C.L.M a and J.Cang,Solid State Commun.150,1983 (2010).

    [42]F.Bottin,F.Finocchi,and C.Noguera,Phys.Rev.B 68,035418(2003).

    ceived on March 16,2017;Accepted on March 21,2017)

    ?Authors to whom correspondence shou ld be add ressed.E-m ail: zphu@nankai.edu.cn,xingang li@tju.edu.cn

    美女大奶头黄色视频| 亚洲人成网站在线观看播放| 久久精品久久久久久噜噜老黄| 美女大奶头黄色视频| 亚洲精品国产av成人精品| 99久久中文字幕三级久久日本| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产免费现黄频在线看| 9热在线视频观看99| 免费人妻精品一区二区三区视频| 赤兔流量卡办理| 精品一区二区三区视频在线| 亚洲天堂av无毛| 午夜福利影视在线免费观看| 亚洲精品乱码久久久久久按摩| 香蕉精品网在线| 亚洲精品自拍成人| 婷婷色av中文字幕| 校园人妻丝袜中文字幕| 极品人妻少妇av视频| 国产精品久久久av美女十八| 国产无遮挡羞羞视频在线观看| 我的女老师完整版在线观看| 精品国产露脸久久av麻豆| 熟妇人妻不卡中文字幕| 国产精品女同一区二区软件| videos熟女内射| 久久午夜综合久久蜜桃| 国产精品 国内视频| 天天影视国产精品| 热99国产精品久久久久久7| 亚洲精品乱码久久久久久按摩| 18禁动态无遮挡网站| 中文字幕人妻熟女乱码| 99re6热这里在线精品视频| 久久久久国产精品人妻一区二区| 久久久久精品久久久久真实原创| 黄片无遮挡物在线观看| 亚洲国产精品一区二区三区在线| 午夜福利网站1000一区二区三区| 在线精品无人区一区二区三| 不卡视频在线观看欧美| 女人久久www免费人成看片| 国产成人精品福利久久| videosex国产| 久久人妻熟女aⅴ| 香蕉丝袜av| 天天躁夜夜躁狠狠久久av| 成人毛片60女人毛片免费| 在线看a的网站| 22中文网久久字幕| 欧美精品一区二区免费开放| 亚洲精品,欧美精品| 国产极品粉嫩免费观看在线| 成人国语在线视频| 九色成人免费人妻av| www.熟女人妻精品国产 | 国产欧美日韩一区二区三区在线| 日本91视频免费播放| 久久久欧美国产精品| av有码第一页| 天天操日日干夜夜撸| 色婷婷av一区二区三区视频| 国产综合精华液| 人妻少妇偷人精品九色| 麻豆精品久久久久久蜜桃| 一本—道久久a久久精品蜜桃钙片| 热99久久久久精品小说推荐| 赤兔流量卡办理| 一级毛片黄色毛片免费观看视频| 永久免费av网站大全| 又大又黄又爽视频免费| 亚洲欧洲精品一区二区精品久久久 | 少妇被粗大的猛进出69影院 | 在线观看www视频免费| 亚洲综合精品二区| 久热久热在线精品观看| 亚洲国产精品国产精品| 国产亚洲av片在线观看秒播厂| 午夜影院在线不卡| 精品亚洲成a人片在线观看| 国产精品久久久久久精品古装| 亚洲国产色片| 侵犯人妻中文字幕一二三四区| 97精品久久久久久久久久精品| av女优亚洲男人天堂| 国内精品宾馆在线| 国产精品一区www在线观看| 国产日韩一区二区三区精品不卡| 国产精品免费大片| 久久人人爽人人爽人人片va| 欧美日韩精品成人综合77777| 成人手机av| 国产一区二区三区av在线| 日本与韩国留学比较| 成人国产麻豆网| 欧美国产精品一级二级三级| 欧美日韩视频高清一区二区三区二| 日本爱情动作片www.在线观看| 91在线精品国自产拍蜜月| 视频中文字幕在线观看| 高清不卡的av网站| 99九九在线精品视频| 国产亚洲精品久久久com| 9191精品国产免费久久| 在现免费观看毛片| 亚洲精品日本国产第一区| 18禁动态无遮挡网站| 国产乱人偷精品视频| 成年动漫av网址| 午夜免费男女啪啪视频观看| 国产精品久久久av美女十八| 精品一品国产午夜福利视频| av线在线观看网站| 亚洲图色成人| 男女无遮挡免费网站观看| 欧美少妇被猛烈插入视频| 国产麻豆69| 国产国拍精品亚洲av在线观看| 国产成人91sexporn| 日本色播在线视频| 大码成人一级视频| 久久ye,这里只有精品| 国产成人a∨麻豆精品| 久久久久精品性色| 99热6这里只有精品| 免费黄网站久久成人精品| 久久久国产欧美日韩av| 精品亚洲乱码少妇综合久久| 丝瓜视频免费看黄片| 国产精品国产av在线观看| 99re6热这里在线精品视频| 80岁老熟妇乱子伦牲交| 日本欧美视频一区| 午夜福利视频在线观看免费| 亚洲国产成人一精品久久久| 男人爽女人下面视频在线观看| 国产精品熟女久久久久浪| 亚洲四区av| 国产免费一区二区三区四区乱码| 中文字幕av电影在线播放| 国产av国产精品国产| 啦啦啦中文免费视频观看日本| av在线播放精品| 亚洲情色 制服丝袜| 亚洲欧洲精品一区二区精品久久久 | 国产免费一级a男人的天堂| 插逼视频在线观看| 国产高清不卡午夜福利| 久久精品人人爽人人爽视色| 大香蕉久久网| 亚洲性久久影院| 不卡视频在线观看欧美| 久久久久久久久久成人| 天堂中文最新版在线下载| 成人毛片a级毛片在线播放| 日韩av不卡免费在线播放| 91aial.com中文字幕在线观看| 中文精品一卡2卡3卡4更新| 97在线视频观看| 青青草视频在线视频观看| 最后的刺客免费高清国语| 国产精品久久久久成人av| av天堂久久9| 99热国产这里只有精品6| 亚洲综合色惰| 综合色丁香网| 精品少妇内射三级| 久久精品久久久久久久性| kizo精华| 久久免费观看电影| 极品人妻少妇av视频| 久久99热这里只频精品6学生| 午夜免费鲁丝| 狂野欧美激情性xxxx在线观看| 国精品久久久久久国模美| 51国产日韩欧美| 99久国产av精品国产电影| a级毛色黄片| 18禁动态无遮挡网站| 熟女av电影| 国产探花极品一区二区| 蜜桃在线观看..| 丝瓜视频免费看黄片| 久久这里有精品视频免费| 久久这里有精品视频免费| 中文字幕人妻丝袜制服| 久久99蜜桃精品久久| 日本wwww免费看| 色视频在线一区二区三区| 人妻人人澡人人爽人人| 成年av动漫网址| 亚洲人成网站在线观看播放| 亚洲av电影在线进入| 蜜臀久久99精品久久宅男| 桃花免费在线播放| 久久热在线av| www.熟女人妻精品国产 | 香蕉精品网在线| h视频一区二区三区| 大陆偷拍与自拍| 寂寞人妻少妇视频99o| 日韩制服骚丝袜av| 人人澡人人妻人| 国产精品国产三级国产专区5o| 美女中出高潮动态图| 亚洲成人av在线免费| 最黄视频免费看| 精品少妇内射三级| 久久久久久人妻| 在线观看一区二区三区激情| 国产精品人妻久久久久久| 日本免费在线观看一区| 女人精品久久久久毛片| 视频中文字幕在线观看| 麻豆精品久久久久久蜜桃| 新久久久久国产一级毛片| 80岁老熟妇乱子伦牲交| 大话2 男鬼变身卡| 国产男人的电影天堂91| 美国免费a级毛片| 一二三四中文在线观看免费高清| 黑人猛操日本美女一级片| 天堂8中文在线网| 久久久久国产精品人妻一区二区| 巨乳人妻的诱惑在线观看| 捣出白浆h1v1| 你懂的网址亚洲精品在线观看| 日韩av不卡免费在线播放| 一级,二级,三级黄色视频| 国产成人91sexporn| 日本爱情动作片www.在线观看| 9热在线视频观看99| 丝袜喷水一区| 成人免费观看视频高清| 一级毛片黄色毛片免费观看视频| 一级片免费观看大全| 69精品国产乱码久久久| av又黄又爽大尺度在线免费看| 亚洲情色 制服丝袜| 日本欧美国产在线视频| 亚洲精品国产av蜜桃| 秋霞伦理黄片| 免费av不卡在线播放| 久久精品国产自在天天线| 美女福利国产在线| 久久久精品区二区三区| 国产日韩欧美亚洲二区| 精品酒店卫生间| 成人国产麻豆网| 精品久久国产蜜桃| 免费大片18禁| 美女福利国产在线| 最近2019中文字幕mv第一页| 女的被弄到高潮叫床怎么办| 国产精品国产av在线观看| 久久婷婷青草| 99国产综合亚洲精品| 中国三级夫妇交换| 一本久久精品| 纯流量卡能插随身wifi吗| 夜夜爽夜夜爽视频| 人人妻人人澡人人爽人人夜夜| 男女啪啪激烈高潮av片| 多毛熟女@视频| 亚洲精品成人av观看孕妇| 亚洲精品美女久久av网站| 国产成人91sexporn| 下体分泌物呈黄色| 人妻 亚洲 视频| a级片在线免费高清观看视频| 中文天堂在线官网| 国产日韩一区二区三区精品不卡| 最后的刺客免费高清国语| 国产精品一二三区在线看| 亚洲丝袜综合中文字幕| 男女啪啪激烈高潮av片| 中国国产av一级| 韩国av在线不卡| 天天影视国产精品| 中文天堂在线官网| 午夜免费鲁丝| 韩国高清视频一区二区三区| 成年人免费黄色播放视频| 搡女人真爽免费视频火全软件| 免费在线观看黄色视频的| 女人精品久久久久毛片| 亚洲精品国产av成人精品| av视频免费观看在线观看| 国产熟女午夜一区二区三区| 大片免费播放器 马上看| 国产日韩欧美亚洲二区| 久久99一区二区三区| 狂野欧美激情性xxxx在线观看| 黄网站色视频无遮挡免费观看| 亚洲成av片中文字幕在线观看 | 国产精品嫩草影院av在线观看| 亚洲精品av麻豆狂野| 中文乱码字字幕精品一区二区三区| 亚洲国产看品久久| 男女下面插进去视频免费观看 | 少妇的逼水好多| 蜜臀久久99精品久久宅男| 咕卡用的链子| 久久影院123| 曰老女人黄片| 午夜福利视频在线观看免费| 久久女婷五月综合色啪小说| 纵有疾风起免费观看全集完整版| 日韩制服骚丝袜av| 中文字幕精品免费在线观看视频 | 久久精品aⅴ一区二区三区四区 | 又黄又爽又刺激的免费视频.| 国产熟女欧美一区二区| 精品久久蜜臀av无| 看免费av毛片| 天堂俺去俺来也www色官网| 寂寞人妻少妇视频99o| 18在线观看网站| 国产亚洲最大av| 9191精品国产免费久久| 91成人精品电影| 制服丝袜香蕉在线| 国产精品女同一区二区软件| 国产精品国产三级国产专区5o| 99国产精品免费福利视频| 久久99蜜桃精品久久| 人人澡人人妻人| 欧美xxxx性猛交bbbb| 日韩视频在线欧美| 日本-黄色视频高清免费观看| www.色视频.com| 国产精品久久久久久av不卡| 成人二区视频| 在线精品无人区一区二区三| 久久99精品国语久久久| 免费av中文字幕在线| 97精品久久久久久久久久精品| 午夜影院在线不卡| 中文字幕另类日韩欧美亚洲嫩草| xxx大片免费视频| 日本欧美国产在线视频| 一区二区三区乱码不卡18| 亚洲av综合色区一区| 如何舔出高潮| kizo精华| 日韩一本色道免费dvd| 欧美精品国产亚洲| 99久国产av精品国产电影| 免费黄频网站在线观看国产| 久久久国产精品麻豆| 免费在线观看黄色视频的| 最近中文字幕高清免费大全6| 丰满饥渴人妻一区二区三| 18禁国产床啪视频网站| 亚洲精品视频女| 丰满乱子伦码专区| 亚洲国产色片| 日韩精品免费视频一区二区三区 | 1024视频免费在线观看| 午夜激情久久久久久久| 嫩草影院入口| 精品亚洲乱码少妇综合久久| 免费高清在线观看日韩| 一本色道久久久久久精品综合| 黄色毛片三级朝国网站| 欧美成人精品欧美一级黄| 国产探花极品一区二区| 国产欧美另类精品又又久久亚洲欧美| 欧美精品亚洲一区二区| 国产毛片在线视频| 草草在线视频免费看| 午夜久久久在线观看| 高清欧美精品videossex| 精品一区二区三卡| 男女下面插进去视频免费观看 | 精品亚洲成a人片在线观看| 亚洲一区二区三区欧美精品| 丰满少妇做爰视频| 丝瓜视频免费看黄片| 国产黄色免费在线视频| 亚洲国产色片| 黑丝袜美女国产一区| 亚洲精品国产色婷婷电影| 高清毛片免费看| 男女啪啪激烈高潮av片| 亚洲国产精品一区三区| 婷婷成人精品国产| 欧美激情极品国产一区二区三区 | 国产一级毛片在线| 欧美日韩一区二区视频在线观看视频在线| 久久ye,这里只有精品| 丁香六月天网| 国产精品偷伦视频观看了| 亚洲精品国产av成人精品| 精品一区二区三卡| 伊人亚洲综合成人网| 一边亲一边摸免费视频| 欧美xxxx性猛交bbbb| 亚洲人成网站在线观看播放| 美女主播在线视频| 最近手机中文字幕大全| 人人妻人人爽人人添夜夜欢视频| 久久这里只有精品19| 最近的中文字幕免费完整| 九九在线视频观看精品| 久久综合国产亚洲精品| 蜜桃国产av成人99| 国产在线免费精品| 七月丁香在线播放| 久久久久国产精品人妻一区二区| 国产探花极品一区二区| 极品人妻少妇av视频| www日本在线高清视频| 另类亚洲欧美激情| 我的女老师完整版在线观看| 青春草国产在线视频| 一级毛片黄色毛片免费观看视频| 黄片播放在线免费| 日韩视频在线欧美| 国产成人91sexporn| 在线观看www视频免费| 你懂的网址亚洲精品在线观看| 久久人人爽人人爽人人片va| 国产精品一二三区在线看| 亚洲成色77777| 丰满乱子伦码专区| 国产深夜福利视频在线观看| 国产高清不卡午夜福利| 国产精品三级大全| 久久久久久久大尺度免费视频| 永久免费av网站大全| 大片免费播放器 马上看| 宅男免费午夜| 中文精品一卡2卡3卡4更新| 中文字幕亚洲精品专区| 交换朋友夫妻互换小说| 亚洲色图综合在线观看| 高清在线视频一区二区三区| 狠狠婷婷综合久久久久久88av| √禁漫天堂资源中文www| 久久精品国产a三级三级三级| 国产成人精品无人区| 一级片'在线观看视频| 韩国精品一区二区三区 | 久久久久网色| 老司机影院毛片| 国产成人av激情在线播放| 少妇的逼水好多| 一本—道久久a久久精品蜜桃钙片| 婷婷成人精品国产| 国产精品 国内视频| 亚洲精品国产av成人精品| 精品一品国产午夜福利视频| 国产黄色免费在线视频| 精品国产国语对白av| 国产69精品久久久久777片| 国产精品久久久久久久电影| 久久影院123| 18禁动态无遮挡网站| 国产精品偷伦视频观看了| 亚洲国产欧美在线一区| 青春草国产在线视频| 黑丝袜美女国产一区| 97在线视频观看| 国产爽快片一区二区三区| 在线看a的网站| 亚洲精品久久午夜乱码| 国产精品久久久av美女十八| 久久99蜜桃精品久久| 色婷婷久久久亚洲欧美| 性高湖久久久久久久久免费观看| 丰满乱子伦码专区| 男女午夜视频在线观看 | 国产黄色视频一区二区在线观看| 香蕉丝袜av| 国产1区2区3区精品| 宅男免费午夜| 一级毛片电影观看| 国产免费又黄又爽又色| 哪个播放器可以免费观看大片| 99久国产av精品国产电影| www.av在线官网国产| 日韩av免费高清视频| 精品亚洲成a人片在线观看| 26uuu在线亚洲综合色| 人妻系列 视频| 天天躁夜夜躁狠狠久久av| 热99国产精品久久久久久7| 大香蕉久久网| 久久久久久久精品精品| 日韩欧美一区视频在线观看| 日本vs欧美在线观看视频| 久久久精品区二区三区| 久久亚洲真实| av电影中文网址| 久久久久久久午夜电影 | 亚洲精品国产色婷婷电影| 国产主播在线观看一区二区| 欧美中文综合在线视频| 精品一区二区三卡| 成人国语在线视频| 女人高潮潮喷娇喘18禁视频| 视频区图区小说| 妹子高潮喷水视频| 色精品久久人妻99蜜桃| 欧美人与性动交α欧美软件| 国产欧美亚洲国产| www.熟女人妻精品国产| 免费黄频网站在线观看国产| 免费在线观看黄色视频的| 激情视频va一区二区三区| 国产精品 国内视频| 国产精品乱码一区二三区的特点 | 国产成+人综合+亚洲专区| 99国产综合亚洲精品| 亚洲专区字幕在线| 国产精品自产拍在线观看55亚洲 | 在线免费观看的www视频| 校园春色视频在线观看| 新久久久久国产一级毛片| 男人操女人黄网站| 国产精品一区二区精品视频观看| 亚洲精品粉嫩美女一区| www.熟女人妻精品国产| 精品一品国产午夜福利视频| 国产精品亚洲av一区麻豆| 黄色 视频免费看| 欧美色视频一区免费| 国产精品久久久久久精品古装| 在线观看免费日韩欧美大片| 亚洲精品在线美女| 久久精品亚洲av国产电影网| 亚洲午夜精品一区,二区,三区| 欧美激情高清一区二区三区| 色播在线永久视频| 久久香蕉国产精品| av天堂久久9| 久久天堂一区二区三区四区| 成人18禁在线播放| 日韩精品免费视频一区二区三区| 18禁裸乳无遮挡动漫免费视频| 国产野战对白在线观看| 亚洲欧美激情综合另类| 国产亚洲精品久久久久久毛片 | 在线国产一区二区在线| 日韩熟女老妇一区二区性免费视频| 真人做人爱边吃奶动态| 国产三级黄色录像| 一级毛片精品| 久久久国产精品麻豆| 亚洲av成人一区二区三| 天天添夜夜摸| 亚洲午夜理论影院| 免费高清在线观看日韩| 热re99久久国产66热| 美女高潮到喷水免费观看| 人妻丰满熟妇av一区二区三区 | 满18在线观看网站| 国产免费男女视频| 天堂中文最新版在线下载| 欧美精品啪啪一区二区三区| 狠狠狠狠99中文字幕| 国产精品一区二区精品视频观看| 久久亚洲真实| 一级黄色大片毛片| 最近最新免费中文字幕在线| 女性被躁到高潮视频| 最近最新中文字幕大全免费视频| 天天躁日日躁夜夜躁夜夜| 老司机影院毛片| 亚洲午夜理论影院| 亚洲av电影在线进入| 亚洲国产欧美网| 黑丝袜美女国产一区| 男男h啪啪无遮挡| 亚洲精品国产精品久久久不卡| 国产99久久九九免费精品| 捣出白浆h1v1| 国产激情欧美一区二区| 黄色视频不卡| 日日爽夜夜爽网站| videosex国产| 午夜91福利影院| 日韩欧美免费精品| 超碰成人久久| 一级片免费观看大全| 一级a爱视频在线免费观看| 亚洲国产欧美一区二区综合| 777久久人妻少妇嫩草av网站| 啪啪无遮挡十八禁网站| 热99国产精品久久久久久7| 天堂中文最新版在线下载| 欧美乱色亚洲激情| 免费女性裸体啪啪无遮挡网站| 久久精品亚洲精品国产色婷小说| 亚洲av电影在线进入| 午夜日韩欧美国产| 黑丝袜美女国产一区| 国产亚洲精品一区二区www | 黄片播放在线免费| 深夜精品福利| 国产99久久九九免费精品| 国产午夜精品久久久久久| 国产1区2区3区精品| 91成年电影在线观看| 午夜日韩欧美国产| 极品教师在线免费播放| 欧美人与性动交α欧美软件| 亚洲七黄色美女视频| 一边摸一边抽搐一进一出视频| 免费人成视频x8x8入口观看| 国产乱人伦免费视频| 亚洲一区二区三区欧美精品| 欧美成人午夜精品|