• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Asymptotics and Blow-up for M ass Critical Nonlinear Disp ersive Equations?

    2017-07-02 07:18:34FrankMERLE
    關(guān)鍵詞:黃玲墨鏡外地

    Frank MERLE

    (Dedicated to Professor Ha?m Brezis on the occasion of his 70th birthday)

    1 General Setting and Universality Questions

    Nonlinear partial differential equations with Hamiltonian structure appear in models of wave propagation in physics or geometry.In the 1980s,basic properties of these equations were established,notably the existence and stability of special solutions called solitons.In the 1990s,tools from harmonic analysis led to a refined understanding of properties of the corresponding linear equations and how to extend these properties to nonlinear equations.In particular,the notion of criticality appeared.There remained the problem of understanding the dynamics related to nonlinear objects(or special solutions).These questions have attracted considerable interest in the last fifteen years,and yet we are just beginning to have a rough picture of the subject.More precisely,the questions are what to expect in this context,what can be proved,and with which patterns or tools can one approach these problems.In this paper,I will consider the following equations(see[34]for a more extend review on the subject).

    (1)The L2(mass)critical nonlinear Schr?dinger(cNLS for short)equation

    (2)The L2(mass)critical Korteweg-de Vries(cKdV for short)equation

    These are special cases of the nonlinear Schr?dinger(NLS for short)equation and the generalized Korteweg-de Vries(gKd V for short)equation with power nonlinearities:

    where the equation with a?sign in front of the nonlinear term is called defocusing and is expected to have only linear behavior,while the equation with a+sign is called focusing and is expected to have nonlinear behavior(the nonlinear effect balances the linear effect).

    1.1 Local Cauchy theory

    Given initial data at time t=0,the general problem is to understand the behavior of the solution u(t)for t>0(and t<0).First,in the 1980sand 1990s,the existence and uniqueness of local solutions in time were clarified using Strichartz estimates on the linear equation,and fixed point arguments to treat the nonlinear term in a perturbative way.Many authors contributed to these developments;pioneering works are[2,5–6,8,11–13],and many others.For the above equations,we have the following results.

    The mass critical nonlinear Schr?dinger(cNLS for short)equation and the mass critical Korteweg-de Vries(cKd V for short)equation are both locally well-posed(exhibiting existence and uniqueness of a maximal solution)on[0,T)(similarly onandwhereEither T=+∞ (and the solution is to said to be global),or T<+∞,and then if(the solution is said to blow up in finite time).Note that the value of T is in fact independent of the space,and in L2the blow-up criterion is given by a Strichartz norm(see[5,13]).Moreover,one has the following conservation laws(mass and energy):For all t∈[0,T),

    We have,in addition to the standard invariance by translation in space and time of the equation(with phase and Galilean invariance for the NLS equation),the scaling symmetry of the solution:If u(t,x)is a solution of cNLSequation,then forλ>0,

    is also a solution,and for solutions of cKd V equation,

    is also a solution.These transformations leave invariant the L2norm of the solution,so that both problems are called mass critical.In the defocusing case,the?sign in the energy becomes a+sign and the energy is coercive.

    1.2 The problem of asymptotic behavior

    We first have the following classical examples:

    (i)Small data result.If the solution is small in the critical space(with a constant depending on a Strichartz inequality),then the solution is global and scatters(has linear behavior)as time approaches infinity.Let S(t)v0and S(t)(v0,v1)be the solutions of the corresponding linear equations.

    There is aδ>0,such that in the case of cNLS and cKd V equations,ifthen the solution is global and there are v±∈ L2such that

    (ii)Nonlinear objects such as periodic-in-time or stationary solutions.In the focusing situation,we have simple nonlinear objects which are stationary solutions up to the invariance of the equation.More precisely,we have for the cKd V equation a traveling wave solution of the form u(t,x)=Q(x?t)where Q is the one-dimensional solution in H1of

    For the cNLS equation,the periodic solution is of the formwhere Q is the ground state solution in H1of

    (see[1];note that excited states may also be considered).

    (iii)The so-called self-similar solution.This is an expected typical example of blow-up solutions.We consider solutions of the form(up to some time-dependent translation and phase)for the mass critical KdV and cKdV equations,

    for the mass critical NLS(the cNLSequation),

    From the criticality and the conservation laws,for cNLS,cKdV equations,we will exclude such self-similar blow-up(in a more general form)for solutions in the critical space.Nonexistence of self-similar blow-up(in critical space)is one of the features of critical equations.Indeed,one can see that F satisfies an equation and that the behavior of the solution as the space variable goes to infinity shows that the solution is not in the critical space.To exclude self-similar-like behavior is in general a challenge deeply related to the nature of each equation.It corresponds to replacing an ordinary differential equation analysis by a partial differential equation analysis.

    Other examples of solutions are generally in some respects a combination of the previous examples.They involve understanding the nature of dispersion at infinity in space and its coupling with the nonlinear dynamics.In particular,to construct a blow-up solution with a precise behavior is extremely complicated,even at a formal level,involving interaction of nonlinear/linear dynamics.Typically,dynamics of the solution is(up to scaling)asymptotic to a simple nonlinear object as defined before.In the global case,it is an example of asymptotic stability.In the blow-up case,we obtain a bubbling solution with a universal profile.In the examples considered,dynamics near a soliton are quite degenerate(having more degenerate directions than those given by the symmetries of the equation)and small perturbations in a regular space can dramatically change the global nonlinear behavior.In particular,behavior of initial data at infinity(tails)is essential.To get a formal understanding of these dynamics and to rigorously establish the formal picture was a challenge and required a new set of ideas.In general,understanding these interactions will lead to a classification of the possible dynamics.The two main problems of this type that we considered were to understand blow-up behavior for the mass critical NLS,and to prove blow-up for the the mass critical Kd V.These questions were open for several decades,and their resolution has a number of consequences in different contexts.Our strategy is to see that in each situation deep knowledge of the dispersion is related to a monotonicity formula(or sets of monotonicity formulas)which encodes notions of irreversibility.Note that when we speak about monotonicity formulas in these problems of time oscillatory integrals,we mean to have a decreasing quantity up to terms of lower order which are controlled.As we shall see,this monotonicity gives stability properties of the resulting dynamics.

    We will now restrict attention to the physically relevant space dimension associated with each model.This is dimension one for the mass critical KdV(the cKdV equation),dimension two for the mass critical NLS(the cNLSequation).

    2 The Nonlinear Schr?dinger Equation

    2.1 History of the problem

    We focus in this section on the cNLS equation in the physically relevant dimension N=2.We will work in the energy space,assuming that u0∈H1.From an obstructive identity related to a pseudo-conformal invariance,it is known since the 1970s(see[10])that if

    Variational arguments yield that blow-up is related to bubbling(and no blow-up occurs forThen in the early 1990s,the following precursor result containing a rigidity notion for Hamiltonian dynamics was proved.

    Theorem 2.1(Dynamical Characterization of S in(2.2)and Q in(1.8))(see[30,32])Letand u(t,x)be the solution of the cNLS equation with initial data u0,then either(1)or(2)holds as follows:

    (1)u is equal to S or to Q(x)eit,up to the symmetries of the equation,

    (2)u is global,and scatters as

    The first step of the proof is to show,using the minimality of the mass,that the solution is either scattering or nondispersive.Then variational arguments,estimates on tails,and conformal invariance lead to the result.Now the solutions S,Q can be seen as the only solutions which have a nonlinear dynamics at the critical mass level|Q|L2.

    The next challenge is then to understand the dynamics in the context of a nonlinear/linear interaction,and a natural setting for this is small nonlinear data theory:For a small 0<α??1 and u0∈H1with small supercritical mass

    2.2 Loglog blow-up and classification(the Merle-Rapha?l theory)

    The starting point of this program is the Martel-Merle theory introducing rigidity notions for general data and dynamical application of these(see next section).We are now considering dynamics close to Q up to renormalization.Here the linearized problem around Q is very degenerate(having a higher degree of degeneracy than invariances of the equation)and the picture even at the formal level is not given by the linear theory.

    The idea is the following:We consider,near Q,a family of nonlinear objects related to self-similar blow-up with a small time-dependent parameter b(t)(on bounded sets,these self similar solutions look like Q,but have a tail at infinity and thus fail(just barely)to belong to L2).Next,we consider Qb,a regularization at infinity of this family which is minimal in some sense.At this point,the idea is to find irreversibility through the time evolution of the parameter b(t)from a monotonicity formula in b(t)(recall that this problem originally involves oscillatory integrals in time).

    The algebra related to Qbgives a formal proof of the loglog rate(related to cancellations at any polynomial order in the equation of the parameter b(t)).These notions based on monotonicity formulas do yield a rigorous proof of stable blow-up.The remarkable fact is that this theory works in H1and leads finally to the following theorem including a classification result.

    Theorem 2.2(L2Critical Blow-Up)(see[7,35–39,45])Let u0∈ H1with small supercritical mass(2.3)and u∈C([0,T),H1)be the corresponding solution to the cNLS equation.Then:

    (i)Sufficient condition for loglog blow-up:If E(u0)<0,or E(u0)=0 and,then u blows up in finite time with the loglog speed

    (ii)Stability of loglog blow-up:The set of H1initial data u0such that u(t)blows up in finite time with the loglog law(2.4)is open in H1.

    (iii)Universality of the bubble profile and classification of the blow-up rate:If T<+∞,then there exist parameters(λ(t),x(t),γ(t))and u?∈ L2,such that

    where Q is defined inandwhenand the speed of blow-up either satisfies the loglog law(2.4)or is bounded from below by the pseudo-conformal speed:

    2.3 Threshold solutions

    Theorem 2.2 yields the existence of an H1-open set of loglog blow-up solutions.In the neighborhood of Q,there are at least two other regimes:Scattering solutions displaying an H1-stable dynamics,and the solutions constructed by Bourgain-Wang[3]and Krieger-Schlag[17]which scatter to S:

    and which saturate the upper bound(2.6):when t→0.

    Such solutions are constructed by canceling interactions between S(t)and u?,taking u?to be very flat near the zero.Therefore,instability of such a solution is expected.In[40],adapting monotonicity properties to a mass constraint,one sees that the solutions(2.7)have an unstable threshold dynamics.

    Theorem 2.3(Instability of S-Type Solutions(2.7))(see[40])The Bourgain-Wang solutions are the threshold dynamics for the cNLSequation and lie on the boundary of both H1-open sets of solutions which scatter linearly as time goes to infinity,and solutions which blow up in finite time in the loglog regime.

    2.4 Other applications of this approach

    There are spectacular applications of this approach to the construction of blow-up solutions with a given behavior.This point of view involving monotonicity properties in problems of oscillatory integrals has been successfully used to solve some classical critical problems.

    The first step is to perform a formal analysis,where one considers specific localization of a self-similar profile(or its development with respect to a small parameter)and obtains,by computing the nonlinear equation of this reduction,a nonlinear finite-dimensional reduction of the problem.In all cases,we obtain the derivation of a monotonicity formula in a specific regime which ultimately leads to a rigor ousproof of the dynamics.It also shows that the infinite dimensional part of the solution is controlled by the finite-dimensional parameters.Here,in most cases,we use high regularity theory to obtain such monotonicity formulas via specific properties of the equation considered.A byproduct of the proof is a stability property with respect to the initial data of the dynamics in this higher regularity space(where one has the monotonicity formula).

    At this level,general classification is still out of reach and is a real challenge in most cases.Let me cite a few of these problems(see[46]for more details or examples).We have the focusing energy critical wave and Schr?dinger equations in dimension three(or their geometric counterparts in the critical dimension two)which can be reduced in the case of symmetry to the following equation:

    (i)The wave maps into the sphere S2(see[18,47–49])

    我打電話給黃玲說自己要到外地出差,問她大概什么時候回來,也許等她回來我可以將鑰匙交到她手里。我不知道為什么她要將鑰匙交給我,難道我這個只認識幾個月的女人比她的男朋友還可靠?黃玲給我的疑問太多,她像是藏在墨鏡背后的一個神秘的女人,時而近在咫尺溫暖人心,時而遙不可及神秘難測。

    (ii)The Schr?dinger maps into the sphere S2(see[41])

    3 Generalized Korteweg-de Vries Equation

    The cKd V equation admits the same conservation laws and scaling invariance as the cNLS equation and is mass critical.The problem of blow-up for the cKd V equation was considered as a classical and natural question,since it has the same features as the mass critical NLSequation but no conformal invariance(or associated virial identity which leads to a simple obstruction argument to global existence).For small 0<α??1,we consider data such that

    3.1 Subcritical and critical Martel-Merle theory for the generalized K orteweg-de Vries equation

    This problem was thoroughly studied by Martel and Merle in the early 2000s.Following the dynamical characterization of S for the mass critical NLS equation,where the nondispersive character of solutions follows from the mass constraint of the initial data,and the work of Glangetas,Merle[9],where for general data a minimality of an asymptotic dynamical property shows the nondispersive character of solutions,the set of results presented in this subsection is the next major breakthrough in the application of the notion of nondispersive solutions.

    The idea is to find a contradiction from energy constraints(E(u0)<0)and the exact asymptotic behavior of the solution in the critical situation.For this purpose,a method was introduced to produce irreversibility and rigidity in the problem.This method has as a byproduct the spectacular application in the subcritical case where solitons are stable(up to symmetry).Let us start with the simpler configuration.

    (i)The subcritical case(1

    In this subsection,we consider(1.4)for 10,

    is also a solution,whereThe main question was the asymptotic stability of the soliton Q:For initial data u0initially close to Q in the energy space,does the solution centered at a suitably chosen x(t)converge to Qclocally in space,as time goes to infinity?The main approach is to introduce rigidity,breaking the reversibility of the equation.For this purpose,we consider a new entire solution v(t)with initial data asymptotic to u(tn,xn+·)locally in space for some xn,where tngoes to infinity as follows:

    Then from a family of monotonicity formulas of the mass on half-lines,we are able to break the reversible character of the solution v(t)and to prove elliptic exponential estimates in x,uniform in time,on v(t,x+y(t))for some y(t).Thus v(t)is a nondispersive solution of the equation and we are able to conclude using dispersive properties that v(t,x)is exactly Q(x?t)up to symmetry of the equation.

    Theorem 3.1(Asymptotic Stability of Q)(see[22]) Assume 1

    where Qc+is defined in(3.2).

    (ii)The critical case(p=5).

    The situation in the critical case is much more delicate than in the subcritical case because of the possible oscillation in time of the scaling of the soliton.Nevertheless,through a use of irreversibility we are able to prove in the energy space the following.

    Theorem 3.2(L2Critical Blow-Up for the Kd V Equation)(see[22,23–25,33]) Let u0∈H1satisfying(3.1)and u∈C([0,T),H1)be the corresponding solution of the cKdV equation.Then:

    (i)Negative energy gives blow-up:If the initial data is such that E(u0)<0,then the solution blows up with T finite or infinite

    (ii)No self-similar blow-up:There are no solutions such that T<+∞and

    (iii)Universality of the bubble of concentration:There exist(λ(t),x(t))such that,for A>0,

    wherewhen t→ T.

    We remark that blow-up is in fact a consequence of asymptotic stability and energy constraints.Let E(u0)<0.The proof of blow-up goes along the following lines(arguing by contradiction):If the solution does not blow up,we are able to prove that u(tn)satisfies(3.5)with a sequenceλ(tn)>c>0.Using E(Qc)=0 and the coercivity of the energy for small mass,we obtain that the energy computed on this time sequence E(u(tn))is positive,which contradicts the conservation of the energy.

    3.2 Critical Martel-Merle-Rapha?l theory

    Another piece of Martel-Merle theory is as follows:Space decay of the initial data with negative energy leads to blow-up in finite time.Moreover,an estimate on the blow-up rate was obtained(see[25]).But clearly,compared to the mass critical NLS equation,one piece is missing in the full description of the blow-up.

    Recently,we came back to this problem and achieved a much more ambitious goal:We were ableto completely understand all solutions and their asymptotics for initial data near the ground state with decay(including blow-up rate/stability/instability/universality questions).This was set forth in the series of papers[27–29].Finally,we end up with a complete nonlinear finite dimensional description of the dynamical picture(despite the high degeneracy of the equation near the ground state).This is the only such situation known in the literature.The expectation is that the picture obtained is canonical and should be extended to different contexts.

    More precisely,consider the set of initial data forα0small,

    and consider the L2neighborhood around the family of solitary waves

    One first has the rigidity of the dynamics for data in A.

    Theorem 3.3(Rigidity of the Flow in A(3.6))(see[27])Letand u0∈ A?Tα?.Let u∈C([0,T),H1)be the corresponding solution of the cKdV equation.Then one of the following three scenarios occurs:

    (Blow-up)The solution blows up in finite time T>0 with the universal regime

    (Soliton)The solution is global(T=+∞)and converges asymptotically to a solitary wave Q c(u0).

    (Exit)The solution leaves the tube Tα? (3.7)at some time 0

    Moreover,the scenarios(Blow-up)and(Exit)are stable under small perturbations of the initial data in A.

    This is a complete classification of solutions with data in A which remain close in the L2sense to the manifold of solitary waves.Again,a monotonicity formula(not in the energy space but in a norm related to A)is a crucial step is this result.As for the cNLS equation,we have the following dynamical characterization of Q(1.8):If E(u0)≤ 0,u0∈ A andthen u blows up in finite time on both sides in time with the blow-up law(3.8).

    It remains to understand the long-time dynamics in the(Exit)regime.The first step is the existence and uniqueness of a minimal blow-up element which is the generalization of the S(t)dynamics for the cNLS equation.This result is a surprise since it was thought to be specific to the mass critical NLSequation and linked to the conformal invariance.A key to this existence result is the above classification result on localized initial data(even if this special solution has a spatially slow decay at infinity),and for the uniqueness a set of monotonicity properties.

    Theorem 3.4(Existence and Uniqueness of the Minimal Mass Blow-Up Element)(see[28])There exists a unique solution(up to symmetries of the equation)in H1of the cKdV equation with minimal masswhich blows up at T=0.

    Moreover,is globally defined for positive time.

    We next prove the relevance of this unstable solutionand the classification at minimal mass through a result which linksto a stable scenario(see also special examples of this fact in[32,40]for the mass critical NLS equation,and for the critical wave equation in[43],where they obtained a related classification of the flow near the solitary wave involving a description of the scattering zone and its boundary through a non-return lemma).The solutionis the universal attractor of all solutions in the(Exit)regime.

    Proposition 3.1(Description of the(Exit)Scenario)(see[28])Let u(t)be a solution in the(Exit)scenario of Theorem 3.3 and let t?be the corresponding exit time.

    (i)Then there existτ?= τ?(α?)and(λ?,x?)such that

    (ii)Assume that the solutionscatters asthen any solution in the(Exit)scenario is global for positive time and scatters as

    Note that it is natural to expectto scatter asfrom the situation for cNLS and ecNLW equations(see below)where it is proved.

    It is important to notice that the above results rely on the explicit computation on some parametrization of the solution for initial data in A,and not on algebraic virial type identities.One may justify the following procedure:Introduce the nonlinear decomposition of the flow

    where?is small,and show that to leading order,λ(t)obeys the dynamical system

    The three regimes(Exit),(Blow-up),and(Soliton)now correspond at the formal level respectively toλt(0)>0,λt(0)<0,and λt(0)=0.The main and deep part is a monotonicity formula in the original variable.

    We now consider initial data with slowly decaying tails interacting with the solitary wave which lead to new exotic singular regimes.

    Proposition 3.2(Exotic Blow-up Regimes for the cKd V Equation)(see[29]) There are solutions u∈H1of the cKdV equation,with initial data arbitrarily close in H1to Q,

    (i)which blow up at t=0 with speed

    (ii)which blow up at+∞ withas t→ +∞,forν>0.

    This shows that universality is lost without decay of the initial dataIn particular,the H1Martel-Merle theory is still relevant and optimal for solutions only in the energy space without strong decay.

    [1]Berestycki,H.and Lions,P.-L.,Nonlinear scalar field equations I:Existence of a ground state,Arch.Rational Mech.Anal.,82,1983,313–345.

    [2]Bourgain,J.,Global well-posedness of defocusing critical nonlinear Schr?dinger equation in the radial case,J.Am.Math.Soc.,12,1999,145–171.

    [3]Bourgain,J.and Wang,W.,Construction of blowup solutions for the nonlinear Schr?dinger equation with critical nonlinearity,Ann.S.Nor.Pisa,25,1998,197–215.

    [4]Brezis,H.and Coron,J.M.,Convergence of solutions of H-systems or how to blow bubbles,Arch.Rational Mech.Anal.,89,1985,21–56.

    [5]Cazenave,T.and Weissler,F.,Some remarks on the nonlinear Schr?dinger equation in the critical case,Nonlinear semigroups,partial differential equations and attractors,18–29,Lecture Notes in Math.,1394,Springer,Berlin,1989.

    [6]Colliander,J.,Keel,M.,Staffilani,G.,et al.,Global well-posedness and scattering for the energy-critical nonlinear Schr?dinger equation in R3,Ann.of Math.,167,2008,767–865.

    [7]Fibich,G.,Merle,F.and Rapha?l,P.,Proof of a spectral property related to the singularity formation for the critical NLS,Phys.D,220,2006,1–13.

    [8]Ginibre,J.and Velo,G.,Generalized Strichartz inequalities for the wave equation,J.Funct.Anal.,133,1995,50–68.

    [9]Glangetas,L.and Merle,F.,A Geometrical Approach of Existence of Blow-up Solution in H1for Nonlinear Schr?dinger Equations,Publications du Laboratoire d’Analyse Numérique,Université Pierre et Marie Curie,1995.

    [10]Glassey,R.,On the blowing up of solutions to the Cauchy problem for nonlinear Schr?dinger equations,J.Math.Phys.,18,1977,1794–1797.

    [11]Kato,T.,On nonlinear Schr?dinger equations,Ann.Inst.H.Poincaré Phys.Théor.,46,1987,113–129.

    [12]Kenig,C.,Recent developments on the global behavior to critical nonlinear dispersive equations,Proceedings of the International Congress of Mathematicians,Volume I,326–338,Hindustan Book Agency,New Delhi,2010.

    [13]Kenig,C.,Ponce,G.and Vega,L.,Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle,Comm.Pure Appl.Math.,46,1993,527–620.

    [14]Killip,R.,Tao,T.and Visan,M.,The cubic nonlinear Schr?dinger equation in two dimensions with radial data,J.Eur.Math.Soc.,11,2009,1203–1258.

    [15]Killip,R.and Visan,M.,The focusing energy-critical nonlinear Schr?dinger equation in dimensions five and higher,Amer.J.Math.,132,2010,361–424.

    [16]Krieger,J.,Nakanishi,K.and Schlag,W.,Global dynamics away from the ground state for the energycritical nonlinear wave equation,Math.Z.,272,2012,297–316.

    [17]Krieger,J.and Schlag,W.,Non-generic blow-up solutions for the critical focusing NLSin 1-D,Jour.Eur.Math.Soc.,11,2009,1–125.

    [18]Krieger,J.,Schlag,W.and Tataru,D.,Renormalization and blow-up for charge one equivariant critical wave maps,Invent.Math.,171,2008,543–615.

    [19]Krieger,J.,Schlag,W.and Tataru,D.,Slow blow-up solutions for the H1(R3)critical focusing semilinear wave equation,Duke Math.J.,147,2009,1–53.

    [20]Landman,M.J.,Papanicolaou,G.C.,Sulem,C.and Sulem,P.-L.,Rate of blowup for solutions of the nonlinear Schr?dinger equation at critical dimension,Phys.Rev.A,38,1988,3837–3843.

    [21]Lions,P.-L.,The concentration-compactness principle in the calculus of variations:The limit case I and II,Rev.Mat.Ibero.,1,1985,45–121 and 145–201.

    [22]Martel,Y.and Merle,F.,A Liouville theorem for the critical generalized Korteweg–de Vries equation,J.Math.Pures Appl.,79,2000,339–425.

    [23]Martel,Y.and Merle,F.,Instability of solitons for the critical generalized Korteweg–de Vries equation,Geom.Funct.Anal.,11,2001,74–123.

    [24]Martel,Y.and Merle,F.,Stability of blow-up profile and lower bounds for blow-up rate for the critical generalized Kd V equation,Ann.of Math.,155,2002,235–280.

    [25]Martel,Y.and Merle,F.,Blow-up in finite time and dynamics of blow-up solutions for the L2-critical generalized Kd V equation,J.Amer.Math.Soc.,15,2002,617–664.

    [26]Martel,Y.and Merle,F.,Nonexistence of blow-up solution with minimal L2-mass for the critical gKd V equation,Duke Math.J.,115,2002,385–408.

    [27]Martel,Y.,Merle,F.and Rapha?l,P.,Blow-up for critical gKd V equation I:Dynamics near the soliton,Acta Math.,to appear.ar Xiv:1204.4625

    [28]Martel,Y.,Merle,F.and Rapha?l,P.,Blow-up for critical gKd V equation II:Minimal mass solution,J.E.M.S.,to appear.

    [29]Martel,Y.,Merle,F.and Rapha?l,P.,Blow-up for critical gKd V equation III:Exotic regimes,Annali Scuola Norm.Sup.di Pisa,to appear.arXiv:1209.2510

    [30]Merle,F.,Determination of blow-up solutions with minimal mass for nonlinear Schr?dinger equations with critical power,Duke Math.J.,69,1993,427–454.

    [31]Merle,F.,Construction of solutions with exactly k blow-up points for the Schr?dinger equation with critical nonlinearity,Comm.Math.Phys.,129,1990,223–240.

    [32]Merle,F.,On uniqueness and continuation properties after blow-up time of self-similar solutions of nonlinear Schr?dinger equation with critical exponent and critical mass,Comm.Pure Appl.Math.,45,1992,203–254.

    [33]Merle,F.,Existence of blow-up solutions in the energy space for the critical generalized Kd V equation,J.Amer.Math.Soc.,14,2001,555–578.

    [34]Merle,F.,Asymptotics for critical nonlinear dispersive equations,Proceedings of the International Congress of Mathematicians,2014,to appear.

    [35]Merle,F.and Rapha?l,P.,Sharp upper bound on the blow-up rate for the critical nonlinear Schr?dinger equation,Geom.Func.Anal.,13,2003,591–642.

    [36]Merle,F.and Rapha?l,P.,On universality of blow-up profile for L2critical nonlinear Schr?dinger equation,Invent.Math.,156,2004,565–672.

    [37]Merle,F.and Rapha?l,P.,The blow-up dynamics and upper bound on the blow-up rate for the critical nonlinear Schr?dinger equation,Ann.of Math.,161,2005,157–222.

    [38]Merle,F.and Rapha?l,P.,Profiles and quantization of the blow-up mass for critical nonlinear Schr?dinger equation,Commun.Math.Phys.,253,2005,675–704.

    [39]Merle,F.and Rapha?l,P.,On a sharp lower bound on the blow-up rate for the L2critical nonlinear Schr?dinger equation,J.Amer.Math.Soc.,19,2006,37–90.

    [40]Merle,F.,Rapha?l,P.and Szeftel,J.,The instability of Bourgain-Wang solutions for the L2critical NLS,Amer.Jour.Math.,135,2013,967–1017.

    [41]Merle,F.,Rapha?l,P.and Rodnianski,I.,Blow-up dynamics for smooth data equivariant solutions to the energy critical Schr?dinger map problem,Invent.Math.,193,2013,249–365.

    [42]Merle,F.,Rapha?l,P.and Rodnianski,I.,Type II blow up for the energy supercritical NLS,preprint.

    [43]Nakanishi,K.and Schlag,W.,Global dynamics above the ground state energy for the cubic NLSequation in 3D,Arch.Ration.Mech.Anal.,203,2012,809–851.

    [44]Perelman,G.,On the formation of singularities in solutions of the critical nonlinear Schr?dinger equation,Ann.Henri Poincaré,2,2001,605–673.

    [45]Rapha?l,P.,Stability of the log-log bound for blow-up solutions to the critical nonlinear Schr?dinger equation,Math.Ann.,331,2005,577–609.

    [46]Rapha?l,P.,Blow up bubbles in Hamiltonian evolution equations:A quantitative approach,Proceedings of the International Congress of Mathematicians,2014,to appear.

    [47]Rapha?l,P.and Rodnianski,I.,Stable blow-up dynamics for the critical co-rotational wave maps and equivariant Yang-Mills problems,Publ.Math.Inst.Hautes Etudes Sci.,115,2012,1–122.

    [48]Rodnianski,I.and Sterbenz,J.,On the formation of singularities in the critical O(3)σ-model,Ann.of Math.,172,2010,187–242.

    [49]Sterbenz,J.and Tataru,D.,Regularity of wave-maps in dimension 2+1,Comm.Math.Phys.,298,2010,139–230.

    [50]Tao,T.,Visan,M.and Zhang,X.,Minimal-mass blowup solutions of the mass-critical NLS,Forum Math.,20,2008,881–919.

    [51]Weinstein,M.I.,Nonlinear Schr?dinger equations and sharp interpolation estimates,Comm.Math.Phys.,87,1983,567–576.

    猜你喜歡
    黃玲墨鏡外地
    出行安全
    替婚
    金山(2022年4期)2022-04-09 16:54:11
    王子尋寶
    失焦
    智族GQ(2020年4期)2020-04-13 02:58:46
    雪季墨鏡
    智族GQ(2019年12期)2019-01-07 09:08:57
    黃玲任:全力推行愛的教育
    太陽好大,你的墨鏡買好了嗎
    Coco薇(2017年6期)2017-06-24 10:08:21
    北京郊區(qū)外埠車猛增本地人高價買外地牌
    借傘
    戴墨鏡穿泳衣的冬日
    久久精品aⅴ一区二区三区四区| 操出白浆在线播放| 精品福利观看| 午夜老司机福利片| 日韩精品青青久久久久久| 97超级碰碰碰精品色视频在线观看| 村上凉子中文字幕在线| 亚洲欧美日韩高清在线视频| 久久久国产精品麻豆| 国产精品亚洲一级av第二区| 麻豆成人午夜福利视频| 久久精品人妻少妇| 国产区一区二久久| 波多野结衣高清作品| 婷婷精品国产亚洲av| 欧美日韩一级在线毛片| 19禁男女啪啪无遮挡网站| 嫩草影视91久久| 色婷婷久久久亚洲欧美| 国内久久婷婷六月综合欲色啪| 日韩高清综合在线| 90打野战视频偷拍视频| 最好的美女福利视频网| 精品少妇一区二区三区视频日本电影| 亚洲第一欧美日韩一区二区三区| 久久久国产精品麻豆| 国产野战对白在线观看| 好看av亚洲va欧美ⅴa在| 亚洲av电影不卡..在线观看| 免费观看人在逋| 久久天堂一区二区三区四区| 精品国产亚洲在线| 波多野结衣巨乳人妻| www国产在线视频色| 一边摸一边抽搐一进一小说| 国产一卡二卡三卡精品| 欧美亚洲日本最大视频资源| 亚洲自偷自拍图片 自拍| 人人澡人人妻人| www国产在线视频色| 日韩有码中文字幕| 亚洲va日本ⅴa欧美va伊人久久| 欧美一区二区精品小视频在线| 欧美最黄视频在线播放免费| 可以在线观看的亚洲视频| 欧美激情高清一区二区三区| 国产野战对白在线观看| 国内精品久久久久精免费| 久9热在线精品视频| 亚洲精品一区av在线观看| 久久人妻av系列| 国产精品一区二区免费欧美| 丁香六月欧美| 欧美性长视频在线观看| 不卡av一区二区三区| 美女国产高潮福利片在线看| 亚洲欧美日韩高清在线视频| 中文字幕人妻熟女乱码| 香蕉av资源在线| 亚洲成人久久性| 看片在线看免费视频| 成年女人毛片免费观看观看9| 免费人成视频x8x8入口观看| 久久99热这里只有精品18| 久久久久久人人人人人| 无限看片的www在线观看| 久久久久国产一级毛片高清牌| 91av网站免费观看| 免费av毛片视频| 999精品在线视频| 欧美 亚洲 国产 日韩一| 亚洲天堂国产精品一区在线| 女警被强在线播放| 亚洲精品中文字幕一二三四区| 国产欧美日韩精品亚洲av| 一级a爱片免费观看的视频| 欧美三级亚洲精品| 中文资源天堂在线| 久久伊人香网站| 亚洲成a人片在线一区二区| tocl精华| 大型av网站在线播放| videosex国产| 黄色女人牲交| 亚洲全国av大片| 精品福利观看| 色播在线永久视频| 成人18禁在线播放| 三级毛片av免费| 国产成人精品无人区| 变态另类丝袜制服| 1024香蕉在线观看| 亚洲中文字幕日韩| 国产精品亚洲美女久久久| 精品久久久久久久久久免费视频| 精品一区二区三区四区五区乱码| 在线观看免费日韩欧美大片| 久久久国产精品麻豆| 18禁国产床啪视频网站| 人人妻,人人澡人人爽秒播| 亚洲中文字幕日韩| 国产精品国产高清国产av| 国产在线精品亚洲第一网站| 久久久久久亚洲精品国产蜜桃av| 亚洲色图 男人天堂 中文字幕| 日本a在线网址| 免费高清视频大片| 日韩 欧美 亚洲 中文字幕| 岛国视频午夜一区免费看| 欧美黑人欧美精品刺激| 欧美日本亚洲视频在线播放| 亚洲电影在线观看av| 精品福利观看| 搡老熟女国产l中国老女人| 久久国产精品人妻蜜桃| 91麻豆av在线| 午夜激情福利司机影院| 一本一本综合久久| 一个人观看的视频www高清免费观看 | 一级作爱视频免费观看| 黄片大片在线免费观看| 免费女性裸体啪啪无遮挡网站| 老汉色av国产亚洲站长工具| 婷婷六月久久综合丁香| 午夜福利欧美成人| 欧美+亚洲+日韩+国产| 国产一区二区三区视频了| 亚洲午夜精品一区,二区,三区| 在线国产一区二区在线| 国产精品一区二区免费欧美| 欧美一级毛片孕妇| 国产成人一区二区三区免费视频网站| 桃红色精品国产亚洲av| 母亲3免费完整高清在线观看| 欧美日韩亚洲综合一区二区三区_| 国产精品,欧美在线| 日韩精品免费视频一区二区三区| 黄色视频不卡| 亚洲真实伦在线观看| 亚洲中文字幕一区二区三区有码在线看 | 不卡av一区二区三区| 国产成人精品久久二区二区免费| 国产aⅴ精品一区二区三区波| 精品无人区乱码1区二区| 国产男靠女视频免费网站| 国产真实乱freesex| 无遮挡黄片免费观看| 精品免费久久久久久久清纯| 精品久久久久久成人av| 亚洲色图 男人天堂 中文字幕| 国产精品久久视频播放| 99国产精品一区二区蜜桃av| or卡值多少钱| 色综合站精品国产| 露出奶头的视频| 日韩欧美一区二区三区在线观看| 国内揄拍国产精品人妻在线 | 亚洲成人国产一区在线观看| 国产一区在线观看成人免费| 啦啦啦免费观看视频1| 美女大奶头视频| 天天躁狠狠躁夜夜躁狠狠躁| 色在线成人网| 神马国产精品三级电影在线观看 | 亚洲 欧美 日韩 在线 免费| 国产亚洲av高清不卡| 色老头精品视频在线观看| 老熟妇乱子伦视频在线观看| 久久久久国产精品人妻aⅴ院| 久久久久免费精品人妻一区二区 | 9191精品国产免费久久| 亚洲午夜理论影院| 91在线观看av| 老司机深夜福利视频在线观看| 一本综合久久免费| 麻豆一二三区av精品| 精品高清国产在线一区| 欧美久久黑人一区二区| 黄片播放在线免费| 国产在线精品亚洲第一网站| 精品第一国产精品| 国产高清videossex| 国产片内射在线| 天堂影院成人在线观看| 久久久久久久久免费视频了| 欧美久久黑人一区二区| 女人爽到高潮嗷嗷叫在线视频| 嫩草影视91久久| 亚洲第一青青草原| 亚洲一码二码三码区别大吗| 母亲3免费完整高清在线观看| 色精品久久人妻99蜜桃| 丝袜人妻中文字幕| 男人的好看免费观看在线视频 | 欧美性猛交黑人性爽| 国产高清有码在线观看视频 | 久久久久久九九精品二区国产 | 少妇 在线观看| 老熟妇乱子伦视频在线观看| 在线观看免费视频日本深夜| 黄网站色视频无遮挡免费观看| 国产亚洲av高清不卡| 久久国产精品影院| 国产精品1区2区在线观看.| 亚洲成人免费电影在线观看| 亚洲一区二区三区色噜噜| 妹子高潮喷水视频| 成人av一区二区三区在线看| 国产男靠女视频免费网站| 老熟妇仑乱视频hdxx| 身体一侧抽搐| 日本五十路高清| 久久精品aⅴ一区二区三区四区| 日韩欧美一区视频在线观看| 免费电影在线观看免费观看| 99在线人妻在线中文字幕| 亚洲国产欧洲综合997久久, | 十分钟在线观看高清视频www| 中出人妻视频一区二区| 美女扒开内裤让男人捅视频| 正在播放国产对白刺激| 中文字幕久久专区| 亚洲午夜理论影院| 色综合婷婷激情| 精品高清国产在线一区| 在线观看舔阴道视频| 日韩一卡2卡3卡4卡2021年| 大香蕉久久成人网| av福利片在线| 亚洲欧美精品综合久久99| 国产av一区在线观看免费| 国产成人av激情在线播放| 99精品在免费线老司机午夜| 精品卡一卡二卡四卡免费| 又黄又爽又免费观看的视频| 成人国产综合亚洲| 老司机靠b影院| 国产av在哪里看| www日本黄色视频网| 婷婷六月久久综合丁香| 十八禁网站免费在线| 欧美日韩乱码在线| 18禁裸乳无遮挡免费网站照片 | 久久久久国产一级毛片高清牌| 欧美另类亚洲清纯唯美| 正在播放国产对白刺激| 久久国产亚洲av麻豆专区| 搞女人的毛片| 亚洲中文字幕日韩| 成人国产一区最新在线观看| 欧美黑人精品巨大| 1024香蕉在线观看| 在线天堂中文资源库| 免费观看人在逋| 麻豆av在线久日| 国产麻豆成人av免费视频| 国产激情久久老熟女| 观看免费一级毛片| 亚洲av中文字字幕乱码综合 | 亚洲熟妇中文字幕五十中出| 精品国产乱码久久久久久男人| 日韩高清综合在线| 午夜老司机福利片| 精品午夜福利视频在线观看一区| 精品久久蜜臀av无| 国产aⅴ精品一区二区三区波| 级片在线观看| 欧美久久黑人一区二区| 久久久久久久久中文| 欧美国产精品va在线观看不卡| 侵犯人妻中文字幕一二三四区| 国产成人欧美| 人人妻人人澡欧美一区二区| 午夜福利欧美成人| 亚洲激情在线av| 欧美性猛交黑人性爽| av视频在线观看入口| 别揉我奶头~嗯~啊~动态视频| 久久精品国产99精品国产亚洲性色| 特大巨黑吊av在线直播 | 日韩欧美国产一区二区入口| 男人舔女人下体高潮全视频| 天堂动漫精品| 亚洲人成77777在线视频| 日本 欧美在线| 午夜精品在线福利| 欧美黄色淫秽网站| 黑人欧美特级aaaaaa片| 好看av亚洲va欧美ⅴa在| 久久久久国产精品人妻aⅴ院| 色哟哟哟哟哟哟| 波多野结衣av一区二区av| 宅男免费午夜| 欧美性猛交╳xxx乱大交人| 亚洲国产欧美一区二区综合| 日本一区二区免费在线视频| 窝窝影院91人妻| 亚洲成人免费电影在线观看| 99久久久亚洲精品蜜臀av| 国产精品久久久av美女十八| 久久99热这里只有精品18| av有码第一页| 日韩av在线大香蕉| 亚洲色图 男人天堂 中文字幕| 女人被狂操c到高潮| 精品一区二区三区av网在线观看| 久久久久久久久中文| 亚洲午夜精品一区,二区,三区| 身体一侧抽搐| 久久精品人妻少妇| 久久婷婷人人爽人人干人人爱| 精品久久久久久久毛片微露脸| 这个男人来自地球电影免费观看| 亚洲成人久久爱视频| 久久人妻av系列| 久久精品亚洲精品国产色婷小说| 又紧又爽又黄一区二区| 国产精品久久久久久亚洲av鲁大| 日韩欧美三级三区| 一个人观看的视频www高清免费观看 | 国产欧美日韩一区二区三| 亚洲熟妇熟女久久| 搡老妇女老女人老熟妇| 男人的好看免费观看在线视频 | 满18在线观看网站| 丝袜人妻中文字幕| 国产单亲对白刺激| 麻豆一二三区av精品| 精品福利观看| 亚洲国产精品sss在线观看| 精品乱码久久久久久99久播| 变态另类成人亚洲欧美熟女| 国产视频一区二区在线看| 99久久久亚洲精品蜜臀av| 中文字幕人成人乱码亚洲影| 欧美黑人欧美精品刺激| 欧美成人性av电影在线观看| 欧美日韩福利视频一区二区| 狂野欧美激情性xxxx| 最近最新中文字幕大全电影3 | 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品 国内视频| 后天国语完整版免费观看| 国产区一区二久久| 两个人看的免费小视频| 搡老熟女国产l中国老女人| 国产午夜福利久久久久久| 亚洲精品一区av在线观看| 欧美黑人欧美精品刺激| 狠狠狠狠99中文字幕| 久久精品国产99精品国产亚洲性色| 免费观看精品视频网站| 国产视频一区二区在线看| 草草在线视频免费看| 国产精品 国内视频| 国产v大片淫在线免费观看| 免费观看精品视频网站| 久久精品91蜜桃| 国产av一区二区精品久久| 久久久久久久精品吃奶| 首页视频小说图片口味搜索| 啦啦啦韩国在线观看视频| 精品福利观看| 成人三级黄色视频| av在线天堂中文字幕| 三级毛片av免费| 国产在线精品亚洲第一网站| 9191精品国产免费久久| 天天一区二区日本电影三级| 亚洲真实伦在线观看| 一个人免费在线观看的高清视频| 成在线人永久免费视频| 午夜福利视频1000在线观看| 国产国语露脸激情在线看| 欧美另类亚洲清纯唯美| 欧美国产精品va在线观看不卡| 欧美日本亚洲视频在线播放| videosex国产| 后天国语完整版免费观看| 亚洲在线自拍视频| 国产精品亚洲一级av第二区| 久热这里只有精品99| 色播亚洲综合网| 欧美日韩亚洲国产一区二区在线观看| 99国产精品一区二区三区| 亚洲国产毛片av蜜桃av| а√天堂www在线а√下载| 很黄的视频免费| 亚洲欧洲精品一区二区精品久久久| 欧洲精品卡2卡3卡4卡5卡区| 久9热在线精品视频| 18美女黄网站色大片免费观看| 亚洲av美国av| 亚洲精品久久成人aⅴ小说| 久久精品aⅴ一区二区三区四区| 长腿黑丝高跟| av超薄肉色丝袜交足视频| 性欧美人与动物交配| 亚洲av成人一区二区三| 老汉色∧v一级毛片| 日本精品一区二区三区蜜桃| 一边摸一边抽搐一进一小说| 成熟少妇高潮喷水视频| 欧美国产精品va在线观看不卡| 18禁黄网站禁片免费观看直播| 久久精品国产亚洲av高清一级| 欧洲精品卡2卡3卡4卡5卡区| 老司机在亚洲福利影院| 亚洲国产精品sss在线观看| 51午夜福利影视在线观看| 精品欧美一区二区三区在线| 香蕉久久夜色| av中文乱码字幕在线| 90打野战视频偷拍视频| 老司机午夜十八禁免费视频| 看黄色毛片网站| 老熟妇仑乱视频hdxx| 国产精品日韩av在线免费观看| 欧美人与性动交α欧美精品济南到| 国产又黄又爽又无遮挡在线| 亚洲三区欧美一区| 老汉色av国产亚洲站长工具| 国产国语露脸激情在线看| 黑人操中国人逼视频| 国产精品影院久久| 极品教师在线免费播放| 成年免费大片在线观看| 中文字幕精品免费在线观看视频| 男人舔女人的私密视频| 黄色视频不卡| 黄色片一级片一级黄色片| 啦啦啦韩国在线观看视频| 欧美丝袜亚洲另类 | 老司机福利观看| 少妇熟女aⅴ在线视频| 久久精品国产亚洲av香蕉五月| www.www免费av| 国产激情偷乱视频一区二区| 午夜影院日韩av| 免费人成视频x8x8入口观看| 伦理电影免费视频| 国产高清视频在线播放一区| 欧美性猛交╳xxx乱大交人| 成人亚洲精品av一区二区| 国产亚洲av高清不卡| 十八禁网站免费在线| 久久久精品国产亚洲av高清涩受| 欧美乱码精品一区二区三区| 国产精品久久久av美女十八| 狠狠狠狠99中文字幕| 在线播放国产精品三级| 欧美激情久久久久久爽电影| 国产高清视频在线播放一区| 中文字幕人成人乱码亚洲影| 久久人妻福利社区极品人妻图片| 1024视频免费在线观看| 三级毛片av免费| www.精华液| 好看av亚洲va欧美ⅴa在| 精品一区二区三区视频在线观看免费| 精品久久久久久,| 在线免费观看的www视频| 51午夜福利影视在线观看| tocl精华| 亚洲第一欧美日韩一区二区三区| 久久青草综合色| 国产精品亚洲一级av第二区| 日韩 欧美 亚洲 中文字幕| 国产精品爽爽va在线观看网站 | 狠狠狠狠99中文字幕| 老司机午夜十八禁免费视频| 国产黄片美女视频| 哪里可以看免费的av片| 女人被狂操c到高潮| 亚洲成人免费电影在线观看| 淫秽高清视频在线观看| 亚洲国产精品久久男人天堂| 欧美一区二区精品小视频在线| 国产高清有码在线观看视频 | 久久人妻福利社区极品人妻图片| 亚洲欧美精品综合久久99| 妹子高潮喷水视频| 极品教师在线免费播放| 观看免费一级毛片| 午夜影院日韩av| 在线观看免费日韩欧美大片| 美国免费a级毛片| 国产91精品成人一区二区三区| 欧美中文日本在线观看视频| 亚洲中文字幕日韩| 91av网站免费观看| 日本一本二区三区精品| 波多野结衣av一区二区av| 在线观看免费日韩欧美大片| 美国免费a级毛片| 美女高潮喷水抽搐中文字幕| 亚洲一区高清亚洲精品| 妹子高潮喷水视频| 日日干狠狠操夜夜爽| 国产aⅴ精品一区二区三区波| 久久欧美精品欧美久久欧美| 18禁裸乳无遮挡免费网站照片 | 国产精品乱码一区二三区的特点| 日韩欧美一区二区三区在线观看| bbb黄色大片| 日本成人三级电影网站| 黄色视频,在线免费观看| www.熟女人妻精品国产| 国产野战对白在线观看| 一本一本综合久久| 女性被躁到高潮视频| 久久久久久国产a免费观看| 久久久久精品国产欧美久久久| 人人妻,人人澡人人爽秒播| 桃红色精品国产亚洲av| 亚洲自偷自拍图片 自拍| 国产精品九九99| 正在播放国产对白刺激| 丁香欧美五月| 久久这里只有精品19| 动漫黄色视频在线观看| 两个人视频免费观看高清| 男男h啪啪无遮挡| 免费在线观看完整版高清| 老司机福利观看| 精品国产一区二区三区四区第35| 欧美丝袜亚洲另类 | 亚洲精品一卡2卡三卡4卡5卡| or卡值多少钱| 久久午夜综合久久蜜桃| 国产成人系列免费观看| 久99久视频精品免费| 麻豆成人av在线观看| 亚洲av熟女| 成人永久免费在线观看视频| 亚洲无线在线观看| 久久国产精品人妻蜜桃| 男人舔女人下体高潮全视频| 国产日本99.免费观看| 亚洲精品国产区一区二| 国产精品久久久久久人妻精品电影| 色播在线永久视频| www.999成人在线观看| 国内久久婷婷六月综合欲色啪| 日韩成人在线观看一区二区三区| 麻豆成人午夜福利视频| 一边摸一边做爽爽视频免费| 久久久久久久精品吃奶| 黑人操中国人逼视频| 国产av不卡久久| 国产aⅴ精品一区二区三区波| 午夜福利欧美成人| av片东京热男人的天堂| 12—13女人毛片做爰片一| 黄片大片在线免费观看| 777久久人妻少妇嫩草av网站| 国产黄色小视频在线观看| 亚洲av片天天在线观看| 国产黄a三级三级三级人| 九色国产91popny在线| 日本 av在线| 少妇的丰满在线观看| 99国产极品粉嫩在线观看| 久99久视频精品免费| 亚洲一区二区三区色噜噜| 麻豆av在线久日| 国语自产精品视频在线第100页| 久久精品国产亚洲av高清一级| 国产熟女xx| 叶爱在线成人免费视频播放| 久久 成人 亚洲| 欧美黑人欧美精品刺激| 观看免费一级毛片| 国产精品香港三级国产av潘金莲| 十分钟在线观看高清视频www| 此物有八面人人有两片| 操出白浆在线播放| 久久久久久九九精品二区国产 | 老鸭窝网址在线观看| 熟女电影av网| 久久亚洲真实| 黄色成人免费大全| 午夜福利在线观看吧| 又紧又爽又黄一区二区| 欧美成人一区二区免费高清观看 | 18禁美女被吸乳视频| 欧美绝顶高潮抽搐喷水| 制服丝袜大香蕉在线| 香蕉久久夜色| 国产亚洲精品久久久久5区| 女人爽到高潮嗷嗷叫在线视频| 听说在线观看完整版免费高清| 久久 成人 亚洲| 色综合站精品国产| 看黄色毛片网站| 亚洲性夜色夜夜综合| 91在线观看av| 丝袜美腿诱惑在线| 女人爽到高潮嗷嗷叫在线视频| 欧美性猛交╳xxx乱大交人| 美国免费a级毛片| 中文字幕另类日韩欧美亚洲嫩草| 又黄又粗又硬又大视频| 免费看美女性在线毛片视频| 中文字幕精品免费在线观看视频| 亚洲精品中文字幕一二三四区| 日本熟妇午夜| 免费人成视频x8x8入口观看| 亚洲欧美精品综合一区二区三区| 色精品久久人妻99蜜桃| 精品福利观看| 俺也久久电影网| 一级a爱视频在线免费观看| 好男人在线观看高清免费视频 | 热99re8久久精品国产|